1
|
Nozawa A, Ozeki M, Yasue S, Endo S, Kadowaki T, Ohnishi H, Muramatsu H, Hama A, Takahashi Y, Kojima S, Fukao T. Myelodysplastic syndromes in a pediatric patient with Cri du Chat syndrome with a ring chromosome 5. Int J Hematol 2020; 112:728-733. [PMID: 32519173 DOI: 10.1007/s12185-020-02909-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 05/12/2020] [Accepted: 05/29/2020] [Indexed: 11/30/2022]
Abstract
Few hematological complications have previously been reported in association with Cri du Chat syndrome (CdCS). A case of myelodysplastic syndromes (MDS) in a pediatric patient with CdCS is herein presented. A 17-year-old female with CdCS caused by ring chromosome 5 was admitted to the hospital for investigation of a 1-month history of anemia. Based on the morphological findings of bone marrow, the patient was diagnosed with refractory cytopenia with multilineage dysplasia. The risk group was classified as intermediate-1 in the International Prognostic Scoring System (IPSS), and low in the revised IPSS. Assessment by microarray comparative genomic hybridization (CGH) identified the breakpoints of ring chromosome 5 as 46,XX,r(5)(p14.3q35.3). This revealed that the 5q terminal deletion did not include the common deleted region of MDS with del(5q). Treatment with azacitidine was initiated to control disease progression and improve quality of life. At baseline, the patient had a mean transfusion requirement of 3 units/month, which decreased to 2 units/month after six cycles of azacitidine and to 1 unit/month after 10 cycles of azacitidine. Cytopenia observed in the presented case seemed irrelevant to ring chromosome 5 which is the causative cytogenetic abnormality of CdCS, and further analyses may be needed to clarify the pathogenesis.
Collapse
Affiliation(s)
- Akifumi Nozawa
- Department of Pediatrics, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Michio Ozeki
- Department of Pediatrics, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan.
| | - Shiho Yasue
- Department of Pediatrics, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Saori Endo
- Department of Pediatrics, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Tomonori Kadowaki
- Department of Pediatrics, National Hospital Organization Nagara Medical Center, Gifu, 502-8558, Japan
| | - Hidenori Ohnishi
- Department of Pediatrics, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Hideki Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, 466-8650, Japan
| | - Asahito Hama
- Department of Hematology and Oncology, Children's Medical Center, Japanese Red Cross Nagoya First Hospital, Nakamura-ku, Nagoya, 453-8511, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, 466-8650, Japan
| | - Seiji Kojima
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, 466-8650, Japan
| | - Toshiyuki Fukao
- Department of Pediatrics, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| |
Collapse
|
2
|
Zhang Y, Wu Y, Mao P, Li F, Han X, Zhang Y, Jiang S, Chen Y, Huang J, Liu D, Zhao Y, Ma W, Songyang Z. Cold-inducible RNA-binding protein CIRP/hnRNP A18 regulates telomerase activity in a temperature-dependent manner. Nucleic Acids Res 2015; 44:761-75. [PMID: 26673712 PMCID: PMC4737163 DOI: 10.1093/nar/gkv1465] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 12/01/2015] [Indexed: 01/22/2023] Open
Abstract
The telomerase is responsible for adding telomeric repeats to chromosomal ends and consists of the reverse transcriptase TERT and the RNA subunit TERC. The expression and activity of the telomerase are tightly regulated, and aberrant activation of the telomerase has been observed in >85% of human cancers. To better understand telomerase regulation, we performed immunoprecipitations coupled with mass spectrometry (IP-MS) and identified cold inducible RNA-binding protein (CIRP or hnRNP A18) as a telomerase-interacting factor. We have found that CIRP is necessary to maintain telomerase activities at both 32°C and 37°C. Furthermore, inhibition of CIRP by CRISPR-Cas9 or siRNA knockdown led to reduced telomerase activities and shortened telomere length, suggesting an important role of CIRP in telomere maintenance. We also provide evidence here that CIRP associates with the active telomerase complex through direct binding of TERC and regulates Cajal body localization of the telomerase. In addition, CIRP regulates the level of TERT mRNAs. At the lower temperature, TERT mRNA is upregulated in a CIRP-dependent manner to compensate for reduced telomerase activities. Taken together, these findings highlight the dual roles that CIRP plays in regulating TERT and TERC, and reveal a new class of telomerase modulators in response to hypothermia conditions.
