1
|
Gialluisi A, Costanzo S, De Bartolo MI, Veronesi G, Renzi M, Cembalo A, Tirozzi A, Falciglia S, Ricci M, Bonanni A, Martone F, Zazzaro G, Pepe A, Belvisi D, Ferrario MM, Gianfagna F, Cerletti C, Donati MB, Massari S, Berardelli A, de Gaetano G, Iacoviello L. Prominent role of PM10 in the link between air pollution and incident Parkinson's Disease. NPJ Parkinsons Dis 2025; 11:101. [PMID: 40335495 PMCID: PMC12059118 DOI: 10.1038/s41531-025-00935-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 04/02/2025] [Indexed: 05/09/2025] Open
Abstract
Air pollution has been associated with Parkinson's Disease (PD) risk, although this relationship remains unclear. We estimated yearly levels of exposure to ten air pollutants (period 2006-2018) in an Italian population cohort, the Moli-sani study (N = 24,325; ≥35 years; 51.9% women), and derived three principal components, testing their associations with incident PD risk over 23,841 participants (213 cases, median(IQR) follow-up 11.2(2.0) years). This revealed a statistically significant association of PC1 (explaining 38.2% of common variance, tagging PM10 levels), independent on sociodemographic, professional and lifestyles covariates (Hazard Ratio [95%CI] = 1.04[1.02-1.07]). The association was confirmed testing average PM10 levels during follow-up (18[13-24]% increase of PD risk per 1 μg/m3 increase of PM10). Among different circulating markers, lipoprotein a explained a significant proportion of this association (2.8[0.9; 8.4]%). These findings suggest PM10 as a target to lower PD risk at the population level and a potential implication of lipoprotein a in PD etiology.
Collapse
Affiliation(s)
- Alessandro Gialluisi
- Research Unit of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy.
- Department of Medicine and Surgery, LUM University, Casamassima, Italy.
| | - Simona Costanzo
- Research Unit of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy
- Department of Medicine and Surgery, EPIMED Research Center, University of Insubria, Varese, Italy
| | - Maria Ilenia De Bartolo
- IRCCS NEUROMED, Pozzilli, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Giovanni Veronesi
- Department of Medicine and Surgery, EPIMED Research Center, University of Insubria, Varese, Italy
| | - Matteo Renzi
- Department of Epidemiology, Lazio Region Health Service/ASL Roma 1, Rome, Italy
| | | | - Alfonsina Tirozzi
- Research Unit of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy
| | - Stefania Falciglia
- UOC Governance del Farmaco, Azienda Sanitaria Regionale del Molise -ASREM, Campobasso, Italy
| | - Moreno Ricci
- UOC Governance del Farmaco, Azienda Sanitaria Regionale del Molise -ASREM, Campobasso, Italy
| | - Americo Bonanni
- Research Unit of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy
| | | | | | - Antonietta Pepe
- Research Unit of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy
| | - Daniele Belvisi
- IRCCS NEUROMED, Pozzilli, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Marco Mario Ferrario
- Department of Medicine and Surgery, EPIMED Research Center, University of Insubria, Varese, Italy
| | - Francesco Gianfagna
- Department of Medicine and Surgery, EPIMED Research Center, University of Insubria, Varese, Italy
| | - Chiara Cerletti
- Research Unit of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy
| | | | - Stefania Massari
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Rome, Italy
| | - Alfredo Berardelli
- IRCCS NEUROMED, Pozzilli, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Giovanni de Gaetano
- Research Unit of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy
| | - Licia Iacoviello
- Research Unit of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy
- Department of Medicine and Surgery, LUM University, Casamassima, Italy
| |
Collapse
|
2
|
Georgescu MF, Beydoun MA, Weiss J, Kubchandani J, Banerjee S, Gamaldo AA, Evans MK, Zonderman AB. Cardiovascular health and its association with dementia, Parkinson's Disease, and mortality among UK older adults. Brain Behav Immun Health 2025; 45:100986. [PMID: 40235832 PMCID: PMC11999287 DOI: 10.1016/j.bbih.2025.100986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/28/2025] [Accepted: 03/26/2025] [Indexed: 04/17/2025] Open
