1
|
Ruiz I, Jaramillo G, García JI, Valencia A, Segura A, Caballero-Lozada AF. Modelling ventilation with spontaneous breaths: Improving accuracy with shape functions and slice method. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2025; 263:108685. [PMID: 40015154 DOI: 10.1016/j.cmpb.2025.108685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 02/14/2025] [Accepted: 02/20/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND AND OBJECTIVE Accurate detection of spontaneous breathings (SBs) and respiratory asynchronies during mechanical ventilation (MV) is essential for optimizing patient care and preventing lung injuries. Conventional models often fail to capture these events with sufficient accuracy. To address this gap, this study introduces new equations incorporating custom shape functions and the Slice method, aiming to deliver a more robust, "bedside" model with potential applications in real-time asynchrony detection. METHODS Three new equations were developed to incorporate shape functions accounting for pressure- and volume-dependent changes in elastance, and a fourth model combined these shape functions with the Slice method. Retrospective data from 8 ICU patients (each providing 6 mins of ventilatory data) were split into two datasets of 4 patients each: one for model development and refinement, and the other for testing performance in reproducing ventilatory waveforms. Model accuracy was assessed using the coefficient of determination (R2) and Mean Residual Error (MRE). This evaluation focused on how effectively each model captured actual patient breathing mechanics, particularly in the presence of SBs or respiratory asynchronies. RESULTS The proposed models, especially the one combining shape functions with the Slice method-Recruitment Distention Elastance Analysis + Slice (RDEA + Slice)-exhibited a strong correlation with patient data, evidenced by high R2 values. While conventional models achieved R2 coefficients between 0.25 and 0.87, the new models improved these to 0.90-0.97. The RDEA + Slice model attained significantly lower MRE values (0.012-0.032), underscoring its superior accuracy in capturing dynamic changes. Furthermore, a unique identifiability analysis confirmed that the model parameters can be reliably estimated, supporting its potential for clinical application. CONCLUSIONS The new bedside models, especially RDEA + Slice, demonstrate promise in enhancing mechanical ventilation management. By accurately capturing ventilatory mechanics in presence of SBs, they hold potential to refine ventilator settings, reduce lung injury risks, and integrate with real-time diagnostic tools for detecting patient-ventilator asynchronies-ultimately supporting more personalized and effective ICU care.
Collapse
Affiliation(s)
- Ivan Ruiz
- Universidad Santiago de Cali, Grupo de Investigación GIEIAM Cali (Valle), Colombia; Universidad del Valle, Research team IMPETUS INDOMITUS, Cali (Valle), Colombia; Universidad del Valle, Grupo de Investigación Bionovo, Cali (Valle), Colombia.
| | - Guillermo Jaramillo
- Universidad del Valle, Research team IMPETUS INDOMITUS, Cali (Valle), Colombia
| | - José I García
- Universidad del Valle, Grupo de Investigación Bionovo, Cali (Valle), Colombia
| | - Andres Valencia
- Universidad del Valle, Grupo de Investigación Bionovo, Cali (Valle), Colombia; Universidad del Valle, Grupo de Investigación GUIA, Cali (Valle), Colombia
| | - Alejandro Segura
- Universidad Santiago de Cali, Grupo Salud y Movimiento, Cali (Valle), Colombia; Universidad del Valle, Departamento de Anestesiología, Cali (Valle), Colombia
| | - Andrés Fabricio Caballero-Lozada
- Universidad del Valle, Grupo de Investigación INVANEST, Cali (Valle), Colombia; Hospital Universitario del Valle, Departamento de Anestesiología, Cali (Valle), Colombia; Hospital San Jose de Buga, Buga (Valle), Colombia
| |
Collapse
|
2
|
Cushway J, Murphy L, Chase JG, Shaw G, Desaive T, Zhou C. Model based care in the ICU: A review of potential combined cardio-pulmonary models. PLoS One 2024; 19:e0306925. [PMID: 39446758 PMCID: PMC11500922 DOI: 10.1371/journal.pone.0306925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/25/2024] [Indexed: 10/26/2024] Open
Abstract
Positive end-expiratory pressure results in a sustained positive intrathoracic pressure, which exerts pressure on intrathoracic vessels, resulting in cardiopulmonary interactions. This sustained positive intrathoracic pressure is known to decrease cardiac preload, and thus, decrease venous return, ultimately reducing both the stroke volume and stressed blood volume of the cardiovascular system. Currently, cardiovascular and pulmonary care are provided independently of one another. That positive end-expiratory pressure alters both stroke volume and stressed blood volume suggests both the pulmonary and cardiovascular state should be conjointly optimised. Optimising these systems in isolation may benefit one system, but have highly detrimental effects on the other. A combined cardiopulmonary model has the potential to provide a better understanding of patient specific pulmonary and cardiovascular state, as well as resulting cardiopulmonary interactions. This would enable simultaneous optimisation of all cardiovascular and pulmonary parameters. Cardiopulmonary interactions are highly patient specific and unpredictable, making accurate modelling of these interactions challenging. A previously validated cardiopulmonary model was found to have increasing errors at high positive end-expiratory pressures. A new iteration, the alpha model, was introduced to resolve this issue. This paper aims to review the alpha model against its predecessors, the previous cardiopulmonary model, and the original three chamber cardiovascular system model. All models are used to identify cardiovascular system parameters from measurements of 4 pigs during a preload reduction manoeuvre. Outputs and parameter estimations from models are compared to assess the relative performance of the alpha model against its predecessors. The novel alpha model was able to reduce model errors under high positive end-expiratory pressure, resulting in more accurate model outputs. At high positive end-expiratory pressures (20cmH2O), the alpha model had an average error of 11.24%, while the original cardiopulmonary model had a much higher error of 52.21%. Furthermore, identified outputs of the alpha model more closely matched those of the 3 chamber model than the previous cardiopulmonary model. On average, at high positive end-expiratory levels, identified model parameters from the alpha model showed a 6.21% difference to those of the 3 chamber model, while the cardiopulmonary model displayed a 39.43% difference. The alpha model proved to be more stable than the original cardiopulmonary model, making it a good candidate for model based care. However, it produced similar parameter outputs to the simpler three chamber cardiovascular model, bringing into question whether the additional complexity is justified, especially considering the low availability of clinical data in the ICU. There is a critical need for model based care to guide important procedures in ICU, such as fluid therapy. Candidate models should be continuously reviewed in order to guarantee the best possible care.
Collapse
Affiliation(s)
- James Cushway
- GIGA-In Silico Medicine, University of Liège (ULg), Liège, Belgium
- Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand
| | - Liam Murphy
- Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand
| | - J. Geoffrey Chase
- Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand
| | - Geoffrey Shaw
- Dept of Intensive Care, Christchurch Hospital, Christchurch, New Zealand
| | - Thomas Desaive
- GIGA-In Silico Medicine, University of Liège (ULg), Liège, Belgium
| | - Cong Zhou
- Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
3
|
Rojas-López AG, Rodríguez-Molina A, Uriarte-Arcia AV, Villarreal-Cervantes MG. Vertebral Column Pathology Diagnosis Using Ensemble Strategies Based on Supervised Machine Learning Techniques. Healthcare (Basel) 2024; 12:1324. [PMID: 38998860 PMCID: PMC11241707 DOI: 10.3390/healthcare12131324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
One expanding area of bioinformatics is medical diagnosis through the categorization of biomedical characteristics. Automatic medical strategies to boost the diagnostic through machine learning (ML) methods are challenging. They require a formal examination of their performance to identify the best conditions that enhance the ML method. This work proposes variants of the Voting and Stacking (VC and SC) ensemble strategies based on diverse auto-tuning supervised machine learning techniques to increase the efficacy of traditional baseline classifiers for the automatic diagnosis of vertebral column orthopedic illnesses. The ensemble strategies are created by first combining a complete set of auto-tuned baseline classifiers based on different processes, such as geometric, probabilistic, logic, and optimization. Next, the three most promising classifiers are selected among k-Nearest Neighbors (kNN), Naïve Bayes (NB), Logistic Regression (LR), Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), Support Vector Machine (SVM), Artificial Neural Networks (ANN), and Decision Tree (DT). The grid-search K-Fold cross-validation strategy is applied to auto-tune the baseline classifier hyperparameters. The performances of the proposed ensemble strategies are independently compared with the auto-tuned baseline classifiers. A concise analysis evaluates accuracy, precision, recall, F1-score, and ROC-ACU metrics. The analysis also examines the misclassified disease elements to find the most and least reliable classifiers for this specific medical problem. The results show that the VC ensemble strategy provides an improvement comparable to that of the best baseline classifier (the kNN). Meanwhile, when all baseline classifiers are included in the SC ensemble, this strategy surpasses 95% in all the evaluated metrics, standing out as the most suitable option for classifying vertebral column diseases.
