1
|
Dong Y, Peng J, Zhang X, Wang Q, Lyu X. SAHA inhibits lung fibroblast activation by increasing p66Shc expression epigenetically. Aging Med (Milton) 2024; 7:790-801. [PMID: 39777101 PMCID: PMC11702475 DOI: 10.1002/agm2.12385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Objectives To investigate the effects of suberoylanilide hydroxamic acid (SAHA) on lung fibroblast activation and to examine the role of p66Shc in this process. Methods An in vitro pulmonary fibrosis model was established using transforming growth factor-β (TGF-β)-induced MRC-5 lung fibroblasts. The proliferation and migration capacities of MRC-5 cells, along with the expression of fibrosis-related genes, were assessed following treatment with SAHA and/or silence of p66Shc. Results In TGF-β-induced MRC-5 lung fibroblasts, SAHA treatment significantly inhibited cell proliferation and migration, as well as the expression of fibrosis-related genes, including collagen I and α-smooth muscle actin (SMA). Western blot and immunofluorescence assays revealed that SAHA increased p66Shc expression in both whole cells and mitochondria. Additionally, mito-SOX assay confirmed that SAHA treatment led to a marked accumulation of mitochondrial reactive oxygen species (ROS). However, silencing of p66Shc significantly reversed the aforementioned effects of SAHA on MRC-5 cells. Furthermore, chromatin immunoprecipitation (ChIP) assays demonstrated that SAHA enhanced active histone markers, H3K9Ac and H3K4Me3, in the p66Shc gene region. Conclusions SAHA alleviates lung fibroblast activation and migration by increasing p66Shc expression and mitochondrial ROS generation through epigenetic modifications of histone 3.
Collapse
Affiliation(s)
- Yiheng Dong
- Department of GeriatricsThe Second Xiangya Hospital, Central South UniversityChangshaHunanChina
| | - Jieting Peng
- Department of Geriatric Respiratory and SleepThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouHenanChina
| | - Xiangyu Zhang
- Department of GeriatricsThe Second Xiangya Hospital, Central South UniversityChangshaHunanChina
| | - Qiong Wang
- Department of GeriatricsThe Second Xiangya Hospital, Central South UniversityChangshaHunanChina
| | - Xing Lyu
- Department of Laboratory MedicineThe Second Xiangya Hospital, Central South UniversityChangshaHunanChina
| |
Collapse
|
2
|
Li Y, He P, Zheng L, Zhou X. Histone-modifying enzymes: Roles in odontogenesis and beyond. Oral Dis 2024; 30:3710-3718. [PMID: 38376106 DOI: 10.1111/odi.14894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/21/2024]
Abstract
OBJECTIVES Odontogenesis, an intricate process initiated by epithelium-mesenchyme interaction, is meticulously regulated by a cascade of regulatory mechanisms. Epigenetic modifications, especially histone modification, have been found to exhibit spatiotemporal specificity during tooth development. However, the expression patterns and roles of enzymes associated with histone modifications have yet to be systematically explored in odontogenesis. This review aims to summarize the histone-modifying enzymes in odontogenesis and their regulation mechanism during tooth development and provide the potential theoretical basis for the clinical management and intervention of dental developmental diseases. SUBJECTS AND METHODS This study conducted a systematic search across PubMed and Web of Science databases, utilizing the keywords "odontogenesis," "histone modification," and "enzyme" for pertinent articles. RESULTS No doubt histone modification contributes extensively to odontogenesis regulation, and the disturbances in histone modifications can derange the odontogenesis process. CONCLUSION Further studies are warranted to elucidate these roles and their potential downstream effects, positioning histone modifications as a pivotal focal point for unraveling the intricacies of tooth development and regeneration.