Abstract
Background Previous research has primarily examined individual factors of cardiovascular health (CVH) and disease in PD and dementia, but no study has examined CVH measures with PD, dementia, and mortality simultaneously while accounting for potentially confounding factors. Objectives To examine the relationship between CVH, all-cause dementia, Parkinson's disease (PD), and mortality, focusing on associations and health transitions from a large population-based study. Methods We investigated these relationships using Cox Proportional Hazards and multistate parametric models with Weibull regression from the UK Biobank data (n = 269,816, Age = 50 + y individuals, ≤15y follow-up, 2006-2021). Results Full Cox models found poor CVH (measured with standardized reverse-coded Life's Essential 8 total score, LE8zrev), to be associated with increased risks for all-cause dementia (Hazard Ratio (HR) = 1.14, 95 % CI: 1.11-1.18, P < 0.001) and all-cause mortality (HR = 1.31, 95 % CI: 1.29-1.33, P < 0.001). Unlike "Healthy to PD" and "Dementia→Death" transitions, PD→Death (Weibull full model: HR = 1.18, 95 % CI: 1.06-1.31, P = 0.002), Healthy→dementia (HR = 1.15, 95 % CI: 1.12-1.19, P < 0.001), and Healthy→Death (HR = 1.33, 95 % CI: 1.32-1.35, P < 0.001) exhibited a positive relationship with poor CVH. Conclusions Poor CVH is directly associated with an increased risk of mortality from PD, transition into Dementia, and all-cause mortality without dementia or PD occurrence. Clinicians should aggressively screen for and manage CVH risk measures to reduce the risk of poor cognitive health outcomes.
Collapse
Affiliation(s)
- Michael F. Georgescu
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD, USA
| | - May A. Beydoun
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD, USA
| | - Jordan Weiss
- Optimal Aging Institute & Division of Precision Medicine, NYU Grossman School of Medicine, New York City, NY, USA
| | - Jagdish Kubchandani
- College of Health, Education and Social Transformation, New Mexico State University, Las Cruces, NM, USA
| | - Sri Banerjee
- Public Health Program, Walden University, Minneapolis, MN, USA
| | | | - Michele K. Evans
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD, USA
| | - Alan B. Zonderman
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD, USA
| |
Collapse
|
3
|
Gan YH, Ma LZ, Zhang Y, You J, Guo Y, He Y, Wang LB, He XY, Li YZ, Dong Q, Feng JF, Cheng W, Yu JT. Large-scale proteomic analyses of incident Parkinson's disease reveal new pathophysiological insights and potential biomarkers. NATURE AGING 2025; 5:642-657. [PMID: 39979637 DOI: 10.1038/s43587-025-00818-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 01/24/2025] [Indexed: 02/22/2025]
Abstract
The early pathophysiology of Parkinson's disease (PD) is poorly understood. We analyzed 2,920 Olink-measured plasma proteins in 51,804 UK Biobank participants, identifying 859 incident PD cases after 14.45 years. We found 38 PD-related proteins, with six of the top ten validated in the Parkinson's Progression Markers Initiative (PPMI) cohort. ITGAV, HNMT and ITGAM showed consistent significant association (hazard ratio: 0.11-0.57, P = 6.90 × 10-24 to 2.10 × 10-11). Lipid metabolism dysfunction was evident 15 years before PD onset, and levels of BAG3, HPGDS, ITGAV and PEPD continuously decreased before diagnosis. These proteins were linked to prodromal symptoms and brain measures. Mendelian randomization suggested ITGAM and EGFR as potential causes of PD. A predictive model using machine learning combined the top 16 proteins and demographics, achieving high accuracy for 5-year (area under the curve (AUC) = 0.887) and over-5-year PD prediction (AUC = 0.816), outperforming demographic-only models. It was externally validated in PPMI (AUC = 0.802). Our findings reveal early peripheral pathophysiological changes in PD crucial for developing early biomarkers and precision therapies.