Collapse
Affiliation(s)
- Alam Gabriel Rojas-López
- Optimal Mechatronic Design Laboratory, Postgraduate Department, Instituto Politécnico Nacional—Centro de Innovación y Desarrollo Tecnológico en Cómputo, Mexico City 07700, Mexico; (A.G.R.-L.); (A.V.U.-A.)
| | | | - Abril Valeria Uriarte-Arcia
- Optimal Mechatronic Design Laboratory, Postgraduate Department, Instituto Politécnico Nacional—Centro de Innovación y Desarrollo Tecnológico en Cómputo, Mexico City 07700, Mexico; (A.G.R.-L.); (A.V.U.-A.)
| | - Miguel Gabriel Villarreal-Cervantes
- Optimal Mechatronic Design Laboratory, Postgraduate Department, Instituto Politécnico Nacional—Centro de Innovación y Desarrollo Tecnológico en Cómputo, Mexico City 07700, Mexico; (A.G.R.-L.); (A.V.U.-A.)
| |
Collapse
|
4
|
Clifton JA, Guy EF, Knopp JL, Chase JG. Obstructive respiratory disease simulation device. HARDWAREX 2024; 17:e00512. [PMID: 38333423 PMCID: PMC10850955 DOI: 10.1016/j.ohx.2024.e00512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/10/2024]
Abstract
Respiratory disease is a major contributor to healthcare costs, as well as increasing morbidity and early mortality. The device presented is used to simulate the effects of Chronic Obstructive Pulmonary Disease (COPD) in healthy people. The intended use is to provide data equivalent to COPD data measured from those who are ill for initial validation of respiratory mechanics models. It would thus eliminate the need to test unhealthy and/or fragile subjects, or the need for invasive or costly equipment based test methods. The device is used in conjunction with an open-access venturi-based flow sensor, to measure pressure, flow, and breath tidal volume. The device simulates the pressure and flow profiles of a person who has COPD including the non-linear increased resistance to end-exhalation and gas trapping. To achieve this non-linearity, a combination of high and low resistance outlets is used. Thus, the simulator allows the collection of patient-specific COPD-like breathing data in a non-invasive manner from healthy subjects. The device is low-cost with the majority of the parts 3D printed using a Prusa mini 3D printer and PLA filament.
Collapse
Affiliation(s)
- Jaimey A. Clifton
- Centre for Bioengineering, Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand
| | - Ella F.S. Guy
- Centre for Bioengineering, Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand
| | - Jennifer L. Knopp
- Centre for Bioengineering, Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand
| | - J. Geoffrey Chase
- Centre for Bioengineering, Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
5
|
Caljé-van der Klei T, Sun Q, Chase JG, Zhou C, Tawhai MH, Knopp JL, Möller K, Heines SJ, Bergmans DC, Shaw GM. Pulmonary response prediction through personalized basis functions in a virtual patient model. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 244:107988. [PMID: 38171168 DOI: 10.1016/j.cmpb.2023.107988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/16/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND AND OBJECTIVE Recruitment maneuvers with subsequent positive-end-expiratory-pressure (PEEP) have proven effective in recruiting lung volume and preventing alveoli collapse. However, determining a safe, effective, and patient-specific PEEP is not standardized, and this more optimal PEEP level evolves with patient condition, requiring personalised monitoring and care approaches to maintain optimal ventilation settings. METHODS This research examines 3 physiologically relevant basis function sets (exponential, parabolic, cumulative) to enable better prediction of elastance evolution for a virtual patient or digital twin model of MV lung mechanics, including novel elements to model and predict distension elastance. Prediction accuracy and robustness are validated against recruitment maneuver data from 18 volume-controlled ventilation (VCV) patients at 7 different baseline PEEP levels (0 to 12 cmH2O) and 14 pressure-controlled ventilation (PCV) patients at 4 different baseline PEEP levels (6 to 12 cmH2O), yielding 623 and 294 prediction cases, respectively. Predictions were made up to 12 cmH2O of added PEEP ahead, covering 6 × 2 cmH2O PEEP steps. RESULTS The 3 basis function sets yield median absolute peak inspiratory pressure (PIP) prediction error of 1.63 cmH2O for VCV patients, and median peak inspiratory volume (PIV) prediction error of 0.028 L for PCV patients. The exponential basis function set yields a better trade-off of overall performance across VCV and PCV prediction than parabolic and cumulative basis function sets from other studies. Comparing predicted and clinically measured distension prediction in VCV demonstrated consistent, robust high accuracy with R2 = 0.90-0.95. CONCLUSIONS The results demonstrate recruitment mechanics are best captured by an exponential basis function across different mechanical ventilation modes, matching physiological expectations, and accurately capture, for the first time, distension mechanics to within 5-10 % accuracy. Enabling the risk of lung injury to be predicted before changing ventilator settings. The overall outcomes significantly extend and more fully validate this digital twin or virtual mechanical ventilation patient model.
Collapse
Affiliation(s)
- Trudy Caljé-van der Klei
- Department of Mechanical Engineering, Centre for Bio-Engineering, University of Canterbury, Christchurch, New Zealand.
| | - Qianhui Sun
- Department of Mechanical Engineering, Centre for Bio-Engineering, University of Canterbury, Christchurch, New Zealand; University of Liége, Liége, Belgium
| | - J Geoffrey Chase
- Department of Mechanical Engineering, Centre for Bio-Engineering, University of Canterbury, Christchurch, New Zealand
| | - Cong Zhou
- Department of Mechanical Engineering, Centre for Bio-Engineering, University of Canterbury, Christchurch, New Zealand
| | - Merryn H Tawhai
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Jennifer L Knopp
- Department of Mechanical Engineering, Centre for Bio-Engineering, University of Canterbury, Christchurch, New Zealand
| | - Knut Möller
- Institute for Technical Medicine, Furtwangen University, Villingen-Schwenningen, Germany
| | - Serge J Heines
- Department of Intensive Care, School of Medicine, Maastricht University, Maastricht, Netherlands
| | - Dennis C Bergmans
- Department of Intensive Care, School of Medicine, Maastricht University, Maastricht, Netherlands
| | - Geoffrey M Shaw
- Department of Intensive Care, Christchurch Hospital, Christchurch, New Zealand
| |
Collapse
|
6
|
Guy EF, Clifton JA, Knopp JL, Holder-Pearson LR, Chase JG. Respiratory pressure and split flow data collection device with rapid occlusion attachment. HARDWAREX 2023; 16:e00489. [PMID: 38058767 PMCID: PMC10696101 DOI: 10.1016/j.ohx.2023.e00489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/10/2023] [Indexed: 12/08/2023]
Abstract
Respiratory model-based methods require datasets containing enough dynamics to ensure model identifiability for development and validation. Rapid expiratory occlusion has been used to identify elastance and resistance within a single breath. Currently accepted practice for rapid expiratory occlusion involves a 100 ms occlusion of the expiratory pathway. This article presents a low-cost modular rapid shutter attachment to enable identification of passive respiratory mechanics. Shuttering faster than 100 ms creates rapid expiratory occlusion without the added dynamics of muscular response to shutter closure, by eliminating perceived expiratory blockage via high shutter speed. The shutter attachment fits onto a non-invasive venturi-based flow meter with separated inspiratory and expiratory pathways, established using one-way valves. Overall, these elements allow comprehensive collection of respiratory pressure and flow datasets with relatively very rapid expiratory occlusion.
