1
|
Shen Y, Jiang R, Huang Y, Wang Y, Zhan S, Tang X, Yi P. Identification of hub genes through integrated single-cell and microarray transcriptome analysis in osteoarthritic meniscus. J Orthop Surg Res 2024; 19:682. [PMID: 39438957 PMCID: PMC11515729 DOI: 10.1186/s13018-024-05175-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Osteoarthritis (OA) is marked by the progressive degradation of joint cartilage and subchondral bone. The precise molecular mechanisms driving meniscus deterioration in OA, especially at the single-cell level, remain poorly understood. METHOD We analyzed two datasets from the GEO database, GSE220243 and GSE98918, focusing on meniscus tissue sequencing data from OA and non-OA patients. The standard Seurat procedure was employed to process single-cell data and identify differentially expressed genes (DEGs). Immune cell infiltration was assessed using the Microenvironment Cell Populations (MCP) counter and CIBERSORT algorithms. For the microarray data, DEGs were identified with the limma package, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed using ClusterProfiler. The overlapping DEGs from both datasets were imported into Cytoscape to generate protein-protein interaction (PPI) networks and identify hub genes. Transcription factor (TF) and miRNA interaction networks were analyzed using NetworkAnalyst, and gene-related predictive drugs were enriched through the DSigDB platform. RESULT After quality control, 34,763 cells from the OA patients and 34,145 cells from the healthy controls were analyzed. UMAP identified and SingleR annotated 14 cell clusters. The 10 largest cell clusters were selected for further analysis. The OA group exhibited a notable increase in macrophages and a reduction in cytotoxic lymphocytes and endothelial cells in the meniscus. In GSE98918, 220 DEGs were identified, and the MCODE plug-in in Cytoscape pinpointed a key module containing 12 candidate genes. The MCC methodfiltered the top 20 DEGs in each GSE220243 cluster. Overlapping DEGs from GSE220243 and GSE98918 identified COL1A1, COL3A1, COL5A2, COL6A3, LOX, and VEGFA as significantly decreased in OA, with COL3A1, COL5A2, LOX, and VEGFA upregulated in meniscal chondrocytes. The interaction network highlighted 3 key miRNAs and 13 shared TFs. Ten gene-related predictive drug molecules were identified. CONCLUSION This research highlights crucial genes in the OA meniscus and uncovers their differing regulatory patterns between chondrocytes and non-chondrocytes. These findings enhance our understanding of the molecular mechanisms driving OA pathogenesis and aid in identifying potential drug targets.
Collapse
Affiliation(s)
- Yanzhu Shen
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730 , China
- Department of Orthopaedics, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Ruichen Jiang
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
- Department of Orthopaedics, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Yanjun Huang
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730 , China
- Department of Orthopaedics, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Yuming Wang
- Department of Orthopaedics, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Sizheng Zhan
- Department of Orthopaedics, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Xiangsheng Tang
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730 , China
- Department of Orthopaedics, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Ping Yi
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730 , China.
- Department of Orthopaedics, China-Japan Friendship Hospital, Beijing, 100029, China.