Collapse
Affiliation(s)
- Yi-Han Gan
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science,Shanghai Medical College, Fudan University, Shanghai, China
| | - Ling-Zhi Ma
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science,Shanghai Medical College, Fudan University, Shanghai, China
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yi Zhang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science,Shanghai Medical College, Fudan University, Shanghai, China
| | - Jia You
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science,Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
| | - Yu Guo
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science,Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu He
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science,Shanghai Medical College, Fudan University, Shanghai, China
| | - Lin-Bo Wang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science,Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
| | - Xiao-Yu He
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science,Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu-Zhu Li
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science,Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science,Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian-Feng Feng
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Wei Cheng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science,Shanghai Medical College, Fudan University, Shanghai, China.
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China.
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China.
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science,Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Dhiman NR, Singh S, Singh R, Kumar A, Singh VK, Pathak A, Chaurasia RN, Mishra VN, Srivastava NK, Sahu S, Pandey N, Joshi D. Urinary based biomarkers identification and genetic profiling in Parkinson's disease: a systematic review of metabolomic studies. FRONTIERS IN BIOINFORMATICS 2025; 5:1513790. [PMID: 40130009 PMCID: PMC11931117 DOI: 10.3389/fbinf.2025.1513790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 01/27/2025] [Indexed: 03/26/2025] Open
Abstract
Background Parkinson's disease is a complex, age-related, neurodegenerative disease associated with dopamine deficiency and both motor and nonmotor deficits. Therapeutic pathways remain challenging in Parkinson's disease due to the low accuracy of early diagnosis, the difficulty in monitoring disease progression, and the limited availability of treatment options. Objectives Few data are present to identify urinary biomarkers for various ailments, potentially aiding in the diagnosis and tracking of illness progression in individuals with Parkinson's disease. Thus, the analysis of urinary metabolomic biomarkers (UMB) for early and mid-stage idiopathic Parkinson's disease (IPD) is the main goal of this systematic review. Methods For this study, six electronic databases were searched for articles published up to 23 February 2024: PubMed, Ovid Medline, Embase, Scopus, Science Direct, and Cochrane. 5,377 articles were found and 40 articles were screened as per the eligibility criteria. Out of these, 7 controlled studies were selected for this review. Genetic profiling for gene function and biomarker interactions between urinary biomarkers was conducted using the STRING and Cytoscape database. Results A total of 40 metabolites were identified to be related to the early and mid-stage of the disease pathology out of which three metabolites, acetyl phenylalanine (a subtype of phenylalanine), tyrosine and kynurenine were common and most significant in three studies. These metabolites cause impaired dopamine synthesis along with mitochondrial disturbances and brain energy metabolic disturbances which are considered responsible for neurodegenerative disorders. Furoglycine, Cortisol, Hydroxyphenylacetic acid, Glycine, Tiglyglycine, Aminobutyric acid, Hydroxyprogesterone, Phenylacetylglutamine, and Dihydrocortisol were also found commonly dysregulated in two of the total 7 studies. 158 genes were found which are responsible for the occurrence of PD and metabolic regulation of the corresponding biomarkers from our study. Conclusion The current review identified acetyl phenylalanine (a subtype of phenylalanine), tyrosine and kynurenine as potential urinary metabolomic biomarkers for diagnosing PD and identifying disease progression.