Collapse
Affiliation(s)
- Ella F.S. Guy
- Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand
| | - Jaimey A. Clifton
- Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand
| | - Jennifer L. Knopp
- Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand
| | - Lui R. Holder-Pearson
- Department of Electrical Engineering, University of Canterbury, Christchurch, New Zealand
| | - J. Geoffrey Chase
- Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
7
|
Chen Y, Zhang K, Zhou C, Chase JG, Hu Z. Automated evaluation of typical patient-ventilator asynchronies based on lung hysteretic responses. Biomed Eng Online 2023; 22:102. [PMID: 37875890 PMCID: PMC10598979 DOI: 10.1186/s12938-023-01165-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/16/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Patient-ventilator asynchrony is common during mechanical ventilation (MV) in intensive care unit (ICU), leading to worse MV care outcome. Identification of asynchrony is critical for optimizing MV settings to reduce or eliminate asynchrony, whilst current clinical visual inspection of all typical types of asynchronous breaths is difficult and inefficient. Patient asynchronies create a unique pattern of distortions in hysteresis respiratory behaviours presented in pressure-volume (PV) loop. METHODS Identification method based on hysteretic lung mechanics and hysteresis loop analysis is proposed to delineate the resulted changes of lung mechanics in PV loop during asynchronous breathing, offering detection of both its incidence and 7 major types. Performance is tested against clinical patient data with comparison to visual inspection conducted by clinical doctors. RESULTS The identification sensitivity and specificity of 11 patients with 500 breaths for each patient are above 89.5% and 96.8% for all 7 types, respectively. The average sensitivity and specificity across all cases are 94.6% and 99.3%, indicating a very good accuracy. The comparison of statistical analysis between identification and human inspection yields the essential same clinical judgement on patient asynchrony status for each patient, potentially leading to the same clinical decision for setting adjustment. CONCLUSIONS The overall results validate the accuracy and robustness of the identification method for a bedside monitoring, as well as its ability to provide a quantified metric for clinical decision of ventilator setting. Hence, the method shows its potential to assist a more consistent and objective assessment of asynchrony without undermining the efficacy of the current clinical practice.
Collapse
Affiliation(s)
- Yuhong Chen
- Intensive Care Unit, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Kun Zhang
- Intensive Care Unit, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Cong Zhou
- Department of Mechanical Engineering & Centre for Bio-Engineering, University of Canterbury, Christchurch, New Zealand.
- Taicang Yangtze River Delta Research Institute, Suzhou, China.
| | - J Geoffrey Chase
- Department of Mechanical Engineering & Centre for Bio-Engineering, University of Canterbury, Christchurch, New Zealand
| | - Zhenjie Hu
- Intensive Care Unit, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
8
|
Li W, Martini J, Intaglietta M, Tartakovsky DM. Hypertonic treatment of acute respiratory distress syndrome. Front Bioeng Biotechnol 2023; 11:1250312. [PMID: 37936822 PMCID: PMC10627238 DOI: 10.3389/fbioe.2023.1250312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/02/2023] [Indexed: 11/09/2023] Open
Abstract
Many viral infections, including the COVID-19 infection, are associated with the hindrance of blood oxygenation due to the accumulation of fluid, inflammatory cells, and cell debris in the lung alveoli. This condition is similar to Acute Respiratory Distress Syndrome (ARDS). Mechanical positive-pressure ventilation is often used to treat this condition, even though it might collapse pulmonary capillaries, trapping red blood cells and lowering the lung's functional capillary density. We posit that the hyperosmotic-hyperoncotic infusion should be explored as a supportive treatment for ARDS. As a first step in verifying the feasibility of this ARDS treatment, we model the dynamics of alveolar fluid extraction by osmotic effects. These are induced by increasing blood plasma osmotic pressure in response to the increase of blood NaCl concentration. Our analysis of fluid drainage from a plasma-filled pulmonary alveolus, in response to the intravenous infusion of 100 ml of 1.28 molar NaCl solution, shows that alveoli empty of fluid in approximately 15 min. These modeling results are in accordance with available experimental and clinical data; no new data were collected. They are used to calculate the temporal change of blood oxygenation, as oxygen diffusion hindrance decreases upon absorption of the alveolar fluid into the pulmonary circulation. Our study suggests the extraordinary speed with which beneficial effects of the proposed ARDS treatment are obtained and highlight its practicality, cost-efficiency, and avoidance of side effects of mechanical origin.
Collapse
Affiliation(s)
- Weiyu Li
- Department of Energy Science and Engineering, Stanford University, Stanford, CA, United States
| | - Judith Martini
- Department of Anaesthesia and Intensive Care Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Marcos Intaglietta
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - Daniel M. Tartakovsky
- Department of Energy Science and Engineering, Stanford University, Stanford, CA, United States
| |
Collapse
|
9
|
Guy EFS, Knopp JL, Lerios T, Chase JG. Airflow and dynamic circumference of abdomen and thorax for adults at varied continuous positive airway pressure ventilation settings and breath rates. Sci Data 2023; 10:481. [PMID: 37481681 PMCID: PMC10363111 DOI: 10.1038/s41597-023-02326-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/22/2023] [Indexed: 07/24/2023] Open
Abstract
Continuous positive airway pressure (CPAP) ventilation is a commonly prescribed respiratory therapy providing positive end-expiratory pressure (PEEP) to assist breathing and prevent airway collapse. Setting PEEP is highly debated and it is thus primarily titrated based on symptoms of excessive or insufficient support. However, titration periods are clinician intensive and can result in barotrauma or under-oxygenation during the process. Developing model-based methods to more efficiently personalise CPAP therapy based on patient-specific response requires clinical data of lung/CPAP interactions. To this end, a trial was conducted to establish a dataset of healthy subjects lung/CPAP interaction. Pressure, flow, and tidal volume were recorded alongside secondary measures of dynamic chest and abdominal circumference, to better validate model outcomes and assess breathing modes, muscular recruitment, and effort. N = 30 subjects (15 male; 15 female) were included. Self-reported asthmatics and smokers/vapers were included, offering a preliminary assessment of any potential differences in response to CPAP from lung stiffness changes in these scenarios. Additional demographics associated with lung function (sex, age, height, and weight) were also recorded.
Collapse
Affiliation(s)
- Ella F S Guy
- Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand.
| | - Jennifer L Knopp
- Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand
| | - Theodore Lerios
- Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand
| | - J Geoffrey Chase
- Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
10
|
Cushway J, Murphy L, Chase JG, Shaw GM, Desaive T. Modelling patient specific cardiopulmonary interactions. Comput Biol Med 2022; 151:106235. [PMID: 36334361 DOI: 10.1016/j.compbiomed.2022.106235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/19/2022] [Accepted: 10/22/2022] [Indexed: 12/27/2022]
Abstract
Mechanical ventilation is well known for having detrimental effects on the cardiovascular system, particularly when using high positive end-expiratory pressure. High positive end-expiratory pressure levels cause a decrease in stroke volume, which, under normal conditions, usually bring about a decrease in stressed blood volume. Stressed blood volume, defined as the total pressure generating volume of the cardiovascular system, has been shown to be a potential index of fluid responsiveness, making it a potentially important diagnostic tool. Generally, respiratory and haemodynamic care are provided independently of one another. However, that positive end-expiratory pressure alters both stroke volume and stressed blood volume suggests both the pulmonary and cardiovascular state should be conjointly optimised and used to guide positive end-expiratory pressure. However, the complex and patient-specific nature of cardiopulmonary interactions which occur during mechanical ventilation presents a challenge for accurate modelling of respiratory and cardiovascular interactions required to better optimise care. Previous models attempting to incorporate cardiopulmonary interactions have suffered from poor reliability at higher PEEP levels, largely due to an exaggerated effect of intrathoracic pressure on the cardiovascular system. A new parameter, alpha, is added to a previously validated cardiopulmonary model, to modulate the percentage of intrathoracic pressure applied to the vena cava and left ventricle. The new parameter aims to increase reliability under high PEEP conditions as well as provide a patient specific solution to modelling cardiopulmonary interactions. The results from the identified optimal alpha are compared to the original model to investigate how this new parameter may be used to create a more patient-specific cardiopulmonary model, which would be better suited for guidance of care in the ICU.