Collapse
Affiliation(s)
- Yiting Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Pengcheng He
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Liwei Zheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xin Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Sun Y, Zhang H, Qiu T, Liao L, Su X. Epigenetic regulation of mesenchymal stem cell aging through histone modifications. Genes Dis 2023; 10:2443-2456. [PMID: 37554203 PMCID: PMC10404871 DOI: 10.1016/j.gendis.2022.10.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/18/2022] [Accepted: 10/23/2022] [Indexed: 12/12/2022] Open
Abstract
Stem cell senescence and exhaustion, a hallmark of aging, lead to declines in tissue repair and regeneration in aged individuals. Emerging evidence has revealed that epigenetic regulation plays critical roles in the self-renew, lineage-commitment, survival, and function of stem cells. Moreover, epigenetic alterations are considered important drivers of stem cell dysfunction during aging. In this review, we focused on current knowledge of the histone modifications in the aging of mesenchymal stem cells (MSCs). The aberrant epigenetic modifications on histones, including methylation and acetylation, have been found in aging MSCs. By disturbing the expression of specific genes, these epigenetic modifications affect the self-renew, survival, and differentiation of MSCs. A set of epigenetic enzymes that write or erase these modifications are critical in regulating the aging of MSCs. Furthermore, we discussed the rejuvenation strategies based on epigenetics to prevent stem cell aging and/or rejuvenate senescent MSCs.
Collapse
Affiliation(s)
| | | | - Tao Qiu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatrics & Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Li Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatrics & Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaoxia Su
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatrics & Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
4
|
De Vita S, Meninno S, Capasso L, Colarusso E, Chini MG, Lauro G, Rinaldi R, De Cicco A, Sian V, Terracciano S, Nebbioso A, Lattanzi A, Bifulco G. 2-Substituted 1,5-benzothiazepine-based HDAC inhibitors exert anticancer activities on human solid and acute myeloid leukemia cell lines. Bioorg Med Chem 2023; 93:117444. [PMID: 37611334 DOI: 10.1016/j.bmc.2023.117444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023]
Abstract
Herein, we report the development of a new series of histone deacetylase inhibitors (HDACi) containing a 2-substituted 1,5-benzothiazepine scaffold. First, a virtual combinatorial library (∼1.6 × 103 items) was built according to a convenient synthetic route, and then it was submitted to molecular docking experiments on seven HDACs isoforms belonging to classes I and II. Integrated computational filters were used to select the most promising ones that were synthesized through an optimized approach, also amenable to generating both racemic and enantioenriched benzothiazepine-based derivatives. The obtained compounds showed potent HDAC inhibitory activity, especially those containing the sulphone moiety, endowed with IC50 in the nanomolar range. In addition, in vitro outcomes of our synthesized compounds demonstrated a cytotoxic effect on U937 and HCT116 cell lines and an arrest in the G2/M phase (13 ≤ IC50 ≤ 18 µM). Finally, Western blot analyses outlined the modulation of the histone acetyl markers such as H3K9/14, acetyl-tubulin, and the apoptotic indicator p21 in both cancer cell lines, disclosing a good HDAC inhibitor activity exerted by the designed items. Given the key role of HDACs in many cellular pathways, which makes these enzymes appealing and "hot" drug targets, our findings highlighted the importance of these 2-substituted 1,5-benzothiazepine-based compounds (both in the reduced and oxidized version) for the development of novel epidrugs.
Collapse
Affiliation(s)
- Simona De Vita
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy.
| | - Sara Meninno
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy.
| | - Lucia Capasso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138 Naples, Italy.
| | - Ester Colarusso
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy.
| | - Maria Giovanna Chini
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, Pesche, Isernia 86090, Italy.
| | - Gianluigi Lauro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy.
| | - Romolo Rinaldi
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy.
| | - Annalisa De Cicco
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy.
| | - Veronica Sian
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138 Naples, Italy.
| | - Stefania Terracciano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy.
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138 Naples, Italy.
| | - Alessandra Lattanzi
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy.
