1
|
Takaya K, Kishi K. Combined dasatinib and quercetin treatment contributes to skin rejuvenation through selective elimination of senescent cells in vitro and in vivo. Biogerontology 2024; 25:691-704. [PMID: 38619669 DOI: 10.1007/s10522-024-10103-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/04/2024] [Indexed: 04/16/2024]
Abstract
The skin's protective functions are compromised over time by both endogenous and exogenous aging. Senescence is well-documented in skin phenotypes, such as wrinkling and sagging, a consequence of the senescence-associated secretory phenotype (SASP) that involves the accumulation of senescent fibroblasts, chronic inflammation, and collagen remodeling. Although therapeutic approaches for eliminating senescent cells from the skin are available, their efficacy remains unclear. Accordingly, we aimed to examine the effects of dasatinib in combination with quercetin (D + Q) on senescent human skin fibroblasts and aging human skin. Senescence was induced in human dermal fibroblasts (HDFs) using approaches such as long-term passaging, ionizing radiation, and doxorubicin treatment. The generated senescent cells were treated with D + Q or vehicle. Additionally, a mouse-human chimera model was generated by subcutaneously transplanting whole-skin grafts of aged individuals onto nude mice. Mouse models were administered D + Q or vehicle by oral gavage for 30 days. Subsequently, skin samples were harvested and stained for senescence-associated beta-galactosidase. Senescence-associated markers were assessed by western blotting, reverse transcription-quantitative PCR and histological analyses. Herein, D + Q selectively eliminated senescent HDFs in all cellular models of induced senescence. Additionally, D + Q-treated aged human skin grafts exhibited increased collagen density and suppression of the SASP compared with control grafts. No adverse events were observed during the study period. Collectively, D + Q could ameliorate skin aging through selective elimination of senescent dermal fibroblasts and suppression of the SASP. Our findings suggest that D + Q could be developed as an effective therapeutic approach for combating skin aging.
Collapse
Affiliation(s)
- Kento Takaya
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, Tokyo, Japan.
| | - Kazuo Kishi
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Mao R, Li J, Xiao W. Identification of prospective aging drug targets via Mendelian randomization analysis. Aging Cell 2024; 23:e14171. [PMID: 38572516 PMCID: PMC11258487 DOI: 10.1111/acel.14171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/26/2024] [Accepted: 03/13/2024] [Indexed: 04/05/2024] Open
Abstract
Aging represents a multifaceted process culminating in the deterioration of biological functions. Despite the introduction of numerous anti-aging strategies, their therapeutic outcomes have often been less than optimal. Consequently, discovering new targets to mitigate aging effects is of critical importance. We applied Mendelian randomization (MR) to identify potential pharmacological targets against aging, drawing upon summary statistics from both the Decode and FinnGen cohorts, with further validation in an additional cohort. To address potential reverse causality, bidirectional MR analysis with Steiger filtering was utilized. Additionally, Bayesian co-localization and phenotype scanning were implemented to investigate previous associations between genetic variants and traits. Summary-data-based Mendelian randomization (SMR) analysis was conducted to assess the impact of genetic variants on aging via their effects on protein expression. Additionally, mediation analysis was orchestrated to uncover potential intermediaries in these associations. Finally, we probed the systemic implications of drug-target protein expression across diverse indications by MR-PheWas analysis. Utilizing a Bonferroni-corrected threshold, our MR examination identified 10 protein-aging associations. Within this cohort of proteins, MST1, LCT, GMPR2, PSMB4, ECM1, EFEMP1, and ISLR2 appear to exacerbate aging risks, while MAX, B3GNT8, and USP8 may exert protective influences. None of these proteins displayed reverse causality except EFEMP1. Bayesian co-localization inferred shared variants between aging and proteins such as B3GNT8 (rs11670143), ECM1 (rs61819393), and others listed. Mediator analysis pinpointed 1,5-anhydroglucitol as a partial intermediary in the influence LCT exhibits on telomere length. Circulating proteins play a pivotal role in influencing the aging process, making them promising candidates for therapeutic intervention. The implications of these proteins in aging warrant further investigation in future clinical research.