Collapse
Affiliation(s)
- James Cushway
- University of Canterbury, Department of Mechanical Engineering, Christchurch, New Zealand; University of Liège (ULg), GIGA-Cardiovascular Sciences, Liège, Belgium.
| | - Liam Murphy
- University of Canterbury, Department of Mechanical Engineering, Christchurch, New Zealand
| | - J Geoffrey Chase
- University of Canterbury, Department of Mechanical Engineering, Christchurch, New Zealand
| | - Geoffrey M Shaw
- Department of Intensive Care, Christchurch Hospital, Christchurch, New Zealand
| | - Thomas Desaive
- University of Liège (ULg), GIGA-Cardiovascular Sciences, Liège, Belgium
| |
Collapse
|
11
|
Zhou C, Chase JG. Low-cost structured light imaging of regional volume changes for use in assessing mechanical ventilation. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 226:107176. [PMID: 36228494 DOI: 10.1016/j.cmpb.2022.107176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/21/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Optimal setting of mechanical ventilators is critical for improving outcomes. Accurate, predictive lung mechanics models are effective in optimizing MV settings, but only at a global level as they cannot estimate regional lung volume ventilation to assess the potential of local distension or under-ventilation. This study presents a low-cost structured light system for non-contact high resolution chest motion measurement to estimate regional lung volume changes. METHODS The system consists of a structured light projector and two cameras. A new pattern is designed to extract motion from sub-regions of the chest surface, and an efficient feature is proposed to provide a fast and accurate correspondence matching between two views. Reconstruction of 3D surface points is based on the matched points and stereo method. Asymmetric distribution of tidal volume into left and right lungs is estimated based on reconstructed regional chest expansion. A proof-of-concept experiment using a dummy model and two test lungs connected to a ventilator to provide differential chest expansion is conducted under tidal volumes of 400 ml, 500 ml and 600 ml, with results compared to the widely-used SURF and ORB methods. RESULTS Compared to the SURF and ORB methods, the proposed method is more computationally efficient with ∼40% less computational time cost, and higher accuracy for dense point correspondence. Finally, the proposed method estimated the region lung volumes with the maximum error of 8 ml under 600 ml tidal volume, indicating a good accuracy. CONCLUSIONS Surface reconstruction results in a proof-of-concept experiment with differential chest expansion show good performance for the proposed pattern and method in extracting the key information for regional chest expansion. The proposed method is generalizable, with potential for use in other applications.
Collapse
Affiliation(s)
- Cong Zhou
- School of Civil Aviation, Northwestern Polytechnical University, China; Department of Mechanical Engineering, Centre for Bio-Engineering, University of Canterbury, Christchurch, New Zealand
| | - J Geoffrey Chase
- Department of Mechanical Engineering, Centre for Bio-Engineering, University of Canterbury, Christchurch, New Zealand.
| |
Collapse
|
12
|
Arn Ng Q, Yew Shuen Ang C, Shiong Chiew Y, Wang X, Pin Tan C, Basri Mat Nor M, Salwa Damanhuri N, Geoffrey Chase J. CAREDAQ: Data acquisition device for mechanical ventilation waveform monitoring. HARDWAREX 2022; 12:e00358. [PMID: 36117541 PMCID: PMC9474567 DOI: 10.1016/j.ohx.2022.e00358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Mechanical ventilation (MV) provides respiratory support for critically ill patients in the intensive care unit (ICU). Waveform data output by the ventilator provides valuable physiological and diagnostic information. However, existing systems do not provide full access to this information nor allow for real-time, non-invasive data collection. Therefore, large amounts of data are lost and analysis is limited to short samples of breathing cycles. This study presents a data acquisition device for acquiring and monitoring patient ventilation waveform data. Acquired data can be exported to other systems, allowing users to further analyse data and develop further clinically useful parameters. These parameters, together with other ventilatory information, can help personalise and guide MV treatment. The device is designed to be easily replicable, low-cost, and scalable according to the number of patient beds. Validation was carried out by assessing system performance and stability over prolonged periods of 7 days of continuous use. The device provides a platform for future integration of machine-learning or model-based modules, potentially allowing real-time, proactive, patient-specific MV guidance and decision support to improve the quality and productivity of care and outcomes.
Collapse
Affiliation(s)
- Qing Arn Ng
- School of Engineering, Monash University Malaysia, Subang Jaya, Selangor 47500, Malaysia
| | | | - Yeong Shiong Chiew
- School of Engineering, Monash University Malaysia, Subang Jaya, Selangor 47500, Malaysia
| | - Xin Wang
- School of Engineering, Monash University Malaysia, Subang Jaya, Selangor 47500, Malaysia
| | - Chee Pin Tan
- School of Engineering, Monash University Malaysia, Subang Jaya, Selangor 47500, Malaysia
| | - Mohd Basri Mat Nor
- Kulliyah of Medicine, International Islamic University Malaysia, Kuantan, Pahang 25200, Malaysia
| | - Nor Salwa Damanhuri
- Faculty of Electrical Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500, Permatang Pauh, Pulau Pinang, Malaysia
| | - J. Geoffrey Chase
- Center of Bioengineering, University of Canterbury, Christchurch 8041, New Zealand
| |
Collapse
|
13
|
Cushway J, Murphy L, Chase JG, Shaw GM, Desaive T. Physiological trend analysis of a novel cardio-pulmonary model during a preload reduction manoeuvre. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 220:106819. [PMID: 35461125 DOI: 10.1016/j.cmpb.2022.106819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND OBJECTIVE Mechanical ventilation causes adverse effects on the cardiovascular system. However, the exact nature of the effects on haemodynamic parameters is not fully understood. A recently developed cardio-vascular system model which incorporates cardio-pulmonary interactions is compared to the original 3-chamber cardiovascular model to investigate the exact effects of mechanical ventilation on haemodynamic parameters and to assess the trade-off of model complexity and model reliability between the 2 models. METHODS Both the cardio-pulmonary and three chamber models are used to identify cardiovascular system parameters from aortic pressure, left ventricular volume, airway flow and airway pressure measurements from 4 pigs during a preload reduction manoeuvre. Outputs and parameter estimations from both models are contrasted to assess the relative performance of each model and to further investigate the effects of mechanical ventilation on haemodynamic parameters. RESULTS Both models tracked measurements accurately as expected. There was no identifiable increase in error from the added complexity of the cardio-pulmonary model, with both models having a mean average error below 0.5% for all pigs. Identified left ventricle and vena cava elastances of the 3-chamber model was found to diverge exponentially with PEEP from identified left ventricle and vena cava elastances of the cardio-pulmonary model. The r2 of the fit for each pig ranged from 0.888 to 0.998 for left ventricle elastance divergence and from 0.905 to 0.999 for vena cava elastance divergence. All other identified parameters showed no significant difference between models. CONCLUSIONS Despite the increase in model complexity, there was no loss in the cardio-pulmonary model's ability to accurately estimate haemodynamic parameters and reproduce system dynamics. Furthermore, the cardio-pulmonary model was able to demonstrate how mechanical ventilation affected parameter estimations as PEEP was increased. The 3-chamber model was shown to produce parameter estimations which diverged exponentially with PEEP, while the cardiopulmonary model estimations remained more stable, suggesting its ability to produce more physiologically accurate parameter estimations under higher PEEP conditions.
Collapse
Affiliation(s)
- James Cushway
- University of Canterbury, Department of Mechanical Engineering, Christchurch, New Zealand.
| | - Liam Murphy
- University of Canterbury, Department of Mechanical Engineering, Christchurch, New Zealand
| | - J Geoffrey Chase
- University of Canterbury, Department of Mechanical Engineering, Christchurch, New Zealand
| | - Geoffrey M Shaw
- Dept of Intensive Care, Christchurch Hospital, Christchurch, New Zealand
| | - Thomas Desaive
- University of Liège (ULg), GIGA-Cardiovascular Sciences, Liège, Belgium
| |
Collapse
|
14
|
Zainol NM, Damanhuri NS, Othman NA, Chiew YS, Nor MBM, Muhammad Z, Chase JG. Estimating the incidence of spontaneous breathing effort of mechanically ventilated patients using a non-linear auto regressive (NARX) model. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 220:106835. [PMID: 35512627 PMCID: PMC9754157 DOI: 10.1016/j.cmpb.2022.106835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/04/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND OBJECTIVE Mechanical ventilation (MV) provides breathing support for acute respiratory distress syndrome (ARDS) patients in the intensive care unit, but is difficult to optimize. Too much, or too little of pressure or volume support can cause further ventilator-induced lung injury, increasing length of MV, cost and mortality. Patient-specific respiratory mechanics can help optimize MV settings. However, model-based estimation of respiratory mechanics is less accurate when patient exhibit un-modeled spontaneous breathing (SB) efforts on top of ventilator support. This study aims to estimate and quantify SB efforts by reconstructing the unaltered passive mechanics airway pressure using NARX model. METHODS Non-linear autoregressive (NARX) model is used to reconstruct missing airway pressure due to the presence of spontaneous breathing effort in mv patients. Then, the incidence of SB patients is estimated. The study uses a total of 10,000 breathing cycles collected from 10 ARDS patients from IIUM Hospital in Kuantan, Malaysia. In this study, there are 2 different ratios of training and validating methods. Firstly, the initial ratio used is 60:40 which indicates 600 breath cycles for training and remaining 400 breath cycles used for testing. Then, the ratio is varied using 70:30 ratio for training and testing data. RESULTS AND DISCUSSION The mean residual error between original airway pressure and reconstructed airway pressure is denoted as the magnitude of effort. The median and interquartile range of mean residual error for both ratio are 0.0557 [0.0230 - 0.0874] and 0.0534 [0.0219 - 0.0870] respectively for all patients. The results also show that Patient 2 has the highest percentage of SB incidence and Patient 10 with the lowest percentage of SB incidence which proved that NARX model is able to perform for both higher incidence of SB effort or when there is a lack of SB effort. CONCLUSION This model is able to produce the SB incidence rate based on 10% threshold. Hence, the proposed NARX model is potentially useful to estimate and identify patient-specific SB effort, which has the potential to further assist clinical decisions and optimize MV settings.