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy.
| |
Collapse
|
5
|
Compound combinations targeting longevity: Challenges and perspectives. Ageing Res Rev 2023; 85:101851. [PMID: 36642188 DOI: 10.1016/j.arr.2023.101851] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/05/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
Aging is one of the world's greatest concerns, requiring urgent, effective, large-scale interventions to decrease the number of late-life chronic diseases and improve human healthspan. Anti-aging drug therapy is one of the most promising strategies to combat the effects of aging. However, most geroprotective compounds are known to successfully affect only a few aging-related targets. Given this, there is a great biological rationale for the use of combinations of anti-aging interventions. In this review, we characterize the various types of compound combinations used to modulate lifespan, discuss the existing evidence on their role in life extension, and present some key points about current challenges and future prospects for the development of combination drug anti-aging therapy.
Collapse
|
6
|
Moore SM, Christoforidis JB. Advances in Ophthalmic Epigenetics and Implications for Epigenetic Therapies: A Review. Genes (Basel) 2023; 14:417. [PMID: 36833344 PMCID: PMC9957018 DOI: 10.3390/genes14020417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
The epigenome represents a vast molecular apparatus that writes, reads, and erases chemical modifications to the DNA and histone code without changing the DNA base-pair sequence itself. Recent advances in molecular sequencing technology have revealed that epigenetic chromatin marks directly mediate critical events in retinal development, aging, and degeneration. Epigenetic signaling regulates retinal progenitor (RPC) cell cycle exit during retinal laminar development, giving rise to retinal ganglion cells (RGCs), amacrine cells, horizontal cells, bipolar cells, photoreceptors, and Müller glia. Age-related epigenetic changes such as DNA methylation in the retina and optic nerve are accelerated in pathogenic conditions such as glaucoma and macular degeneration, but reversing these epigenetic marks may represent a novel therapeutic target. Epigenetic writers also integrate environmental signals such as hypoxia, inflammation, and hyperglycemia in complex retinal conditions such as diabetic retinopathy (DR) and choroidal neovascularization (CNV). Histone deacetylase (HDAC) inhibitors protect against apoptosis and photoreceptor degeneration in animal models of retinitis pigmentosa (RP). The epigenome represents an intriguing therapeutic target for age-, genetic-, and neovascular-related retinal diseases, though more work is needed before advancement to clinical trials.
Collapse
Affiliation(s)
- Spencer M. Moore
- Department of Ophthalmology & Vision Science, University of Arizona College of Medicine-Tucson, Tucson, AZ 85711, USA
| | - John B. Christoforidis
- Department of Ophthalmology & Vision Science, University of Arizona College of Medicine-Tucson, Tucson, AZ 85711, USA
- Retina Specialists of Southern Arizonam, Tucson, AZ 85712, USA
| |
Collapse
|
7
|
Wang J, Sun X, Yang Z, Li S, Wang Y, Ren R, Liu Z, Yu D. Epigenetic regulation in premature ovarian failure: A literature review. Front Physiol 2023; 13:998424. [PMID: 36685174 PMCID: PMC9846267 DOI: 10.3389/fphys.2022.998424] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/14/2022] [Indexed: 01/05/2023] Open
Abstract
Premature ovarian failure (POF), or premature ovarian insufficiency (POI), is a multifactorial and heterogeneous disease characterized by amenorrhea, decreased estrogen levels and increased female gonadotropin levels. The incidence of POF is increasing annually, and POF has become one of the main causes of infertility in women of childbearing age. The etiology and pathogenesis of POF are complex and have not yet been clearly elucidated. In addition to genetic factors, an increasing number of studies have revealed that epigenetic changes play an important role in the occurrence and development of POF. However, we found that very few papers have summarized epigenetic variations in POF, and a systematic analysis of this topic is therefore necessary. In this article, by reviewing and analyzing the most relevant literature in this research field, we expound on the relationship between DNA methylation, histone modification and non-coding RNA expression and the development of POF. We also analyzed how environmental factors affect POF through epigenetic modulation. Additionally, we discuss potential epigenetic biomarkers and epigenetic treatment targets for POF. We anticipate that our paper may provide new therapeutic clues for improving ovarian function and maintaining fertility in POF patients.