Collapse
Affiliation(s)
- Neetu Rani Dhiman
- Department of Neurology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Surbhi Singh
- Department of Anatomy, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Royana Singh
- Department of Anatomy, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Anand Kumar
- Department of Neurology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Varun Kumar Singh
- Department of Neurology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Abhishek Pathak
- Department of Neurology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Rameshwar Nath Chaurasia
- Department of Neurology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Vijay Nath Mishra
- Department of Neurology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Niraj Kumar Srivastava
- Department of Neurology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Swati Sahu
- Department of Neurology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Nikhil Pandey
- Department of Neurology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Deepika Joshi
- Department of Neurology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
5
|
Negro-Demontel L, Maleki AF, Reich DS, Kemper C. The complement system in neurodegenerative and inflammatory diseases of the central nervous system. Front Neurol 2024; 15:1396520. [PMID: 39022733 PMCID: PMC11252048 DOI: 10.3389/fneur.2024.1396520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Neurodegenerative and neuroinflammatory diseases, including Alzheimer's disease, Parkinson's disease, and multiple sclerosis, affect millions of people globally. As aging is a major risk factor for neurodegenerative diseases, the continuous increase in the elderly population across Western societies is also associated with a rising prevalence of these debilitating conditions. The complement system, a crucial component of the innate immune response, has gained increasing attention for its multifaceted involvement in the normal development of the central nervous system (CNS) and the brain but also as a pathogenic driver in several neuroinflammatory disease states. Although complement is generally understood as a liver-derived and blood or interstitial fluid operative system protecting against bloodborne pathogens or threats, recent research, particularly on the role of complement in the healthy and diseased CNS, has demonstrated the importance of locally produced and activated complement components. Here, we provide a succinct overview over the known beneficial and pathological roles of complement in the CNS with focus on local sources of complement, including a discussion on the potential importance of the recently discovered intracellularly active complement system for CNS biology and on infection-triggered neurodegeneration.
Collapse
Affiliation(s)
- Luciana Negro-Demontel
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Complement and Inflammation Research Section (CIRS), Bethesda, MD, United States
- Department of Histology and Embryology, Faculty of Medicine, UDELAR, Montevideo, Uruguay
- Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Adam F. Maleki
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Complement and Inflammation Research Section (CIRS), Bethesda, MD, United States
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD, United States
| | - Daniel S. Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD, United States
| | - Claudia Kemper
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Complement and Inflammation Research Section (CIRS), Bethesda, MD, United States
| |
Collapse
|
6
|
de Lope EG, Loo RTJ, Rauschenberger A, Ali M, Pavelka L, Marques TM, Gomes CPC, Krüger R, Glaab E. Comprehensive blood metabolomics profiling of Parkinson's disease reveals coordinated alterations in xanthine metabolism. NPJ Parkinsons Dis 2024; 10:68. [PMID: 38503737 PMCID: PMC10951366 DOI: 10.1038/s41531-024-00671-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/26/2024] [Indexed: 03/21/2024] Open
Abstract
Parkinson's disease (PD) is a highly heterogeneous disorder influenced by several environmental and genetic factors. Effective disease-modifying therapies and robust early-stage biomarkers are still lacking, and an improved understanding of the molecular changes in PD could help to reveal new diagnostic markers and pharmaceutical targets. Here, we report results from a cohort-wide blood plasma metabolic profiling of PD patients and controls in the Luxembourg Parkinson's Study to detect disease-associated alterations at the level of systemic cellular process and network alterations. We identified statistically significant changes in both individual metabolite levels and global pathway activities in PD vs. controls and significant correlations with motor impairment scores. As a primary observation when investigating shared molecular sub-network alterations, we detect pronounced and coordinated increased metabolite abundances in xanthine metabolism in de novo patients, which are consistent with previous PD case/control transcriptomics data from an independent cohort in terms of known enzyme-metabolite network relationships. From the integrated metabolomics and transcriptomics network analysis, the enzyme hypoxanthine phosphoribosyltransferase 1 (HPRT1) is determined as a potential key regulator controlling the shared changes in xanthine metabolism and linking them to a mechanism that may contribute to pathological loss of cellular adenosine triphosphate (ATP) in PD. Overall, the investigations revealed significant PD-associated metabolome alterations, including pronounced changes in xanthine metabolism that are mechanistically congruent with alterations observed in independent transcriptomics data. The enzyme HPRT1 may merit further investigation as a main regulator of these network alterations and as a potential therapeutic target to address downstream molecular pathology in PD.