Collapse
Affiliation(s)
- Nurhidayah Mohd Zainol
- Centre for Electrical Engineering Studies, Universiti Teknologi MARA, Cawangan Pulau Pinang, Permatang Pauh Campus, 13500 Pulau Pinang, Malaysia
| | - Nor Salwa Damanhuri
- Centre for Electrical Engineering Studies, Universiti Teknologi MARA, Cawangan Pulau Pinang, Permatang Pauh Campus, 13500 Pulau Pinang, Malaysia.
| | - Nor Azlan Othman
- Centre for Electrical Engineering Studies, Universiti Teknologi MARA, Cawangan Pulau Pinang, Permatang Pauh Campus, 13500 Pulau Pinang, Malaysia
| | - Yeong Shiong Chiew
- School of Engineering, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Mohd Basri Mat Nor
- Department of Anaesthesiology and Intensive Care, Kulliyah of Medicine, International Islamic University of Malaysia, Kuantan 25200, Malaysia
| | - Zuraida Muhammad
- Centre for Electrical Engineering Studies, Universiti Teknologi MARA, Cawangan Pulau Pinang, Permatang Pauh Campus, 13500 Pulau Pinang, Malaysia
| | - J Geoffrey Chase
- Department of Mechanical Engineering, University of Canterbury, Christchurch 8041, New Zealand
| |
Collapse
|
15
|
Hannon DM, Mistry S, Das A, Saffaran S, Laffey JG, Brook BS, Hardman JG, Bates DG. Modeling Mechanical Ventilation In Silico-Potential and Pitfalls. Semin Respir Crit Care Med 2022; 43:335-345. [PMID: 35451046 DOI: 10.1055/s-0042-1744446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Computer simulation offers a fresh approach to traditional medical research that is particularly well suited to investigating issues related to mechanical ventilation. Patients receiving mechanical ventilation are routinely monitored in great detail, providing extensive high-quality data-streams for model design and configuration. Models based on such data can incorporate very complex system dynamics that can be validated against patient responses for use as investigational surrogates. Crucially, simulation offers the potential to "look inside" the patient, allowing unimpeded access to all variables of interest. In contrast to trials on both animal models and human patients, in silico models are completely configurable and reproducible; for example, different ventilator settings can be applied to an identical virtual patient, or the same settings applied to different patients, to understand their mode of action and quantitatively compare their effectiveness. Here, we review progress on the mathematical modeling and computer simulation of human anatomy, physiology, and pathophysiology in the context of mechanical ventilation, with an emphasis on the clinical applications of this approach in various disease states. We present new results highlighting the link between model complexity and predictive capability, using data on the responses of individual patients with acute respiratory distress syndrome to changes in multiple ventilator settings. The current limitations and potential of in silico modeling are discussed from a clinical perspective, and future challenges and research directions highlighted.
Collapse
Affiliation(s)
- David M Hannon
- Anesthesia and Intensive Care Medicine, School of Medicine, NUI Galway, Ireland
| | - Sonal Mistry
- School of Engineering, University of Warwick, Coventry, United Kingdom
| | - Anup Das
- School of Engineering, University of Warwick, Coventry, United Kingdom
| | - Sina Saffaran
- Faculty of Engineering Science, University College London, London, United Kingdom
| | - John G Laffey
- Anesthesia and Intensive Care Medicine, School of Medicine, NUI Galway, Ireland
| | - Bindi S Brook
- School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Jonathan G Hardman
- Anesthesia and Critical Care, Injury Inflammation and Recovery Sciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Declan G Bates
- School of Engineering, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
16
|
Zhou C, Chase JG, Sun Q, Knopp J, Tawhai MH, Desaive T, Möller K, Shaw GM, Chiew YS, Benyo B. Reconstructing asynchrony for mechanical ventilation using a hysteresis loop virtual patient model. Biomed Eng Online 2022; 21:16. [PMID: 35255922 PMCID: PMC8900099 DOI: 10.1186/s12938-022-00986-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 02/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Patient-specific lung mechanics during mechanical ventilation (MV) can be identified from measured waveforms of fully ventilated, sedated patients. However, asynchrony due to spontaneous breathing (SB) effort can be common, altering these waveforms and reducing the accuracy of identified, model-based, and patient-specific lung mechanics. METHODS Changes in patient-specific lung elastance over a pressure-volume (PV) loop, identified using hysteresis loop analysis (HLA), are used to detect the occurrence of asynchrony and identify its type and pattern. The identified HLA parameters are then combined with a nonlinear mechanics hysteresis loop model (HLM) to extract and reconstruct ventilated waveforms unaffected by asynchronous breaths. Asynchrony magnitude can then be quantified using an energy-dissipation metric, Easyn, comparing PV loop area between model-reconstructed and original, altered asynchronous breathing cycles. Performance is evaluated using both test-lung experimental data with a known ground truth and clinical data from four patients with varying levels of asynchrony. RESULTS Root mean square errors for reconstructed PV loops are within 5% for test-lung experimental data, and 10% for over 90% of clinical data. Easyn clearly matches known asynchrony magnitude for experimental data with RMS errors < 4.1%. Clinical data performance shows 57% breaths having Easyn > 50% for Patient 1 and 13% for Patient 2. Patient 3 only presents 20% breaths with Easyn > 10%. Patient 4 has Easyn = 0 for 96% breaths showing accuracy in a case without asynchrony. CONCLUSIONS Experimental test-lung validation demonstrates the method's reconstruction accuracy and generality in controlled scenarios. Clinical validation matches direct observations of asynchrony in incidence and quantifies magnitude, including cases without asynchrony, validating its robustness and potential efficacy as a clinical real-time asynchrony monitoring tool.
Collapse
Affiliation(s)
- Cong Zhou
- School of Civil Aviation & Yangtze River Delta Research Institute, Northwestern Polytechnical University, Xian, China
- Dept of Mechanical Engineering, Centre for Bio-Engineering, University of Canterbury, Christchurch, New Zealand
| | - J. Geoffrey Chase
- Dept of Mechanical Engineering, Centre for Bio-Engineering, University of Canterbury, Christchurch, New Zealand
| | - Qianhui Sun
- Dept of Mechanical Engineering, Centre for Bio-Engineering, University of Canterbury, Christchurch, New Zealand
| | - Jennifer Knopp
- Dept of Mechanical Engineering, Centre for Bio-Engineering, University of Canterbury, Christchurch, New Zealand
| | - Merryn H. Tawhai
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Thomas Desaive
- GIGA-In Silico Medicine, Institute of Physics, University of Liege, Liege, Belgium
| | - Knut Möller
- Institute for Technical Medicine, Furtwangen University, Villingen-Schwenningen, Germany
| | - Geoffrey M. Shaw
- Dept of Intensive Care, Christchurch Hospital, Christchurch, New Zealand
| | | | - Balazs Benyo
- Dept of Control Engineering and Information Technology, Budapest University of Technology and Economics, Budapest, Hungary
| |
Collapse
|
17
|
Lee JWW, Chiew YS, Wang X, Mat Nor MB, Chase JG, Desaive T. Stochastic integrated model-based protocol for volume-controlled ventilation setting. Biomed Eng Online 2022; 21:13. [PMID: 35148759 PMCID: PMC8832735 DOI: 10.1186/s12938-022-00981-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/21/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Mechanical ventilation (MV) is the primary form of care for respiratory failure patients. MV settings are based on general clinical guidelines, intuition, and experience. This approach is not patient-specific and patients may thus experience suboptimal, potentially harmful MV care. This study presents the Stochastic integrated VENT (SiVENT) protocol which combines model-based approaches of the VENT protocol from previous works, with stochastic modelling to take the variation of patient respiratory elastance over time into consideration. METHODS A stochastic model of Ers is integrated into the VENT protocol from previous works to develop the SiVENT protocol, to account for both intra- and inter-patient variability. A cohort of 20 virtual MV patients based on retrospective patient data are used to validate the performance of this method for volume-controlled (VC) ventilation. A performance evaluation was conducted where the SiVENT and VENT protocols were implemented in 1080 instances each to compare the two protocols and evaluate the difference in reduction of possible MV settings achieved by each. RESULTS From an initial number of 189,000 possible MV setting combinations, the VENT protocol reduced this number to a median of 10,612, achieving a reduction of 94.4% across the cohort. With the integration of the stochastic model component, the SiVENT protocol reduced this number from 189,000 to a median of 9329, achieving a reduction of 95.1% across the cohort. The SiVENT protocol reduces the number of possible combinations provided to the user by more than 1000 combinations as compared to the VENT protocol. CONCLUSIONS Adding a stochastic model component into a model-based approach to selecting MV settings improves the ability of a decision support system to recommend patient-specific MV settings. It specifically considers inter- and intra-patient variability in respiratory elastance and eliminates potentially harmful settings based on clinically recommended pressure thresholds. Clinical input and local protocols can further reduce the number of safe setting combinations. The results for the SiVENT protocol justify further investigation of its prediction accuracy and clinical validation trials.