Collapse
Affiliation(s)
- Jing Wang
- Department of Reproductive Medicine, Department of Prenatal Diagnosis, Changchun, China
| | | | | | - Sijie Li
- Department of Breast Surgery, Changchun, China
| | - Yufeng Wang
- Public Research Platform, The First Hospital of Jilin University, Jilin, China
| | - Ruoxue Ren
- Public Research Platform, The First Hospital of Jilin University, Jilin, China
| | - Ziyue Liu
- Public Research Platform, The First Hospital of Jilin University, Jilin, China
| | - Dehai Yu
- Public Research Platform, The First Hospital of Jilin University, Jilin, China,*Correspondence: Dehai Yu,
| |
Collapse
|
8
|
Epigenetic therapy targeting bone marrow mesenchymal stem cells for age-related bone diseases. Stem Cell Res Ther 2022; 13:201. [PMID: 35578312 PMCID: PMC9109405 DOI: 10.1186/s13287-022-02852-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/14/2022] [Indexed: 02/08/2023] Open
Abstract
As global aging accelerates, the prevention and treatment of age-related bone diseases are becoming a critical issue. In the process of senescence, bone marrow mesenchymal stem cells (BMSCs) gradually lose the capability of self-renewal and functional differentiation, resulting in impairment of bone tissue regeneration and disorder of bone tissue homeostasis. Alteration in epigenetic modification is an essential factor of BMSC dysfunction during aging. Its transferability and reversibility provide the possibility to combat BMSC aging by reversing age-related modifications. Emerging evidence demonstrates that epigenetic therapy based on aberrant epigenetic modifications could alleviate the senescence and dysfunction of stem cells. This review summarizes potential therapeutic targets for BMSC aging, introduces some potential approaches to alleviating BMSC aging, and analyzes its prospect in the clinical application of age-related bone diseases.
Collapse
|
9
|
Xiang Q, Zhao Y, Lin J, Jiang S, Li W. Epigenetic modifications in spinal ligament aging. Ageing Res Rev 2022; 77:101598. [PMID: 35218968 DOI: 10.1016/j.arr.2022.101598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 02/07/2023]
Abstract
Spinal stenosis is a common degenerative spine disorder in the aged population and the spinal ligament aging is a main contributor to this chronic disease. However, the underlying mechanisms of spinal ligament aging remain unclear. Epigenetics is the study of heritable and reversible changes in the function of a gene or genome that occur without any alteration in the primary DNA sequence. Epigenetic alterations have been demonstrated to play crucial roles in age-related diseases and conditions, and they are recently studied as biomarkers and therapeutic targets in the field of cancer research. The main epigenetic modifications, including DNA methylation alteration, histone modifications as well as dysregulated noncoding RNA modulation, have all been implicated in spinal ligament aging diseases. DNA methylation modulates the expression of critical genes including WNT5A, GDNF, ACSM5, miR-497 and miR-195 during spinal ligament degeneration. Histone modifications widely affect gene expression and obvious histone modification abnormalities have been found in spinal ligament aging. MicroRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) exert crucial regulating effects on spinal ligament aging conditions via targeting various osteogenic or fibrogenic differentiation related genes. To our knowledge, there is no systematic review yet to summarize the involvement of epigenetic mechanisms of spinal ligament aging in degenerative spinal diseases. In this study, we systematically discussed the different epigenetic modifications and their potential functions in spinal ligament aging process.