| |
Collapse
|
2
|
Kemmochi M. Usefulness of platelet-rich fibrin as a scaffold for meniscal repair: A non-randomized controlled cohort/follow-up study. J Orthop 2024; 52:94-101. [PMID: 38435313 PMCID: PMC10904893 DOI: 10.1016/j.jor.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 03/05/2024] Open
Abstract
Background Although regenerative medicine treatment is still in its infancy in Japan, legislation within the past decade has provided opportunities to explore new treatment methods using regenerative medicine. We conducted a 2-year prospective follow-up study to statistically analyze treatment outcomes using platelet-rich plasma (PRP) and platelet-rich fibrin (PRF) as effective scaffolds in meniscal repair.Questions/Purposes.1. Does the use of PRF and PRP for meniscal repair surgery regenerate the meniscus?2. Does augmentation of meniscal repair with PRF effectively improve knee function outcomes? Methods Thirty-five patients underwent arthroscopic meniscal repair with PRP and PRF using new devices with all-inside techniques. Among these, 31 patients were evaluated for clinical outcomes postoperatively, and magnetic resonance imaging (MRI) findings were evaluated. The variables were coded appropriately by creating a new column based on the Kellgren-Lawrence classification over time. Log transformation of different time points (pre, post 6, 12, or 24 months) in relation to Lysholm, International Knee Documentation Committee (IKDC), Japanese Orthopedic Association (JOA), and Tegner scores were performed. Follow-up arthroscopy using a needle scope was performed in some cases 2 years later. The PRP and PRF used were characterized using the Minimum Information for Studies Evaluating Biologics in Orthopaedics classification. Results Overall, 31 patients were evaluated (mean age = 39.1 ± 15.7 years; preoperative rehabilitation period = 9.5 ± 7.7 weeks). The PRP had mean platelet and white blood cell concentrations of approximately 5.5- and 3.6-fold, respectively. A significant association existed between sex and deformity deterioration but not in age between the two groups classified by deformity deterioration. Surgical intervention significantly and positively impacted knee function, although no significant changes were found in the activity of the participants over time. MRI findings showed no regeneration of the repaired meniscus; nevertheless, none of them worsened. Furthermore, a case where the traumatic cartilage defect was covered with fibrocartilage-like tissue as a secondary finding was observed. Conclusions Meniscal repair surgery using PRP/PRF is an effective treatment option for improving knee function in patients with knee deformity. Level of evidence Level III, Non-randomized controlled cohort/follow-up study.
Collapse
Affiliation(s)
- Masahiko Kemmochi
- Kemmochi Orthopedic Surgery Sports Clinic, KOSSMOS(Kenmochi Orthopaedics Surgery,Sports Medicine,the Organization of Sport), Medical Corporation, 42-1 Higashi-honcho, Ota City, Gunma, 373-0026, Japan
| |
Collapse
|
3
|
Nakanishi Y, Matsushita T, Nagai K, Araki D, Hoshino Y, Kuroda R. Fibrin clot and Leukocyte-rich platelet-rich fibrin show similar release kinetics and amount of growth factors: a pilot study. J Orthop Surg Res 2023; 18:238. [PMID: 36964579 PMCID: PMC10039559 DOI: 10.1186/s13018-023-03709-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/13/2023] [Indexed: 03/26/2023] Open
Abstract
BACKGROUND In knee arthroscopic surgery, fibrin clot (FC) and leukocyte-rich platelet-rich fibrin (L-PRF) may be used in augmentation for meniscal repair. Studies have investigated growth factors released from FC and L-PRF; however, it is difficult to compare FC and L-PRF between different studies. Direct comparison of growth factors that may support meniscal healing released from FC and L-PRF may be beneficial in deciding whether to use FC or L-PRF. If no significant difference is seen, the surgeon may decide to use FC which is easier to prepare compared to L-PRF. The purpose of this pilot study is to investigate the release amount and pattern of basic fibroblast growth factor (bFGF), platelet-derived growth factor AB (PDGF-AB), transforming growth factor β1 (TGF-β1), vascular endothelial growth factor (VEGF), and stromal cell-derived factor 1 (SDF-1) from FC and L-PRF. METHOD Twenty milliliters (ml) of whole blood was collected from each of the four volunteers. Ten milliliters of whole blood was allocated for preparation of FC and 10 ml for L-PRF. FC and L-PRF were separately placed in 5 ml of culture media. Five milliliters of the culture media was sampled and refilled at 15 min, 1 day, 3 days, 1 week and 2 weeks. The collected culture was used to quantify bFGF, PDGF-AB, TGF-β1, VEGF, and SDF-1 release by Enzyme-linked immune-sorbent assay (ELISA). Mann-Whitney U test was performed to assess significance of differences in amount of each growth factor released between FC and L-PRF. Significance was accepted at P value less than 0.05. RESULTS At two weeks, the cumulative release of TGF-β1 was the highest among all the growth factors in both FC and L-PRF (FC:19,738.21 pg/ml, L-PRF: 16,229.79 pg/ml). PDGF-AB (FC: 2328 pg/ml, L-PRF 1513.57 pg/ml) had the second largest amount, followed by VEGF (FC: 702.06 pg/ml, L-PRF 595.99 pg/ml) and bFGF (FC: 23.48 pg/ml, L-PRF 18.2 pg/ml), which order was also common in both FC and L-PRF. No significant difference in final release amount and pattern was seen between FC and L-PRF. CONCLUSION The current pilot study showed that cumulative release amount and release pattern of PDGF-AB, VEGF, TGF-β1, and bFGF did not significantly differ between FC and L-PRF during the two weeks of observation.