Collapse
Affiliation(s)
- Jay Wing Wai Lee
- School of Engineering, Monash University Malaysia, Subang Jaya, Selangor Malaysia
| | - Yeong Shiong Chiew
- School of Engineering, Monash University Malaysia, Subang Jaya, Selangor Malaysia
| | - Xin Wang
- School of Engineering, Monash University Malaysia, Subang Jaya, Selangor Malaysia
| | - Mohd Basri Mat Nor
- Kulliyah of Medicine, International Islamic University Malaysia, Kuantan, Malaysia
| | - J. Geoffrey Chase
- Center of Bioengineering, University of Canterbury, Christchurch, New Zealand
| | - Thomas Desaive
- GIGA In-Silico Medicine, University of Liege, Liege, Belgium
| |
Collapse
|
18
|
Wong JW, Chiew YS, Desaive T, Chase JG. Model-based patient matching for in-parallel pressure-controlled ventilation. Biomed Eng Online 2022; 21:11. [PMID: 35139858 PMCID: PMC8826717 DOI: 10.1186/s12938-022-00983-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/24/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Surges of COVID-19 infections have led to insufficient supply of mechanical ventilators (MV), resulting in rationing of MV care. In-parallel, co-mechanical ventilation (Co-MV) of multiple patients is a potential solution. However, due to lack of testing, there is currently no means to match ventilation requirements or patients, with no guidelines to date. In this research, we have developed a model-based method for patient matching for pressure control mode MV. METHODS The model-based method uses a single-compartment lung model (SCM) to simulate the resultant tidal volume of patient pairs at a set ventilation setting. If both patients meet specified safe ventilation criteria under similar ventilation settings, the actual mechanical ventilator settings for Co-MV are determined via simulation using a double-compartment lung model (DCM). This method allows clinicians to analyse Co-MV in silico, before clinical implementation. RESULTS The proposed method demonstrates successful patient matching and MV setting in a model-based simulation as well as good discrimination to avoid mismatched patient pairs. The pairing process is based on model-based, patient-specific respiratory mechanics identified from measured data to provide useful information for guiding care. Specifically, the matching is performed via estimation of MV delivered tidal volume (mL/kg) based on patient-specific respiratory mechanics. This information can provide insights for the clinicians to evaluate the subsequent effects of Co-MV. In addition, it was also found that Co-MV patients with highly restrictive respiratory mechanics and obese patients must be performed with extra care. CONCLUSION This approach allows clinicians to analyse patient matching in a virtual environment without patient risk. The approach is tested in simulation, but the results justify the necessary clinical validation in human trials.
Collapse
Affiliation(s)
- Jin Wai Wong
- School of Engineering, Monash University Malaysia, Selangor, Malaysia
| | | | - Thomas Desaive
- GIGA-In Silico Medicine, University of Liege, Liege, Belgium
| | - J. Geoffrey Chase
- Centre for Bioengineering, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
19
|
Prediction and estimation of pulmonary response and elastance evolution for volume-controlled and pressure-controlled ventilation. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
20
|
Lee JWW, Chiew YS, Wang X, Tan CP, Mat Nor MB, Cove ME, Damanhuri NS, Chase JG. Protocol conception for safe selection of mechanical ventilation settings for respiratory failure Patients. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 214:106577. [PMID: 34936946 DOI: 10.1016/j.cmpb.2021.106577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/17/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND OBJECTIVE Mechanical ventilation is the primary form of care provided to respiratory failure patients. Limited guidelines and conflicting results from major clinical trials means selection of mechanical ventilation settings relies heavily on clinician experience and intuition. Determining optimal mechanical ventilation settings is therefore difficult, where non-optimal mechanical ventilation can be deleterious. To overcome these difficulties, this research proposes a model-based method to manage the wide range of possible mechanical ventilation settings, while also considering patient-specific conditions and responses. METHODS This study shows the design and development of the "VENT" protocol, which integrates the single compartment linear lung model with clinical recommendations from landmark studies, to aid clinical decision-making in selecting mechanical ventilation settings. Using retrospective breath data from a cohort of 24 patients, 3,566 and 2,447 clinically implemented VC and PC settings were extracted respectively. Using this data, a VENT protocol application case study and clinical comparison is performed, and the prediction accuracy of the VENT protocol is validated against actual measured outcomes of pressure and volume. RESULTS The study shows the VENT protocols' potential use in narrowing an overwhelming number of possible mechanical ventilation setting combinations by up to 99.9%. The comparison with retrospective clinical data showed that only 33% and 45% of clinician settings were approved by the VENT protocol. The unapproved settings were mainly due to exceeding clinical recommended settings. When utilising the single compartment model in the VENT protocol for forecasting peak pressures and tidal volumes, median [IQR] prediction error values of 0.75 [0.31 - 1.83] cmH2O and 0.55 [0.19 - 1.20] mL/kg were obtained. CONCLUSIONS Comparing the proposed protocol with retrospective clinically implemented settings shows the protocol can prevent harmful mechanical ventilation setting combinations for which clinicians would be otherwise unaware. The VENT protocol warrants a more detailed clinical study to validate its potential usefulness in a clinical setting.
Collapse
Affiliation(s)
- Jay Wing Wai Lee
- School of Engineering, Monash University Malaysia, Selangor, Malaysia.
| | | | - Xin Wang
- School of Engineering, Monash University Malaysia, Selangor, Malaysia
| | - Chee Pin Tan
- School of Engineering, Monash University Malaysia, Selangor, Malaysia
| | - Mohd Basri Mat Nor
- Kulliyah of Medicine, International Islamic University Malaysia, Pahang, Malaysia
| | - Matthew E Cove
- Division of Respiratory and Critical Care Medicine, Department of Medicine, National University Health System, Singapore
| | - Nor Salwa Damanhuri
- Faculty of Electrical Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, Pulau Pinang, Malaysia
| | - J Geoffrey Chase
- Center of Bioengineering, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
21
|
Kim KT, Knopp J, Dixon B, Chase JG. Quantifying neonatal patient effort using non-invasive model-based methods. Med Biol Eng Comput 2022; 60:739-751. [PMID: 35043368 DOI: 10.1007/s11517-021-02491-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 12/15/2021] [Indexed: 10/19/2022]
Abstract
Patient-specific spontaneous breathing effort (SB) is common in invasively mechanically ventilated (MV) adult patients, and especially common in preterm neonates who are not typically sedated. However, there is no proven, ethically feasible and non-invasive method to quantify SB effort in neonates, creating the potential for model-based measures. Lung mechanics and SB effort are segregated using a basis function model to identify passive lung mechanics, and an additional time-varying elastance model to identify patient-specific SB effort and asynchrony as negative and positive added elastances, respectively. Data from ten preterm neonates on standard MV care in the neonatal intensive care unit (NICU) are used to assess this model-based approach, using area under the curve (AUC) for positive (asynchrony) and negative (SB effort) time-varying elastance. Median [interquartile-range (IQR)] of passive pulmonary lung elastance was 3.82 [2.09-5.80] cmH2O/ml. Median [IQR] AUC quantified SB effort was -0.32 [-0.43--0.12]cmH2O/ml. AUC quantified asynchrony was 0.00 [0.00-0.01]cmH2O/ml, and affected 28% of the 25,287 total breaths. This proof of concept model-based approach provides a non-invasive, computationally straightforward, and thus clinically feasible means to quantify patient-specific spontaneous breathing effort and asynchrony.
