1
|
Rodriguez HC, Rust BD, Roche MW, Gupta A. Artificial intelligence and machine learning in knee arthroplasty. Knee 2025; 54:28-49. [PMID: 40022960 DOI: 10.1016/j.knee.2025.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/09/2024] [Accepted: 02/07/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND Artificial intelligence (AI) and its subset, machine learning (ML), have significantly impacted clinical medicine, particularly in knee arthroplasty (KA). These technologies utilize algorithms for tasks such as predictive analytics and image recognition, improving preoperative planning, intraoperative navigation, and postoperative complication anticipation. This systematic review presents AI-driven tools' clinical implications in total and unicompartmental KA, focusing on enhancing patient outcomes and operational efficiency. METHODS A systematic search was conducted across multiple databases including Cochrane Central Register of Controlled Trials, Embase, OVID Medline, PubMed, and Web of Science, following the PRISMA guidelines for studies published in the English language till March 2024. Inclusion criteria targeted adult human models without geographical restrictions, specifically related to total or unicompartmental KA. RESULTS A total of 153 relevant studies were identified, covering various aspects of ML application for KA. Topics of studies included imaging modalities (n = 28), postoperative primary KA complications (n = 26), inpatient status (length of stay, readmissions, and cost) (n = 24), implant configuration (n = 14), revision (n = 12), patient-reported outcome measures (PROMs) (n = 11), function (n = 11), procedural communication (n = 8), total knee arthroplasty/unicompartmental knee arthroplasty prediction (n = 6), outpatient status (n = 4), perioperative efficiency (n = 4), patient satisfaction (n = 3), opioid usage (n = 3). A total of 66 ML models were described, with 48.7% of studies using multiple approaches. CONCLUSION This review assesses ML applications in knee arthroplasty, highlighting their potential to improve patient outcomes. While current algorithms and AI show promise, our findings suggest areas for enhancement in predictive performance before widespread clinical adoption.
Collapse
Affiliation(s)
- Hugo C Rodriguez
- Larkin Community Hospital, Department of Orthopaedic Surgery, South Miami, FL, USA; Hospital for Special Surgery, West Palm Beach, FL, USA
| | - Brandon D Rust
- Nova Southeastern University, Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, FL, USA
| | | | | |
Collapse
|
2
|
Feierabend M, Wolfgart JM, Praster M, Danalache M, Migliorini F, Hofmann UK. Applications of machine learning and deep learning in musculoskeletal medicine: a narrative review. Eur J Med Res 2025; 30:386. [PMID: 40375335 DOI: 10.1186/s40001-025-02511-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 03/25/2025] [Indexed: 05/18/2025] Open
Abstract
Artificial intelligence (AI), with its technologies such as machine perception, robotics, natural language processing, expert systems, and machine learning (ML) with its subset deep learning, have transformed patient care and administration in all fields of modern medicine. For many clinicians, however, the nature, scope, and resulting possibilities of ML and deep learning might not yet be fully clear. This narrative review provides an overview of the application of ML and deep learning in musculoskeletal medicine. It first introduces the concept of AI and machine learning and its associated fields. Different machine concepts such as supervised, unsupervised and reinforcement learning will then be presented with current applications and clinical perspective. Finally deep learning applications will be discussed. With significant improvements over the last decade, ML and its subset deep learning today offer potent tools for numerous applications to implement in clinical practice. While initial setup costs are high, these investments can reduce workload and cost globally. At the same time, many challenges remain, such as standardisation in data labelling and often insufficient validity of the obtained results. In addition, legal aspects still will have to be clarified. Until good analyses and predictions are obtained by an ML tool, patience in training and suitable data sets are required. Awareness of the strengths of ML and the limitations that lie within it will help put this technique to good use.