Collapse
Affiliation(s)
- Rui Mao
- Department of Dermatology, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan Key Laboratory of Aging Biology, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Ji Li
- Department of Dermatology, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan Key Laboratory of Aging Biology, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Wenqin Xiao
- Department of Dermatology, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan Key Laboratory of Aging Biology, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
3
|
Wang C, Gao Y, Luan C, Sun W, Ge S, Li Y, Xu L, Du Q, Liu W, Lu G, Gong W, Ma X. Zinc finger protein ZBTB17 controls cellular senescence via interacting with nuclear receptor RXRA and its downstream calcium signaling. FASEB J 2023; 37:e23193. [PMID: 37698375 DOI: 10.1096/fj.202301050r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/05/2023] [Accepted: 08/29/2023] [Indexed: 09/13/2023]
Abstract
Cellular senescence is broadly known as a stable cell cycle arrest accompanied by a senescence-associated secretory phenotype (SASP). In the past decades, calcium signaling has emerged as a key mediator of cellular senescence. However, the transcriptional regulation of calcium signaling during cellular senescence remains partially understood. We have previously identified the nuclear receptor RXRA as a key senescence repressor through inhibiting the endoplasmic reticulum (ER) calcium release channel inositol 1,4,5-trisphosphate receptor, type 2 (ITPR2) mediated intracellular calcium signaling. Nevertheless, as a transcriptional recruiter, the mechanism by which RXRA inhibits ITPR2 during cellular senescence remains unclear. Here we identified the zinc finger protein ZBTB17 can interact with RXRA. Interestingly, knockdown of ZBTB17 induces a cascade of RXRA-dependent intracellular calcium signaling, mitochondrial membrane potential (MMP), reactive oxygen species (ROS) accumulation, DNA damages, and ultimately cellular senescence. Moreover, the signaling and senescence phenotype induced by knocking down of ZBTB17 can also be abolished after silencing ITPR2. Altogether, our work provides a new mechanism controlling intracellular calcium signaling and cellular senescence and unveils novel insight toward the role of zinc finger proteins.
Collapse
Affiliation(s)
- Chaofan Wang
- Department of the Central Laboratory, Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Yue Gao
- Department of the Central Laboratory, Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Changjiao Luan
- Department of the Central Laboratory, Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Department of Lung, The Third People's Hospital of Yangzhou, Yangzhou, China
| | - Wentao Sun
- Department of the Central Laboratory, Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Sumin Ge
- Department of the Central Laboratory, Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Yaru Li
- Department of the Central Laboratory, Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Lei Xu
- Department of the Central Laboratory, Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Qiu Du
- Department of the Central Laboratory, Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Weili Liu
- Department of the Central Laboratory, Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Guotao Lu
- Department of the Central Laboratory, Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Weijuan Gong
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Xingjie Ma
- Department of the Central Laboratory, Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| |
Collapse
|
4
|
Farsetti A, Illi B, Gaetano C. How epigenetics impacts on human diseases. Eur J Intern Med 2023; 114:15-22. [PMID: 37277249 DOI: 10.1016/j.ejim.2023.05.036] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/07/2023]
Abstract
Epigenetics is a rapidly growing field of biology that studies the changes in gene expression that are not due to alterations in the DNA sequence but rather the chemical modifications of DNA and its associated proteins. Epigenetic mechanisms can profoundly influence gene expression, cell differentiation, tissue development, and disease susceptibility. Understanding epigenetic changes is essential to elucidate the mechanisms underlying the increasingly recognized role of environmental and lifestyle factors in health and disease and the intergenerational transmission of phenotypes. Recent studies suggest epigenetics may be critical in various diseases, from cardiovascular disease and cancer to neurodevelopmental and neurodegenerative disorders. Epigenetic modifications are potentially reversible and could provide new therapeutic avenues for treating these diseases using epigenetic modulators. Moreover, epigenetics provide insight into disease pathogenesis and biomarkers for disease diagnosis and risk stratification. Nevertheless, epigenetic interventions have the potential for unintended consequences and may potentially lead to increased risks of unexpected outcomes, such as adverse drug reactions, developmental abnormalities, and cancer. Therefore, rigorous studies are essential to minimize the risks associated with epigenetic therapies and to develop safe and effective interventions for improving human health. This article provides a synthetic and historical view of the origin of epigenetics and some of the most relevant achievements.
Collapse
Affiliation(s)
- Antonella Farsetti
- Istituto di analisi dei sistemi ed informatica "Antonio Ruberti" (IASI), Consiglio Nazionale delle Ricerche (CNR), Via dei Taurini, 19 - 00185 Roma, Italy
| | - Barbara Illi
- Istituto di biologia e Patologia Molecolari, (IBPM), Consiglio Nazionale delle Ricerche (CNR), P.le Aldo Moro 5, 00185, Roma, Italy
| | - Carlo Gaetano
- Laboratorio di Epigenetica, Istituti Cinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100, Pavia, Italy.
| |
Collapse
|