Collapse
Affiliation(s)
- Yuta Nakanishi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-Ku, Kobe, 650-0017, Japan
| | - Takehiko Matsushita
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-Ku, Kobe, 650-0017, Japan.
| | - Kanto Nagai
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-Ku, Kobe, 650-0017, Japan
| | - Daisuke Araki
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-Ku, Kobe, 650-0017, Japan
| | - Yuichi Hoshino
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-Ku, Kobe, 650-0017, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-Ku, Kobe, 650-0017, Japan
| |
Collapse
|
4
|
Efficacy of mild moxibustion combined with surgery for meniscal injury and its effect on TGF-β1 and PDGF levels in the fluid of knee joint. JOURNAL OF ACUPUNCTURE AND TUINA SCIENCE 2022. [DOI: 10.1007/s11726-022-1340-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Yan W, Dai W, Cheng J, Fan Y, Wu T, Zhao F, Zhang J, Hu X, Ao Y. Advances in the Mechanisms Affecting Meniscal Avascular Zone Repair and Therapies. Front Cell Dev Biol 2021; 9:758217. [PMID: 34778268 PMCID: PMC8581462 DOI: 10.3389/fcell.2021.758217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/11/2021] [Indexed: 12/14/2022] Open
Abstract
Injuries to menisci are the most common disease among knee joint-related morbidities and cover a widespread population ranging from children and the general population to the old and athletes. Repair of the injuries in the meniscal avascular zone remains a significant challenge due to the limited intrinsic healing capacity compared to the peripheral vascularized zone. The current surgical strategies for avascular zone injuries remain insufficient to prevent the development of cartilage degeneration and the ultimate emergence of osteoarthritis (OA). Due to the drawbacks of current surgical methods, the research interest has been transferred toward facilitating meniscal avascular zone repair, where it is expected to maintain meniscal tissue integrity, prevent secondary cartilage degeneration and improve knee joint function, which is consistent with the current prevailing management idea to maintain the integrity of meniscal tissue whenever possible. Biological augmentations have emerged as an alternative to current surgical methods for meniscal avascular zone repair. However, understanding the specific biological mechanisms that affect meniscal avascular zone repair is critical for the development of novel and comprehensive biological augmentations. For this reason, this review firstly summarized the current surgical techniques, including meniscectomies and meniscal substitution. We then discuss the state-of-the-art biological mechanisms, including vascularization, inflammation, extracellular matrix degradation and cellular component that were associated with meniscal avascular zone healing and the advances in therapeutic strategies. Finally, perspectives for the future biological augmentations for meniscal avascular zone injuries will be given.
Collapse
Affiliation(s)
- Wenqiang Yan
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China.,Beijing Key Laboratory of Sports Injuries, Beijing, China
| | - Wenli Dai
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China.,Beijing Key Laboratory of Sports Injuries, Beijing, China
| | - Jin Cheng
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China.,Beijing Key Laboratory of Sports Injuries, Beijing, China
| | - Yifei Fan
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China.,Beijing Key Laboratory of Sports Injuries, Beijing, China
| | - Tong Wu
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China.,Beijing Key Laboratory of Sports Injuries, Beijing, China
| | - Fengyuan Zhao
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China.,Beijing Key Laboratory of Sports Injuries, Beijing, China
| | - Jiahao Zhang
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China.,Beijing Key Laboratory of Sports Injuries, Beijing, China
| | - Xiaoqing Hu
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China.,Beijing Key Laboratory of Sports Injuries, Beijing, China
| | - Yingfang Ao
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China.,Beijing Key Laboratory of Sports Injuries, Beijing, China
| |
Collapse
|
6
|