Collapse
|
10
|
Liu F, Chen J, Li Z, Meng X. Recent Advances in Epigenetics of Age-Related Kidney Diseases. Genes (Basel) 2022; 13:genes13050796. [PMID: 35627181 PMCID: PMC9142069 DOI: 10.3390/genes13050796] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 02/03/2023] Open
Abstract
Renal aging has attracted increasing attention in today’s aging society, as elderly people with advanced age are more susceptible to various kidney disorders such as acute kidney injury (AKI) and chronic kidney disease (CKD). There is no clear-cut universal mechanism for identifying age-related kidney diseases, and therefore, they pose a considerable medical and public health challenge. Epigenetics refers to the study of heritable modifications in the regulation of gene expression that do not require changes in the underlying genomic DNA sequence. A variety of epigenetic modifiers such as histone deacetylases (HDAC) inhibitors and DNA methyltransferase (DNMT) inhibitors have been proposed as potential biomarkers and therapeutic targets in numerous fields including cardiovascular diseases, immune system disease, nervous system diseases, and neoplasms. Accumulating evidence in recent years indicates that epigenetic modifications have been implicated in renal aging. However, no previous systematic review has been performed to systematically generalize the relationship between epigenetics and age-related kidney diseases. In this review, we aim to summarize the recent advances in epigenetic mechanisms of age-related kidney diseases as well as discuss the application of epigenetic modifiers as potential biomarkers and therapeutic targets in the field of age-related kidney diseases. In summary, the main types of epigenetic processes including DNA methylation, histone modifications, non-coding RNA (ncRNA) modulation have all been implicated in the progression of age-related kidney diseases, and therapeutic targeting of these processes will yield novel therapeutic strategies for the prevention and/or treatment of age-related kidney diseases.
Collapse
Affiliation(s)
- Feng Liu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| | - Jiefang Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| | - Zhenqiong Li
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
- Correspondence: (Z.L.); (X.M.)
| | - Xianfang Meng
- Department of Neurobiology, Institute of Brain Research, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence: (Z.L.); (X.M.)
| |
Collapse
|
11
|
Liu C, Li L, Yang B, Zhao Y, Dong X, Zhu L, Ren X, Huang B, Yue J, Jin L, Zhang H, Wang L. Transcriptome-wide N6-methyladenine methylation in granulosa cells of women with decreased ovarian reserve. BMC Genomics 2022; 23:240. [PMID: 35346019 PMCID: PMC8961905 DOI: 10.1186/s12864-022-08462-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 03/09/2022] [Indexed: 02/07/2023] Open
Abstract
Abstract
Background
The emerging epitranscriptome plays an essential role in female fertility. As the most prevalent internal mRNA modification, N6-methyladenine (m6A) methylation regulate mRNA fate and translational efficiency. However, whether m6A methylation was involved in the aging-related ovarian reserve decline has not been investigated. Herein, we performed m6A transcriptome-wide profiling in the ovarian granulosa cells of younger women (younger group) and older women (older group).
Results
m6A methylation distribution was highly conserved and enriched in the CDS and 3’UTR region. Besides, an increased number of m6A methylated genes were identified in the older group. Bioinformatics analysis indicated that m6A methylated genes were enriched in the FoxO signaling pathway, adherens junction, and regulation of actin cytoskeleton. A total of 435 genes were differently expressed in the older group, moreover, 58 of them were modified by m6A. Several specific genes, including BUB1B, PHC2, TOP2A, DDR2, KLF13, and RYR2 which were differently expressed and modified by m6A, were validated using qRT-PCR and might be involved in the decreased ovarian functions in the aging ovary.
Conclusions
Hence, our finding revealed the transcriptional significance of m6A modifications and provide potential therapeutic targets to promote fertility reservation for aging women.
Collapse
|
12
|
Shi M, He J, Weng T, Shi N, Qi W, Guo Y, Chen T, Chen L, Xu D. The binding mechanism of NHWD-870 to bromodomain-containing protein 4 based on molecular dynamics simulations and free energy calculation. Phys Chem Chem Phys 2022; 24:5125-5137. [PMID: 35156677 DOI: 10.1039/d1cp05490b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Bromodomain and extra-terminal (BET) proteins (BRD2, BRD3, BRD4, and BRDT) are epigenetic readers with tandem bromodomains.