Collapse
Affiliation(s)
- Martina Feierabend
- Metabolic Reconstruction and Flux Modelling, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany.
| | - Julius Michael Wolfgart
- Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH University Hospital, 52074, Aachen, Germany
| | - Maximilian Praster
- Department of Orthopaedic, Trauma, and Reconstructive Surgery, Division of Arthroplasty and Tumour Surgery, RWTH University Hospital, 52074, Aachen, Germany
- Teaching and Research Area Experimental Orthopaedics and Trauma Surgery, RWTH University Hospital, 52074, Aachen, Germany
| | - Marina Danalache
- Department of Orthopaedic Surgery, University Hospital Tübingen, Hoppe-Seyler Straße 3, 72076, Tübingen, Germany
| | - Filippo Migliorini
- Department of Orthopaedic and Trauma Surgery, Academic Hospital of Bolzano (SABES-ASDAA), Teaching Hospital of the Paracelsus Medical University, 39100, Bolzano, Italy
| | - Ulf Krister Hofmann
- Department of Orthopaedic, Trauma, and Reconstructive Surgery, Division of Arthroplasty and Tumour Surgery, RWTH University Hospital, 52074, Aachen, Germany
| |
Collapse
|
3
|
Georgiakakis ECT, Khan AM, Logishetty K, Sarraf KM. Artificial intelligence in planned orthopaedic care. SICOT J 2024; 10:49. [PMID: 39570038 PMCID: PMC11580622 DOI: 10.1051/sicotj/2024044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/11/2024] [Indexed: 11/22/2024] Open
Abstract
The integration of artificial intelligence (AI) into orthopaedic care has gained considerable interest in recent years, evidenced by the growing body of literature boasting wide-ranging applications across the perioperative setting. This includes automated diagnostic imaging, clinical decision-making tools, optimisation of implant design, robotic surgery, and remote patient monitoring. Collectively, these advances propose to enhance patient care and improve system efficiency. Musculoskeletal pathologies represent the most significant contributor to global disability, with roughly 1.71 billion people afflicted, leading to an increasing volume of patients awaiting planned orthopaedic surgeries. This has exerted a considerable strain on healthcare systems globally, compounded by both the COVID-19 pandemic and the effects of an ageing population. Subsequently, patients face prolonged waiting times for surgery, with further deterioration and potentially poorer outcomes as a result. Furthermore, incorporating AI technologies into clinical practice could provide a means of addressing current and future service demands. This review aims to present a clear overview of AI applications across preoperative, intraoperative, and postoperative stages to elucidate its potential to transform planned orthopaedic care.
Collapse
Affiliation(s)
| | - Akib Majed Khan
-
Imperial College Healthcare NHS Trust London United Kingdom
| | | | | |
Collapse
|
4
|
Balch JA, Chatham AH, Hong PKW, Manganiello L, Baskaran N, Bihorac A, Shickel B, Moseley RE, Loftus TJ. Predicting patient reported outcome measures: a scoping review for the artificial intelligence-guided patient preference predictor. Front Artif Intell 2024; 7:1477447. [PMID: 39564457 PMCID: PMC11573790 DOI: 10.3389/frai.2024.1477447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/18/2024] [Indexed: 11/21/2024] Open
Abstract
Background The algorithmic patient preference predictor (PPP) has been proposed to aid in decision making for incapacitated patients in the absence of advanced directives. Ethical and legal challenges aside, multiple practical barriers exist for building a personalized PPP. Here, we examine previous work using machine learning to predict patient reported outcome measures (PROMs) for capacitated patients undergoing diverse procedures, therapies, and life events. Demonstrating robust performance in predicting PROMs for capacitated patients could suggest opportunities for developing a model tailored to incapacitated ones. Methods We performed a scoping review of PubMed, Embase, and Scopus using the PRISMA-ScR guidelines to capture studies using machine learning to predict PROMs following a medical event alongside qualitative studies exploring a theoretical PPP. Results Sixty-eight studies used machine learning to evaluate PROMs; an additional 20 studies focused on a theoretical PPP. For PROMs, orthopedic surgeries (n = 33) and spinal surgeries (n = 12) were the most common medical event. Studies used demographic (n = 30), pre-event PROMs (n = 52), comorbidities (n = 29), social determinants of health (n = 30), and intraoperative variables (n = 124) as predictors. Thirty-four different PROMs were used as the target outcome. Evaluation metrics varied by task, but performance was overall poor to moderate for the best reported scores. In models that used feature importance, pre-event PROMs were the most predictive of post-event PROMs. Fairness assessments were rare (n = 6). These findings reinforce the necessity of the integrating patient values and preferences, beyond demographic factors, to improve the development of personalized PPP models for incapacitated patients. Conclusion The primary objective of a PPP is to estimate patient-reported quality of life following an intervention. Use of machine learning to predict PROMs for capacitated patients introduces challenges and opportunities for building a personalized PPP for incapacitated patients without advanced directives.