Crawford MD, Hellwinkel JE, Aman Z, Akamefula R, Singleton JT, Bahney C, LaPrade RF. Microvascular Anatomy and Intrinsic Gene Expression of Menisci From Young Adults. Am J Sports Med 2020; 48:3147-3153. [PMID: 33044839 DOI: 10.1177/0363546520961555] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Meniscal vascular supply is an important determinant of its healing potential. It has been reported that only the peripheral 30% of the meniscus is vascularized in cadavers aged 53 to 94 years; however, the vascularity in young patients, in whom meniscal repair is more often performed, is unknown. PURPOSE The primary objective was to analyze and measure the microvascular anatomy of the meniscus in adult cadaveric specimens <35 years old. The secondary objective was to assess angiogenic potential by quantifying regional gene expression in a meniscal allograft cohort <45 years old. STUDY DESIGN Descriptive laboratory study. METHODS In part 1 of this study, 13 fresh-frozen cadaveric knees (age range, 22-34 years; mean, 28.5 years) underwent popliteal artery India ink injection and tissue clearing using a Spalteholz technique, followed by microvascular vascular measurement. In part 2, mRNA was isolated from 13 meniscal allografts (age range, 17-43 years; mean, 27.2 years), and expression of angiogenic genes, vascular endothelial growth factor (VEGF), and vascular endothelial growth factor receptor 1 (FLT1) was quantified using real-time polymerase chain reaction. RESULTS The maximal depth of vascular penetration into the periphery of the medial and lateral menisci ranged from 0% to 42% and 0% to 48%, respectively. There was variation in the degree of vascular penetration within the medial meniscus, with the posterior horn having a significantly smaller depth of penetration (median, 8.7%) than that of the anterior horn (median, 17.4%; P < .0001) or midbody (median, 17.5%; P = .0003). There were no differences in angiogenesis gene expression (VEGF/FLT1) based on circumferential or radial meniscal locations. CONCLUSION The vascular supply of the medial and lateral menisci in specimens from adults <35 years of age extended farther than what was reported in specimens from older individuals; however, median values remained consistent. Gene expression of the angiogenic marker VEGF was low throughout all regions of uninjured menisci from young adults, which is consistent with reports in older specimens. CLINICAL RELEVANCE Improved understanding of meniscal vascular supply in young adults is critical to informing clinical treatment decisions.
Collapse
Affiliation(s)
| | | | - Zachary Aman
- Steadman Philippon Research Institute, Vail, Colorado, USA
| | | | | | - Chelsea Bahney
- Steadman Philippon Research Institute, Vail, Colorado, USA.,Orthopaedic Trauma Institute, University of California, San Francisco, California, USA
| | | |
Collapse
|
7
|
Li H, Yang Z, Fu L, Yuan Z, Gao C, Sui X, Liu S, Peng J, Dai Y, Guo Q. Advanced Polymer-Based Drug Delivery Strategies for Meniscal Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:266-293. [PMID: 32988289 DOI: 10.1089/ten.teb.2020.0156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The meniscus plays a critical role in maintaining knee joint homeostasis. Injuries to the meniscus, especially considering the limited self-healing capacity of the avascular region, continue to be a challenge and are often treated by (partial) meniscectomy, which has been identified to cause osteoarthritis. Currently, meniscus tissue engineering focuses on providing extracellular matrix (ECM)-mimicking scaffolds to direct the inherent meniscal regeneration process, and it has been found that various stimuli are essential. Numerous bioactive factors present benefits in regulating cell fate, tissue development, and healing, but lack an optimal delivery system. More recently, bioengineers have developed various polymer-based drug delivery systems (PDDSs), which are beneficial in terms of the favorable properties of polymers as well as novel delivery strategies. Engineered PDDSs aim to provide not only an ECM-mimicking microenvironment but also the controlled release of bioactive factors with release profiles tailored according to the biological concerns and properties of the factors. In this review, both different polymers and bioactive factors involved in meniscal regeneration are discussed, as well as potential candidate systems, with examples of recent progress. This article aims to summarize drug delivery strategies in meniscal regeneration, with a focus on novel delivery strategies rather than on specific delivery carriers. The current challenges and future prospects for the structural and functional regeneration of the meniscus are also discussed. Impact statement Meniscal injury remains a clinical Gordian knot owing to the limited healing potential of the region, restricted surgical approaches, and risk of inducing osteoarthritis. Existing tissue engineering scaffolds that provide mechanical support and a favorable microenvironment also lack biological cues. Advanced polymer-based delivery strategies consisting of polymers incorporating bioactive factors have emerged as a promising direction. This article primarily reviews the types and applications of biopolymers and bioactive factors in meniscal regeneration. Importantly, various carrier systems and drug delivery strategies are discussed with the hope of inspiring further advancements in this field.