Collapse
Affiliation(s)
- Kyeong Tae Kim
- Centre for Bioengineering, University of Canterbury, Christchurch, New Zealand.
| | - Jennifer Knopp
- Centre for Bioengineering, University of Canterbury, Christchurch, New Zealand
| | - Bronwyn Dixon
- Neonatal Intensive Care Unit, Christchurch Women's Hospital, Christchurch, New Zealand
| | - J Geoffrey Chase
- Centre for Bioengineering, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
22
|
Quantifying ventilator unloading in CPAP ventilation. Comput Biol Med 2022; 142:105225. [PMID: 35032739 DOI: 10.1016/j.compbiomed.2022.105225] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND The intrinsic (muscular) patient effort driving inspiration in non-invasive ventilation modes, such as continuous positive airway pressure (CPAP) therapy, has not been identified from non-invasive data. Current CPAP settings are based on clinical judgment and assessment of symptoms of respiratory distress. Non-optimal settings, including too much positive end expiratory pressure (PEEP) can cause unintended lung injury and ventilator unloading, where patient effort drops and the CPAP device enables too much work being imposed on the injured lung. Currently, there is no non-invasive means of quantifying or identifying these effects. METHODS A novel model-based method of ascertaining intrinsic patient work of breathing (WOB) in CPAP is developed based on linear single compartment and 2nd order b-spline models previously used in invasive ventilation modes. Results are compared to current clinical indications, such as total Imposed WOB from the CPAP device and beak length, the latter of which is the clinical metric used to indicate alveolar overdistension. Intrinsic and Imposed WOB are compared. The hypothesis is that ventilator unloading can be assessed as a decrease in Intrinsic WOB relative to Imposed WOB, as PEEP and associated ventilator unloading rise. This hypothesis is tested using 14 subjects from a CPAP trial of several breathing rates at two PEEP levels. RESULTS The ratio of Intrinsic to Imposed WOB, normalised per unit tidal volume, decreased with increasing PEEP (4-7 cm H2O), capturing the expected trend of ventilator unloading. Ventilator unloading was observed across all breathing rates. Beak length measurements showed no conclusive evidence of capturing overdistension at higher PEEP or ventilator unloading. CONCLUSIONS Patient Intrinsic WOB in CPAP was non-invasively quantified using model-based methods, based on pressure and flow measurements. The ratio of Intrinsic to Imposed WOB per unit tidal volume clearly and consistently showed ventilator unloading across all patients and breathing rates, with Intrinsic WOB decreasing with increasing PEEP. This trend was not observed in the current clinical metric of beak length. Non-invasively quantifying Intrinsic WOB and ventilator unloading is the critical first step to objectively optimising clinical CPAP settings, patient care, and outcomes.
Collapse
|
23
|
Lee JWW, Chiew YS, Wang X, Tan CP, Mat Nor MB, Damanhuri NS, Chase JG. Stochastic Modelling of Respiratory System Elastance for Mechanically Ventilated Respiratory Failure Patients. Ann Biomed Eng 2021; 49:3280-3295. [PMID: 34435276 PMCID: PMC8386681 DOI: 10.1007/s10439-021-02854-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/13/2021] [Indexed: 02/07/2023]
Abstract
While lung protective mechanical ventilation (MV) guidelines have been developed to avoid ventilator-induced lung injury (VILI), a one-size-fits-all approach cannot benefit every individual patient. Hence, there is significant need for the ability to provide patient-specific MV settings to ensure safety, and optimise patient care. Model-based approaches enable patient-specific care by identifying time-varying patient-specific parameters, such as respiratory elastance, Ers, to capture inter- and intra-patient variability. However, patient-specific parameters evolve with time, as a function of disease progression and patient condition, making predicting their future values crucial for recommending patient-specific MV settings. This study employs stochastic modelling to predict future Ers values using retrospective patient data to develop and validate a model indicating future intra-patient variability of Ers. Cross validation results show stochastic modelling can predict future elastance ranges with 92.59 and 68.56% of predicted values within the 5-95% and the 25-75% range, respectively. This range can be used to ensure patients receive adequate minute ventilation should elastance rise and minimise the risk of VILI should elastance fall. The results show the potential for model-based protocols using stochastic model prediction of future Ers values to provide safe and patient-specific MV. These results warrant further investigation to validate its clinical utility.
Collapse
Affiliation(s)
- Jay Wing Wai Lee
- School of Engineering, Monash University Malaysia, 47500, Subang Jaya, Selangor, Malaysia.
| | - Yeong Shiong Chiew
- School of Engineering, Monash University Malaysia, 47500, Subang Jaya, Selangor, Malaysia.
| | - Xin Wang
- School of Engineering, Monash University Malaysia, 47500, Subang Jaya, Selangor, Malaysia
| | - Chee Pin Tan
- School of Engineering, Monash University Malaysia, 47500, Subang Jaya, Selangor, Malaysia
| | - Mohd Basri Mat Nor
- Kulliyah of Medicine, International Islamic University Malaysia, 25200, Kuantan, Pahang, Malaysia
| | - Nor Salwa Damanhuri
- Faculty of Electrical Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500, Bukit Bertajam, Pulau Pinang, Malaysia
| | - J Geoffrey Chase
- Center of Bioengineering, University of Canterbury, Christchurch, 8041, New Zealand
| |
Collapse
|
24
|
Over-distension prediction via hysteresis loop analysis and patient-specific basis functions in a virtual patient model. Comput Biol Med 2021; 141:105022. [PMID: 34801244 DOI: 10.1016/j.compbiomed.2021.105022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND OBJECTIVE Recruitment maneuvers (RMs) with subsequent positive-end-expiratory-pressure (PEEP) have proven effective in recruiting lung volume and preventing alveolar collapse. However, a suboptimal PEEP could induce undesired injury in lungs by insufficient or excessive breath support. Thus, a predictive model for patient response under PEEP changes could improve clinical care and lower risks. METHODS This research adds novel elements to a virtual patient model to identify and predict patient-specific lung distension to optimise and personalise care. Model validity and accuracy are validated using data from 18 volume-controlled ventilation (VCV) patients at 7 different baseline PEEP levels (0-12cmH2O), yielding 623 prediction cases. Predictions were made up to ΔPEEP = 12cmH2O ahead covering 6x2cmH2O PEEP steps. RESULTS Using the proposed lung distension model, 90% of absolute peak inspiratory pressure (PIP) prediction errors compared to clinical measurement are within 3.95cmH2O, compared with 4.76cmH2O without this distension term. Comparing model-predicted and clinically measured distension had high correlation increasing to R2 = 0.93-0.95 if maximum ΔPEEP ≤ 6cmH2O. Predicted dynamic functional residual capacity (Vfrc) changes as PEEP rises yield 0.013L median prediction error for both prediction groups and overall R2 of 0.84. CONCLUSIONS Overall results demonstrate nonlinear distension mechanics are accurately captured in virtual lung mechanics patients for mechanical ventilation, for the first time. This result can minimise the risk of lung injury by predicting its potential occurrence of distension before changing ventilator settings. The overall outcomes significantly extend and more fully validate this virtual mechanical ventilation patient model.
Collapse
|
25
|
Wong JW, Chiew YS, Desaive T, Chase JG. Model-based Patient Matching for in-parallel Multiplexing Mechanical Ventilation Support. IFAC-PAPERSONLINE 2021; 54:121-126. [PMID: 38620762 PMCID: PMC8562132 DOI: 10.1016/j.ifacol.2021.10.242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Surges of COVID-19 infections could lead to insufficient supply of mechanical ventilators, and rationing of needed care. Multiplexing mechanical ventilators (co-MV) to serve multiple patients is a potential temporary solution. However, if patients are ventilated in parallel ventilation, there is currently no means to match ventilation requirements or patients, with no guidelines to date for co-MV. This research uses patient-specific clinically validated respiratory mechanics models to propose a method for patient matching and mechanical ventilator settings for two-patient co-MV under pressure control mode. The proposed method can simulate and estimate the resultant tidal volume of different combinations of co-ventilated patients. With both patients fulfilling the specified constraint under similar ventilation settings, the actual mechanical ventilator settings for co-MV are determined. This method allows clinicians to analyze in silico co-MV before clinical implementation.