Collapse
Affiliation(s)
- Elisa Gómez de Lope
- Biomedical Data Science, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Rebecca Ting Jiin Loo
- Biomedical Data Science, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Armin Rauschenberger
- Biomedical Data Science, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Muhammad Ali
- Biomedical Data Science, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Lukas Pavelka
- Parkinson's Research Clinic, Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
| | - Tainá M Marques
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
| | - Clarissa P C Gomes
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Rejko Krüger
- Parkinson's Research Clinic, Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Enrico Glaab
- Biomedical Data Science, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
7
|
Yang K, Zeng L, Zeng J, Deng Y, Wang S, Xu H, He Q, Yuan M, Luo Y, Ge A, Ge J. Research progress in the molecular mechanism of ferroptosis in Parkinson's disease and regulation by natural plant products. Ageing Res Rev 2023; 91:102063. [PMID: 37673132 DOI: 10.1016/j.arr.2023.102063] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder of the central nervous system after Alzheimer's disease. The current understanding of PD focuses mainly on the loss of dopamine neurons in the substantia nigra region of the midbrain, which is attributed to factors such as oxidative stress, alpha-synuclein aggregation, neuroinflammation, and mitochondrial dysfunction. These factors together contribute to the PD phenotype. Recent studies on PD pathology have introduced a new form of cell death known as ferroptosis. Pathological changes closely linked with ferroptosis have been seen in the brain tissues of PD patients, including alterations in iron metabolism, lipid peroxidation, and increased levels of reactive oxygen species. Preclinical research has demonstrated the neuroprotective qualities of certain iron chelators, antioxidants, Fer-1, and conditioners in Parkinson's disease. Natural plant products have shown significant potential in balancing ferroptosis-related factors and adjusting their expression levels. Therefore, it is vital to understand the mechanisms by which natural plant products inhibit ferroptosis and relieve PD symptoms. This review provides a comprehensive look at ferroptosis, its role in PD pathology, and the mechanisms underlying the therapeutic effects of natural plant products focused on ferroptosis. The insights from this review can serve as useful references for future research on novel ferroptosis inhibitors and lead compounds for PD treatment.
Collapse
Affiliation(s)
- Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China; Hunan Academy of Chinese Medicine, Changsha, Hunan, China.
| | - Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
| | - Jinsong Zeng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ying Deng
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Shanshan Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Hao Xu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Mengxia Yuan
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou University Medical College, Shantou, China
| | - Yanfang Luo
- The Central Hospital of Shaoyang, Shaoyang, China
| | - Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China; Hunan Academy of Chinese Medicine, Changsha, Hunan, China.
| |
Collapse
|
8
|
Guo X, Hu W, Gao Z, Fan Y, Wu Q, Li W. Identification of PLOD3 and LRRN3 as potential biomarkers for Parkinson's disease based on integrative analysis. NPJ Parkinsons Dis 2023; 9:82. [PMID: 37258507 DOI: 10.1038/s41531-023-00527-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 05/15/2023] [Indexed: 06/02/2023] Open
Abstract
Parkinson's disease (PD) is one of the most prevalent movement disorders and its diagnosis relies heavily on the typical clinical manifestations in the late stages. This study aims to screen and identify biomarkers of PD for earlier intervention. We performed a differential analysis of postmortem brain transcriptome studies. Weighted Gene Co-expression Network Analysis (WGCNA) was used to identify biomarkers related to Braak stage. We found 58 genes with significantly different expression in both PD brain tissue and blood samples. PD gene signature and risk score model consisting of nine genes were constructed using least absolute shrinkage and selection operator regression (LASSO) and logistic regression. PLOD3 and LRRN3 in gene signature were identified to serve as key genes as well as potential risk factors in PD. Gene function enrichment analysis and evaluation of immune cell infiltration revealed that PLOD3 was implicated in suppression of cellular metabolic function and inflammatory cell infiltration, whereas LRRN3 exhibited an inverse trend. The cellular subpopulation expression of the PLOD3 and LRRN3 has significant distributional variability. The expression of PLOD3 was more enriched in inflammatory cell subpopulations, such as microglia, whereas LRRN3 was more enriched in neurons and oligodendrocyte progenitor cells clusters (OPC). Additionally, the expression of PLOD3 and LRRN3 in Qilu cohort was verified to be consistent with previous results. Collectively, we screened and identified the functions of PLOD3 and LRRN3 based the integrated study. The combined detection of PLOD3 and LRRN3 expression in blood samples can improve the early detection of PD.