Collapse
Affiliation(s)
- Youwei Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China Collaborative Innovation Center for Cancer Medicine, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou 510006, China
| | - Yangxiu Wu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Pingsu Mao
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Feng Li
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xin Han
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yi Zhang
- Verna and Marrs Mclean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Shuai Jiang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuxi Chen
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Junjiu Huang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Dan Liu
- Verna and Marrs Mclean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yong Zhao
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenbin Ma
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China Collaborative Innovation Center for Cancer Medicine, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhou Songyang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China Collaborative Innovation Center for Cancer Medicine, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou 510006, China Verna and Marrs Mclean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
3
|
Sun B, Wang Y, Kota K, Shi Y, Motlak S, Makambi K, Loffredo CA, Shields PG, Yang Q, Harris CC, Zheng YL. Telomere length variation: A potential new telomere biomarker for lung cancer risk. Lung Cancer 2015; 88:297-303. [PMID: 25840848 DOI: 10.1016/j.lungcan.2015.03.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 03/08/2015] [Accepted: 03/12/2015] [Indexed: 12/28/2022]
Abstract
OBJECTIVES In this report the associations between telomere length variation (TLV), mean telomere length in blood lymphocytes and lung cancer risk were examined. MATERIALS AND METHODS The study design is case-control. Cases (N=191) were patients newly diagnosed with histologically confirmed non-small cell lung cancer. Controls (N=207) were healthy individuals recruited from the same counties as cases and matched to cases on age and gender. Telomere fluorescent in situ hybridization was used to measure telomere features using short-term cultured blood lymphocytes. Logistic regression was used to estimate the strength of association between telomere features and lung cancer risk. RESULTS Telomere length variation across all chromosomal ends was significantly associated with lung cancer risk; adjusted odds ratios 4.67 [95% confidence interval (CI): 1.46-14.9] and 0.46 (95% CI: 0.25-0.84) for younger (age≤60) and older (age>60) individuals, respectively. TLV and mean telomere length jointly affected lung cancer risk: when comparing individuals with short telomere length and high TLV to those with long telomere length and low TLV, adjusted odd ratios were 8.21 (95% CI: 1.71-39.5) and 0.33 (95% CI: 0.15-0.72) for younger and older individuals, respectively. CONCLUSIONS TLV in blood lymphocytes is significantly associated with lung cancer risk and the associations were modulated by age. TLV in combination with mean telomere length might be useful in identifying high risk population for lung cancer computerized tomography screening.
Collapse
Affiliation(s)
- Bing Sun
- Cancer Prevention and Control Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States
| | - Ying Wang
- Cancer Prevention and Control Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States
| | - Krishna Kota
- Cancer Prevention and Control Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States
| | - Yaru Shi
- Cancer Prevention and Control Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States
| | - Salaam Motlak
- Cancer Prevention and Control Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States
| | - Kepher Makambi
- Cancer Prevention and Control Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States; Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University Medical Center, Washington, DC, United States
| | - Christopher A Loffredo
- Cancer Prevention and Control Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States; Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University Medical Center, Washington, DC, United States
| | - Peter G Shields
- James Cancer Hospital, The Ohio State University Wexner Medical Center, Columbus, OH 43220, United States
| | - Qin Yang
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, MO, United States
| | - Curtis C Harris
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Yun-Ling Zheng
- Cancer Prevention and Control Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States.
| |
Collapse
|
4
|
Manguan-Garcia C, Pintado-Berninches L, Carrillo J, Machado-Pinilla R, Sastre L, Pérez-Quilis C, Esmoris I, Gimeno A, García-Giménez JL, Pallardó FV, Perona R. Expression of the genetic suppressor element 24.2 (GSE24.2) decreases DNA damage and oxidative stress in X-linked dyskeratosis congenita cells. PLoS One 2014; 9:e101424. [PMID: 24987982 PMCID: PMC4079255 DOI: 10.1371/journal.pone.0101424] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 06/06/2014] [Indexed: 01/10/2023] Open
Abstract
The predominant X-linked form of Dyskeratosis congenita results from mutations in DKC1, which encodes dyskerin, a protein required for ribosomal RNA modification that is also a component of the telomerase complex. We have previously found that expression of an internal fragment of dyskerin (GSE24.2) rescues telomerase activity in X-linked dyskeratosis congenita (X-DC) patient cells. Here we have found that an increased basal and induced DNA damage response occurred in X-DC cells in comparison with normal cells. DNA damage that is also localized in telomeres results in increased heterochromatin formation and senescence. Expression of a cDNA coding for GSE24.2 rescues both global and telomeric DNA damage. Furthermore, transfection of bacterial purified or a chemically synthesized GSE24.2 peptide is able to rescue basal DNA damage in X-DC cells. We have also observed an increase in oxidative stress in X-DC cells and expression of GSE24.2 was able to diminish it. Altogether our data indicated that supplying GSE24.2, either from a cDNA vector or as a peptide reduces the pathogenic effects of Dkc1 mutations and suggests a novel therapeutic approach.
