2
|
Gudigar A, Kadri NA, Raghavendra U, Samanth J, Maithri M, Inamdar MA, Prabhu MA, Hegde A, Salvi M, Yeong CH, Barua PD, Molinari F, Acharya UR. Automatic identification of hypertension and assessment of its secondary effects using artificial intelligence: A systematic review (2013-2023). Comput Biol Med 2024; 172:108207. [PMID: 38489986 DOI: 10.1016/j.compbiomed.2024.108207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 03/17/2024]
Abstract
Artificial Intelligence (AI) techniques are increasingly used in computer-aided diagnostic tools in medicine. These techniques can also help to identify Hypertension (HTN) in its early stage, as it is a global health issue. Automated HTN detection uses socio-demographic, clinical data, and physiological signals. Additionally, signs of secondary HTN can also be identified using various imaging modalities. This systematic review examines related work on automated HTN detection. We identify datasets, techniques, and classifiers used to develop AI models from clinical data, physiological signals, and fused data (a combination of both). Image-based models for assessing secondary HTN are also reviewed. The majority of the studies have primarily utilized single-modality approaches, such as biological signals (e.g., electrocardiography, photoplethysmography), and medical imaging (e.g., magnetic resonance angiography, ultrasound). Surprisingly, only a small portion of the studies (22 out of 122) utilized a multi-modal fusion approach combining data from different sources. Even fewer investigated integrating clinical data, physiological signals, and medical imaging to understand the intricate relationships between these factors. Future research directions are discussed that could build better healthcare systems for early HTN detection through more integrated modeling of multi-modal data sources.
Collapse
Affiliation(s)
- Anjan Gudigar
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Nahrizul Adib Kadri
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - U Raghavendra
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India.
| | - Jyothi Samanth
- Department of Cardiovascular Technology, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, 576104, India
| | - M Maithri
- Department of Mechatronics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Mahesh Anil Inamdar
- Department of Mechatronics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Mukund A Prabhu
- Department of Cardiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Ajay Hegde
- Manipal Hospitals, Bengaluru, Karnataka, 560102, India
| | - Massimo Salvi
- Biolab, PolitoBIOMedLab, Department of Electronics and Telecommunications, Politecnicodi Torino, Turin, Italy
| | - Chai Hong Yeong
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, 47500, Subang Jaya, Malaysia
| | - Prabal Datta Barua
- Cogninet Brain Team, Cogninet Australia, Sydney, NSW, 2010, Australia; School of Business (Information Systems), Faculty of Business, Education, Law & Arts, University of Southern Queensland, Toowoomba, QLD, 4350, Australia; Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Filippo Molinari
- Biolab, PolitoBIOMedLab, Department of Electronics and Telecommunications, Politecnicodi Torino, Turin, Italy
| | - U Rajendra Acharya
- School of Mathematics, Physics, and Computing, University of Southern Queensland, Springfield, QLD, 4300, Australia; Centre for Health Research, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
| |
Collapse
|
3
|
Integration of Machine Learning Algorithms and Discrete-Event Simulation for the Cost of Healthcare Resources. Healthcare (Basel) 2022; 10:healthcare10101920. [PMID: 36292372 PMCID: PMC9601943 DOI: 10.3390/healthcare10101920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 12/23/2022] Open
Abstract
A healthcare resource allocation generally plays a vital role in the number of patients treated (pnt) and the patient waiting time (wt) in healthcare institutions. This study aimed to estimate pnt and wt as output variables by considering the number of healthcare resources employed and analyze the cost of health resources to the hospital depending on the cost coefficient (δi) in an emergency department (ED). The integration of the discrete-event simulation (DES) model and machine learning (ML) algorithms, namely random forest (RF), gradient boosting (GB), and AdaBoost (AB), was used to calculate the estimation of the output variables depending on the δi of resources cost. The AB algorithm performed best in almost all scenarios based on the results of the analysis. According to the AB algorithm based on the δ0.0, δ0.1, δ0.2, and δ0.3, the accuracy data were calculated as 0.9838, 0.9843, 0.9838, and 0.9846 for pnt; 0.9514, 0.9517, 0.9514, and 0.9514 for wt, respectively in the training stage. The GB algorithm had the best performance value, except for the results of the δ0.2 (AB had a better accuracy at 0.8709 based on the value of δ0.2 for pnt) in the test stage. According to the AB algorithm based on the δ0.0, δ0.1, δ0.2, and δ0.3, the accuracy data were calculated as 0.7956, 0.9298, 0.8288, and 0.7394 for pnt; 0.8820, 0.8821, 0.8819, and 0.8818 for wt in the training phase, respectively. All scenarios created by the δi coefficient should be preferred for ED since the income provided by the pnt value to the hospital was more than the cost of healthcare resources. On the contrary, the wt estimation results of ML algorithms based on the δi coefficient differed. Although wt values in all ML algorithms with δ0.0 and δ0.1 coefficients reduced the cost of the hospital, wt values based on δ0.2 and δ0.3 increased the cost of the hospital.
Collapse
|
5
|
Kim KY. The Association between Working Posture and Workers’ Depression. Healthcare (Basel) 2022; 10:healthcare10030477. [PMID: 35326955 PMCID: PMC8954532 DOI: 10.3390/healthcare10030477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022] Open
Abstract
Various studies have focused on the association between physical health and working posture. However, little research has been conducted on the association between working posture and mental health, despite the importance of workers’ mental health. This study aimed to examine the association between working posture and workers’ depression. A total of 49,877 workers were analyzed using data from the 5th Korean Working Conditions Survey. We utilized multiple logistic regression to analyze the variables associated with workers’ depression. This study showed that several working postures, such as tiring or painful positions, lifting or moving people, standing, and sitting, were associated with depression in workers. Furthermore, occupation types, job satisfaction, and physical health problems related to back pain and pain in upper (neck, shoulder, and arm) and lower (hip, leg, knee, and foot) body parts were associated with workers’ depression. Therefore, this study demonstrated that working posture is associated with workers’ depression. In particular, working postures causing musculoskeletal pain, improper working postures maintained for a long time, and occupation types were associated with workers’ depression. Our findings demonstrate the need for appropriate management and interventions for addressing pain-inducing or improper working postures in the workplace.
Collapse
Affiliation(s)
- Ka Young Kim
- Department of Nursing, College of Nursing, Gachon University, Incheon 21936, Korea
| |
Collapse
|