Collapse
Affiliation(s)
- Xing Guo
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 250012, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, 250012, Jinan, Shandong, China
| | - Wenjun Hu
- Department of General Practice, Central Hospital Affiliated to Shandong First Medical university, 250000, Jinan, Shandong, China
| | - Zijie Gao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 250012, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, 250012, Jinan, Shandong, China
| | - Yang Fan
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 250012, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, 250012, Jinan, Shandong, China
| | - Qianqian Wu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 250012, Jinan, Shandong, China
| | - Weiguo Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 250012, Jinan, Shandong, China.
- Shandong Key Laboratory of Brain Function Remodeling, 250012, Jinan, Shandong, China.
| |
Collapse
|
9
|
Khosousi S, Hye A, Velayudhan L, Bloth B, Tsitsi P, Markaki I, Svenningsson P. Complement system changes in blood in Parkinson's disease and progressive Supranuclear Palsy/Corticobasal Syndrome. Parkinsonism Relat Disord 2023; 108:105313. [PMID: 36739794 DOI: 10.1016/j.parkreldis.2023.105313] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Parkinson's Disease (PD) is diagnosed clinically, and early PD is often challenging to differentiate from atypical parkinsonian disorders such as the Four-repeat (4R-) Tauopathies Progressive Supranuclear Palsy and Corticobasal Syndrome. Diagnostic biomarkers are needed, and proteomic studies have suggested that the plasma complement system is altered in PD, but validation studies are lacking. In this study, plasma from 148 individuals (PD, 4R-Tauopathies, and healthy controls (HC)) were used to quantify 12 complement proteins with immunoassays, and CH50 classical pathway complement activity was quantified in sera from further 78 individuals (PD and HC). Complement factors C1q and C3 in plasma were lower in individuals with 4R-Tauopathies (ANOVA, p = 0.0041, p = 0.0057 respectively) compared to both PD and HC. None of the complement proteins were altered between PD and HC, however a few proteins correlated with clinical parameters within the PD group. Notably, levels of C3 correlated with non-motor symptoms in female patients. Classical pathway complement activity was not altered in PD serum, but did correlate with mental fatigue. In conclusion, individuals with 4R-Tauopathies showed lower plasma C1q and C3 compared PD and HC. Neither complement levels nor CH50 activity were significantly altered in PD versus HC but may associate with PD symptom severity.
Collapse
Affiliation(s)
- Shervin Khosousi
- Old Age Psychiatry, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, United Kingdom Maurice Wohl Clinical Neuroscience Institute, 125 Coldharbour Lane, SE5 9NU, London, United Kingdom; Translational Neuropharmacology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden, Bioclinicum, J5:20, 171 64, Solna, Sweden.