Collapse
Affiliation(s)
- Jin Wai Wong
- School of Engineering, Monash University Malaysia, Selangor, Malaysia
| | | | - Thomas Desaive
- GIGA-In Silico Medicine, University of Liege, Liege, Belgium
| | - J Geoffrey Chase
- Centre for Bioengineering, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
26
|
Knopp JL, Chase JG, Kim KT, Shaw GM. Model-based estimation of negative inspiratory driving pressure in patients receiving invasive NAVA mechanical ventilation. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 208:106300. [PMID: 34348200 DOI: 10.1016/j.cmpb.2021.106300] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Optimisation of mechanical ventilation (MV) and weaning requires insight into underlying patient breathing effort. Current identifiable models effectively describe lung mechanics, such as elastance (E) and resistance (R) at the bedside in sedated patients, but are less effective when spontaneous breathing is present. This research derives and regularises a single compartment model to identify patient-specific inspiratory effort. METHODS Constrained second-order b-spline basis functions (knot width 0.05 s) are used to describe negative inspiratory drive (Pp, cmH2O) as a function of time. Breath-breath Pp are identified with single E and R values over inspiration and expiration from n = 20 breaths for N = 22 patients on NAVA ventilation. Pp is compared to measured electrical activity of the diaphragm (Eadi) and published results. RESULTS Average per-patient root-mean-squared model fit error was (median [interquartile range, IQR]) 0.9 [0.6-1.3] cmH2O, and average per-patient median Pp was -3.9 [-4.5- -3.0] cmH2O, with range -7.9 - -1.9 cmH2O. Per-patient E and R were 16.4 [13.6-21.8] cmH2O/L and 9.2 [6.4-13.1] cmH2O.s/L, respectively. Most patients showed an inspiratory volume threshold beyond which Pp started to return to baseline, and Pp at peak Eadi (end-inspiration) was often strongly correlated with peak Eadi (R2=0.25-0.86). Similarly, average transpulmonary pressure was consistent breath-breath in most patients, despite differences in peak Eadi and thus peak airway pressure. CONCLUSIONS The model-based inspiratory effort aligns with electrical muscle activity and published studies showing neuro-muscular decoupling as a function of pressure and/or volume. Consistency in coupling/dynamics were patient-specific. Quantification of patient and ventilator work of breathing contributions may aid optimisation of MV modes and weaning.
Collapse
Affiliation(s)
- Jennifer L Knopp
- Department of Mechanical Engineering, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand.
| | - J Geoffrey Chase
- Department of Mechanical Engineering, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Kyeong Tae Kim
- Department of Mechanical Engineering, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Geoffrey M Shaw
- Department of Intensive Care, Christchurch Hospital, Private Bag 4710, Christchurch, New Zealand
| |
Collapse
|
27
|
Quantifying patient spontaneous breathing effort using model-based methods. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102809] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Zhou C, Chase JG, Knopp J, Sun Q, Tawhai M, Möller K, Heines SJ, Bergmans DC, Shaw GM, Desaive T. Virtual patients for mechanical ventilation in the intensive care unit. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 199:105912. [PMID: 33360683 DOI: 10.1016/j.cmpb.2020.105912] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/12/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Mechanical ventilation (MV) is a core intensive care unit (ICU) therapy. Significant inter- and intra- patient variability in lung mechanics and condition makes managing MV difficult. Accurate prediction of patient-specific response to changes in MV settings would enable optimised, personalised, and more productive care, improving outcomes and reducing cost. This study develops a generalised digital clone model, or in-silico virtual patient, to accurately predict lung mechanics in response to changes in MV. METHODS An identifiable, nonlinear hysteresis loop model (HLM) captures patient-specific lung dynamics identified from measured ventilator data. Identification and creation of the virtual patient model is fully automated using the hysteresis loop analysis (HLA) method to identify lung elastances from clinical data. Performance is evaluated using clinical data from 18 volume-control (VC) and 14 pressure-control (PC) ventilated patients who underwent step-wise recruitment maneuvers. RESULTS Patient-specific virtual patient models accurately predict lung response for changes in PEEP up to 12 cmH2O for both volume and pressure control cohorts. R2 values for predicting peak inspiration pressure (PIP) and additional retained lung volume, Vfrc in VC, are R2=0.86 and R2=0.90 for 106 predictions over 18 patients. For 14 PC patients and 84 predictions, predicting peak inspiratory volume (PIV) and Vfrc yield R2=0.86 and R2=0.83. Absolute PIP, PIV and Vfrc errors are relatively small. CONCLUSIONS Overall results validate the accuracy and versatility of the virtual patient model for capturing and predicting nonlinear changes in patient-specific lung mechanics. Accurate response prediction enables mechanically and physiologically relevant virtual patients to guide personalised and optimised MV therapy.
Collapse
Affiliation(s)
- Cong Zhou
- School of Civil Aviation, Northwestern Polytechnical University, China; Department of Mechanical Engineering, University of Canterbury, New Zealand
| | - J Geoffrey Chase
- Department of Mechanical Engineering, University of Canterbury, New Zealand.
| | - Jennifer Knopp
- Department of Mechanical Engineering, University of Canterbury, New Zealand
| | - Qianhui Sun
- Department of Mechanical Engineering, University of Canterbury, New Zealand
| | - Merryn Tawhai
- Auckland Bio-Engineering Institute (ABI), University of Auckland, New Zealand
| | - Knut Möller
- Institute for Technical Medicine, Furtwangen University, Villingen-Schwenningen, Germany
| | - Serge J Heines
- Department of Intensive Care, School of Medicine, Maastricht University, Maastricht, the Netherlands
| | - Dennis C Bergmans
- Department of Intensive Care, School of Medicine, Maastricht University, Maastricht, the Netherlands
| | - Geoffrey M Shaw
- Department of Intensive Care, Christchurch Hospital, Christchurch, New Zealand
| | - Thomas Desaive
- GIGA-In Silico Medicine, Institute of Physics, University of Liege, Liege, Belgium
| |
Collapse
|
29
|
Morton SE, Knopp JL, Tawhai MH, Docherty P, Heines SJ, Bergmans DC, Möller K, Chase JG. Prediction of lung mechanics throughout recruitment maneuvers in pressure-controlled ventilation. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 197:105696. [PMID: 32798977 DOI: 10.1016/j.cmpb.2020.105696] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
Mechanical ventilation (MV) is a core therapy in the intensive care unit (ICU). Some patients rely on MV to support breathing. However, it is a difficult therapy to optimise, where inter- and intra- patient variability leads to significantly increased risk of lung damage. Excessive volume and/or pressure can cause volutrauma or barotrauma, resulting in increased length of time on ventilation, length of stay, cost and mortality. Virtual patient modelling has changed care in other areas of ICU medicine, enabling more personalized and optimal care, and have emerged for volume-controlled MV. This research extends this MV virtual patient model into the increasingly more commonly used pressure-controlled MV mode. The simulation methods are extended to use pressure, instead of both volume and flow, as the known input, increasing the output variables to be predicted (flow and its integral, volume). The model and methods are validated using data from N = 14 pressure-control ventilated patients during recruitment maneuvers, with n = 558 prediction tests over changes of PEEP ranging from 2 to 16 cmH2O. Prediction errors for peak inspiratory volume for an increase of 16 cmH2O were 80 [30 - 140] mL (15.9 [8.4 - 31.0]%), with RMS fitting errors of 0.05 [0.03 - 0.12] L. These results show very good prediction accuracy able to guide personalised MV care.
Collapse
Affiliation(s)
- Sophie E Morton
- Mechanical Engineering Department, University of Canterbury, Christchurch, New Zealand
| | - Jennifer L Knopp
- Mechanical Engineering Department, University of Canterbury, Christchurch, New Zealand
| | - Merryn H Tawhai
- Auckland Bioengineering Institute, Auckland University, Auckland, New Zealand
| | - Paul Docherty
- Mechanical Engineering Department, University of Canterbury, Christchurch, New Zealand
| | - Serge J Heines
- Department of Intensive Care, School of Medicine, Maastricht University, Maastricht, Netherlands
| | - Dennis C Bergmans
- Department of Intensive Care, School of Medicine, Maastricht University, Maastricht, Netherlands
| | - Knut Möller
- Institute for Technical Medicine, Furtwangen University, Villingen-Schwenningen, Germany
| | - J Geoffrey Chase
- Mechanical Engineering Department, University of Canterbury, Christchurch, New Zealand.
| |
Collapse
|
30
|
Sun Q, Zhou C, Chase JG. Parameter updating of a patient-specific lung mechanics model for optimising mechanical ventilation. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2020.102003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|