Collapse
Affiliation(s)
- Cristina Manguan-Garcia
- Instituto de Investigaciones Biomédicas CSIC/UAM, Madrid, Spain
- CIBER de Enfermedades Raras, Valencia, Spain
| | | | - Jaime Carrillo
- Instituto de Investigaciones Biomédicas CSIC/UAM, Madrid, Spain
| | - Rosario Machado-Pinilla
- Instituto de Investigaciones Biomédicas CSIC/UAM, Madrid, Spain
- CIBER de Enfermedades Raras, Valencia, Spain
| | - Leandro Sastre
- Instituto de Investigaciones Biomédicas CSIC/UAM, Madrid, Spain
- CIBER de Enfermedades Raras, Valencia, Spain
| | - Carme Pérez-Quilis
- Biomedical Research Institute INCLIVA, Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Isabel Esmoris
- Biomedical Research Institute INCLIVA, Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Amparo Gimeno
- Biomedical Research Institute INCLIVA, Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Jose Luis García-Giménez
- CIBER de Enfermedades Raras, Valencia, Spain
- Biomedical Research Institute INCLIVA, Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Federico V. Pallardó
- CIBER de Enfermedades Raras, Valencia, Spain
- Biomedical Research Institute INCLIVA, Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Rosario Perona
- Instituto de Investigaciones Biomédicas CSIC/UAM, Madrid, Spain
- CIBER de Enfermedades Raras, Valencia, Spain
- * E-mail:
| |
Collapse
|
5
|
Hartwig F, Bertoldi D, Larangeira M, Wagner MS. Up-regulating telomerase and tumor suppressors: focusing on anti-aging interventions at the population level. Aging Dis 2014; 5:17-26. [PMID: 24490113 DOI: 10.14336/ad.2014.050017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 10/06/2013] [Accepted: 10/07/2013] [Indexed: 12/15/2022] Open
Abstract
Most human populations are undergoing a demographic transition regarding their age structure. This transition is reflected in chronic non-communicable diseases featuring among the main contributors to burden of disease. Considering that the aging process is a major risk factor for such conditions, understanding the mechanisms underlying aging and age-related diseases is critical to develop strategies to impact human health at population and/or individual-levels. Two different aspects of aging process (namely, telomere shortening and DNA damage accumulation) were shown to interact in positively impacting mice median survival. However, strategies aimed at translating such knowledge into actual human health benefits have not yet been discussed. In this manuscript, we present potential exposures that are suited for population-level interventions, and contextualize the roles of population (based on behavioral exposures) and individual-level (based on small-molecule administration) anti-aging interventions in different levels of disease prevention. We suggest that exposures such as moderate wine consumption, reducing calorie intake and active lifestyle are potentially useful for primordial and primary prevention, while small-molecules that activate telomerase and/or tumor suppression responses are more suited for secondary and tertiary prevention (although important for primary prevention in specific population subgroups). We also indicate the need of studying the impacts, on aging and age-related diseases, of different combinations of these exposures in well-conducted randomized controlled trials, and propose Mendelian randomization as a valuable alternative to gather information in human populations regarding the effects of potential anti-aging interventions.
Collapse
Affiliation(s)
| | - Daniel Bertoldi
- Biotechnology Baccalaureate Course, Federal University of Pelotas, Brazil
| | - Martin Larangeira
- Biotechnology Baccalaureate Course, Federal University of Pelotas, Brazil
| | | |
Collapse
|
6
|
Hartwig FP, Nedel F, Collares T, Tarquinio SBC, Nör JE, Demarco FF. Oncogenic somatic events in tissue-specific stem cells: a role in cancer recurrence? Ageing Res Rev 2014; 13:100-6. [PMID: 24374269 DOI: 10.1016/j.arr.2013.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 12/09/2013] [Accepted: 12/16/2013] [Indexed: 01/15/2023]
Abstract
Tissue-specific stem cells (TSSCs) are a very unique cell type, with critical and well-defined roles for the homeostasis of high turnover tissues (such as the blood and the skin). Emerging evidence suggests that TSSCs are implicated in malignancies, with several theories being proposed and tested, including many attempts to identify the cells of origin and studies deigned to understand how TSSCs participate in age-related increase in cancer risk. A currently unexplored possibility in this respect is the plausible theory that an oncogenic event that arises at a TSSC would promote tissue replenishment by cells containing these mutations, with progressive propagation of such mutated TSSCs in the niche. Therefore, the effect of a somatic oncogenic event in a single TSSC may have more important implications than previously anticipated, resulting in sustained and progressively higher cancer risk. This model could have important implications for tumor recurrence, since in some cases the underlying cause might be the development of a new tumor originated from daughter cells of the TSSC that suffered the first oncogenic hit, rather than proliferation of residual cancer cells. In this review, we present and discuss approaches for testing the proposed theory of tumorigenesis and cancer risk, as well as practical implications for biomedical research and clinical practice.
Collapse
Affiliation(s)
- F P Hartwig
- Post-Graduate Program in Epidemiology, Federal University of Pelotas, Rio Grande do Sul, Brazil.
| | - F Nedel
- Biotechnology Unit, Technology Development Center, Federal Universityof Pelotas, Rio Grande do Sul, Brazil
| | - T Collares
- Biotechnology Unit, Technology Development Center, Federal Universityof Pelotas, Rio Grande do Sul, Brazil
| | - S B C Tarquinio
- Post-Graduate Program in Dentistry, Federal Universityof Pelotas, Rio Grande do Sul, Brazil
| | - J E Nör
- Department of Cardiology, Restorative Sciences, and Endodontics, University of Michigan, Ann Arbor, MI, USA
| | - F F Demarco
- Post-Graduate Program in Dentistry, Federal Universityof Pelotas, Rio Grande do Sul, Brazil.
| |
Collapse
|