| | - Abdul Hye
- Old Age Psychiatry, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, United Kingdom Maurice Wohl Clinical Neuroscience Institute, 125 Coldharbour Lane, SE5 9NU, London, United Kingdom
| | - Latha Velayudhan
- Old Age Psychiatry, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, United Kingdom Maurice Wohl Clinical Neuroscience Institute, 125 Coldharbour Lane, SE5 9NU, London, United Kingdom
| | - Björn Bloth
- Translational Neuropharmacology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden, Bioclinicum, J5:20, 171 64, Solna, Sweden
| | - Panagiota Tsitsi
- Translational Neuropharmacology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden, Bioclinicum, J5:20, 171 64, Solna, Sweden; Center for Neurology, Academic Specialist Center, Stockholm, Solnavägen 1E, 11365, Stockholm, Sweden
| | - Ioanna Markaki
- Translational Neuropharmacology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden, Bioclinicum, J5:20, 171 64, Solna, Sweden; Center for Neurology, Academic Specialist Center, Stockholm, Solnavägen 1E, 11365, Stockholm, Sweden
| | - Per Svenningsson
- Translational Neuropharmacology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden, Bioclinicum, J5:20, 171 64, Solna, Sweden; Center for Neurology, Academic Specialist Center, Stockholm, Solnavägen 1E, 11365, Stockholm, Sweden; Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, United Kingdom Maurice Wohl Clinical Neuroscience Institute, 125 Coldharbour Lane, SE5 9NU, London, United Kingdom
| |
Collapse
|
10
|
Raghunathan R, Turajane K, Wong LC. Biomarkers in Neurodegenerative Diseases: Proteomics Spotlight on ALS and Parkinson’s Disease. Int J Mol Sci 2022; 23:ijms23169299. [PMID: 36012563 PMCID: PMC9409485 DOI: 10.3390/ijms23169299] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/13/2022] [Accepted: 08/14/2022] [Indexed: 11/21/2022] Open
Abstract
Neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and Parkinson’s disease (PD) are both characterized by pathogenic protein aggregates that correlate with the progressive degeneration of neurons and the loss of behavioral functions. Both diseases lack biomarkers for diagnosis and treatment efficacy. Proteomics is an unbiased quantitative tool capable of the high throughput quantitation of thousands of proteins from minimal sample volumes. We review recent proteomic studies in human tissues, plasma, cerebrospinal fluid (CSF), and exosomes in ALS and PD that identify proteins with potential utility as biomarkers. Further, we review disease-related post-translational modifications in key proteins TDP43 in ALS and α-synuclein in PD studies, which may serve as biomarkers. We compare relative and absolute quantitative proteomic approaches in key biomarker studies in ALS and PD and discuss recent technological advancements which may identify suitable biomarkers for the early-diagnosis treatment efficacy of these diseases.
Collapse
|
11
|
Biomarkers of Neurodegenerative Diseases: Biology, Taxonomy, Clinical Relevance, and Current Research Status. Biomedicines 2022; 10:biomedicines10071760. [PMID: 35885064 PMCID: PMC9313182 DOI: 10.3390/biomedicines10071760] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 01/02/2023] Open
Abstract
The understanding of neurodegenerative diseases, traditionally considered to be well-defined entities with distinguishable clinical phenotypes, has undergone a major shift over the last 20 years. The diagnosis of neurodegenerative diseases primarily requires functional brain imaging techniques or invasive tests such as lumbar puncture to assess cerebrospinal fluid. A new biological approach and research efforts, especially in vivo, have focused on biomarkers indicating underlying proteinopathy in cerebrospinal fluid and blood serum. However, due to the complexity and heterogeneity of neurodegenerative processes within the central nervous system and the large number of overlapping clinical diagnoses, identifying individual proteinopathies is relatively difficult and often not entirely accurate. For this reason, there is an urgent need to develop laboratory methods for identifying specific biomarkers, understand the molecular basis of neurodegenerative disorders and classify the quantifiable and readily available tools that can accelerate efforts to translate the knowledge into disease-modifying therapies that can improve and simplify the areas of differential diagnosis, as well as monitor the disease course with the aim of estimating the prognosis or evaluating the effects of treatment. The aim of this review is to summarize the current knowledge about clinically relevant biomarkers in different neurodegenerative diseases.
Collapse
|