Collapse
Affiliation(s)
- Mingsong Shi
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Jun He
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Tiantian Weng
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Na Shi
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Wenyan Qi
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Yong Guo
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Tao Chen
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Lijuan Chen
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Dingguo Xu
- College of Chemistry, MOE Key Laboratory of Green Chemistry and Technology, Sichuan University, Chengdu, Sichuan 610064, China
- Research Center for Material Genome Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
13
|
Xiong J, Ma F, Ding N, Xu L, Ma S, Yang A, Hao Y, Zhang H, Jiang Y. miR-195-3p alleviates homocysteine-mediated atherosclerosis by targeting IL-31 through its epigenetics modifications. Aging Cell 2021; 20:e13485. [PMID: 34592792 PMCID: PMC8520716 DOI: 10.1111/acel.13485] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/25/2021] [Accepted: 09/12/2021] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis is a serious age-related disease, which has a tremendous impact on health care globally. Macrophage inflammation is crucial for the initiation and progression of atherosclerosis, and microRNAs (miRNAs) recently have emerged as potent modulators of inflammation, while the underlying mechanisms of its involvement in homocysteine (Hcy)-mediated macrophage inflammation of atherosclerosis remain largely unknown. Here, we demonstrated that elevated Hcy inhibits the expression of miR-195-3p, which in turn enhances IL-31 expression and thereby causes the secretion of macrophages pro-inflammatory factors IL-1β, IL-6 and TNF-α and accelerate atherosclerosis. Furthermore, we identified that Hcy can induce DNA hypermethylation and H3K9 deacetylation of miR-195-3p promoter due to the increased the binding of DNMT3a and HDAC11 at its promoter. More importantly, Sp1 interacts with DNMT3a suppressed the binding of HDAC11 at miR-195-3p promoter and promoted its transcription. In summary, our results revealed a novel mechanism that transcriptional and epigenetic regulation of miR-195-3p inhibits macrophage inflammation through targeting IL-31, which provides a candidate diagnostic marker and novel therapeutic target in cardiovascular diseases induced by Hcy.
Collapse
Affiliation(s)
- Jiantuan Xiong
- School of Basic Medical Sciences Ningxia Medical University Yinchuan China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research Ningxia Medical University Yinchuan China
- Ningxia Key Laboratory of Vascular Injury and Repair Research Ningxia Medical University Yinchuan China
| | - Fang Ma
- School of Basic Medical Sciences Ningxia Medical University Yinchuan China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research Ningxia Medical University Yinchuan China
- Ningxia Key Laboratory of Vascular Injury and Repair Research Ningxia Medical University Yinchuan China
| | - Ning Ding
- School of Basic Medical Sciences Ningxia Medical University Yinchuan China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research Ningxia Medical University Yinchuan China
- Ningxia Key Laboratory of Vascular Injury and Repair Research Ningxia Medical University Yinchuan China
| | - Lingbo Xu
- School of Basic Medical Sciences Ningxia Medical University Yinchuan China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research Ningxia Medical University Yinchuan China
- Ningxia Key Laboratory of Vascular Injury and Repair Research Ningxia Medical University Yinchuan China
| | - Shengchao Ma
- School of Basic Medical Sciences Ningxia Medical University Yinchuan China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research Ningxia Medical University Yinchuan China
- Ningxia Key Laboratory of Vascular Injury and Repair Research Ningxia Medical University Yinchuan China
| | - Anning Yang
- School of Basic Medical Sciences Ningxia Medical University Yinchuan China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research Ningxia Medical University Yinchuan China
- Ningxia Key Laboratory of Vascular Injury and Repair Research Ningxia Medical University Yinchuan China
| | - Yinju Hao
- School of Basic Medical Sciences Ningxia Medical University Yinchuan China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research Ningxia Medical University Yinchuan China
- Ningxia Key Laboratory of Vascular Injury and Repair Research Ningxia Medical University Yinchuan China
| | - Huiping Zhang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research Ningxia Medical University Yinchuan China
- Ningxia Key Laboratory of Vascular Injury and Repair Research Ningxia Medical University Yinchuan China
- Prenatal Diagnosis Center, General Hospital of Ningxia Medical University Yinchuan China
| | - Yideng Jiang
- School of Basic Medical Sciences Ningxia Medical University Yinchuan China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research Ningxia Medical University Yinchuan China
- Ningxia Key Laboratory of Vascular Injury and Repair Research Ningxia Medical University Yinchuan China
| |
Collapse
|