Collapse
Affiliation(s)
- Jeremy A. Balch
- Department of Surgery, University of Florida, Gainesville, FL, United States
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, United States
| | - A. Hayes Chatham
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, United States
| | - Philip K. W. Hong
- Department of Surgery, University of Florida, Gainesville, FL, United States
| | - Lauren Manganiello
- College of Medicine, University of Florida, Gainesville, FL, United States
| | - Naveen Baskaran
- Department of Medicine, University of Florida, Gainesville, FL, United States
| | - Azra Bihorac
- Department of Medicine, University of Florida, Gainesville, FL, United States
| | - Benjamin Shickel
- Department of Medicine, University of Florida, Gainesville, FL, United States
| | - Ray E. Moseley
- Department of Medicine, University of Florida, Gainesville, FL, United States
| | - Tyler J. Loftus
- Department of Surgery, University of Florida, Gainesville, FL, United States
| |
Collapse
|
5
|
Huffman N, Pasqualini I, Khan ST, Klika AK, Deren ME, Jin Y, Kunze KN, Piuzzi NS. Enabling Personalized Medicine in Orthopaedic Surgery Through Artificial Intelligence: A Critical Analysis Review. JBJS Rev 2024; 12:01874474-202403000-00006. [PMID: 38466797 DOI: 10.2106/jbjs.rvw.23.00232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
» The application of artificial intelligence (AI) in the field of orthopaedic surgery holds potential for revolutionizing health care delivery across 3 crucial domains: (I) personalized prediction of clinical outcomes and adverse events, which may optimize patient selection, surgical planning, and enhance patient safety and outcomes; (II) diagnostic automated and semiautomated imaging analyses, which may reduce time burden and facilitate precise and timely diagnoses; and (III) forecasting of resource utilization, which may reduce health care costs and increase value for patients and institutions.» Computer vision is one of the most highly studied areas of AI within orthopaedics, with applications pertaining to fracture classification, identification of the manufacturer and model of prosthetic implants, and surveillance of prosthesis loosening and failure.» Prognostic applications of AI within orthopaedics include identifying patients who will likely benefit from a specified treatment, predicting prosthetic implant size, postoperative length of stay, discharge disposition, and surgical complications. Not only may these applications be beneficial to patients but also to institutions and payors because they may inform potential cost expenditure, improve overall hospital efficiency, and help anticipate resource utilization.» AI infrastructure development requires institutional financial commitment and a team of clinicians and data scientists with expertise in AI that can complement skill sets and knowledge. Once a team is established and a goal is determined, teams (1) obtain, curate, and label data; (2) establish a reference standard; (3) develop an AI model; (4) evaluate the performance of the AI model; (5) externally validate the model, and (6) reinforce, improve, and evaluate the model's performance until clinical implementation is possible.» Understanding the implications of AI in orthopaedics may eventually lead to wide-ranging improvements in patient care. However, AI, while holding tremendous promise, is not without methodological and ethical limitations that are essential to address. First, it is important to ensure external validity of programs before their use in a clinical setting. Investigators should maintain high quality data records and registry surveillance, exercise caution when evaluating others' reported AI applications, and increase transparency of the methodological conduct of current models to improve external validity and avoid propagating bias. By addressing these challenges and responsibly embracing the potential of AI, the medical field may eventually be able to harness its power to improve patient care and outcomes.
Collapse
Affiliation(s)
- Nickelas Huffman
- Cleveland Clinic, Department of Orthopaedic Surgery, Cleveland, Ohio
| | | | - Shujaa T Khan
- Cleveland Clinic, Department of Orthopaedic Surgery, Cleveland, Ohio
| | - Alison K Klika
- Cleveland Clinic, Department of Orthopaedic Surgery, Cleveland, Ohio
| | - Matthew E Deren
- Cleveland Clinic, Department of Orthopaedic Surgery, Cleveland, Ohio
| | - Yuxuan Jin
- Cleveland Clinic, Department of Orthopaedic Surgery, Cleveland, Ohio
| | - Kyle N Kunze
- Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, New York
| | - Nicolas S Piuzzi
- Cleveland Clinic, Department of Orthopaedic Surgery, Cleveland, Ohio
- Department of Biomedical Engineering, Cleveland Clinic Foundation, Cleveland, Ohio
| |
Collapse
|