Collapse
Affiliation(s)
- Hao Li
- School of Medicine, Nankai University, Tianjin, China.,Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA; Beijing, China
| | - Zhen Yang
- School of Medicine, Nankai University, Tianjin, China.,Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA; Beijing, China
| | - Liwei Fu
- School of Medicine, Nankai University, Tianjin, China.,Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA; Beijing, China
| | - Zhiguo Yuan
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA; Beijing, China.,Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Cangjian Gao
- School of Medicine, Nankai University, Tianjin, China.,Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA; Beijing, China
| | - Xiang Sui
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA; Beijing, China
| | - Shuyun Liu
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA; Beijing, China
| | - Jiang Peng
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA; Beijing, China
| | - Yongjing Dai
- Department of Orthopedic, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Quanyi Guo
- School of Medicine, Nankai University, Tianjin, China.,Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA; Beijing, China
| |
Collapse
|
8
|
Malanga GA, Chirichella PS, Hogaboom NS, Capella T. Clinical evaluation of micro-fragmented adipose tissue as a treatment option for patients with meniscus tears with osteoarthritis: a prospective pilot study. INTERNATIONAL ORTHOPAEDICS 2020; 45:473-480. [PMID: 33026537 PMCID: PMC7843556 DOI: 10.1007/s00264-020-04835-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022]
Abstract
Purpose The management of knee pain secondary to meniscal tears with osteoarthritis is limited by the poor inherent healing potential of the meniscus. Previous studies have reported on the benefit of autologous micro-fragmented fat as a therapeutic for various knee pathologies. The goal of this prospective pilot study was to determine the safety and potential treatment effect of micro-fragmented adipose tissue injection for patients with knee pain secondary to osteoarthritis and meniscal tears who have failed conservative management. Methods Twenty subjects with knee pain secondary to osteoarthritis with associated meniscal tear after failed conservative management were enrolled in the study. Numeric Pain Scale (NPS) and Knee Injury and Osteoarthritis Outcome Scale (KOOS) following ultrasound-guided intra-meniscal and intra-articular micro-fragmented adipose tissue injections were examined at three, six and 12 months. Results The mean NPS revealed a significant decrease in patient pain at the 1-year time point compared with baseline (5.45 to 2.21, p < .001). Similarly, overall, mean KOOS symptoms significantly improved from 57.7 to 78.2 (p < .001), with all 4 KOOS subscales demonstrating significant improvement at the final one year follow-up. One subject developed uncomplicated cellulitis at the harvest site which was treated with oral antibiotics. Other complications were minor and mostly limited to adipose harvest. Conclusion This study demonstrated that micro-fragmented adipose tissue injected directly into a torn meniscus and knee joint using ultrasound guidance represents a safe and potentially efficacious treatment option for patients with knee pain suffering from degenerative arthritis and degenerative meniscal tears. A larger, randomized, controlled trial is warranted to determine efficacy. Trial registration Clinicaltrials.org Identifier: NCT03714659
Collapse
Affiliation(s)
- Gerard A Malanga
- New Jersey Regenerative Institute LLC, 197 Ridgedale Ave Suite 210, Cedar Knolls, NJ, 07927, USA. .,Department of Physical Medicine and Rehabilitation, New Jersey Medical School, Rutgers University, Newark, NJ, USA.
| | - Paul S Chirichella
- Department of Physical Medicine and Rehabilitation, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Nathan S Hogaboom
- Kessler Foundation, West Orange, NJ, USA.,New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Teresa Capella
- New Jersey Regenerative Institute LLC, 197 Ridgedale Ave Suite 210, Cedar Knolls, NJ, 07927, USA
| |
Collapse
|
9
|
Treatment of Knee Meniscus Pathology: Rehabilitation, Surgery, and Orthobiologics. PM R 2019; 11:292-308. [DOI: 10.1016/j.pmrj.2018.08.384] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 08/11/2018] [Indexed: 01/13/2023]
|
10
|
Huang P, Gu J, Wu J, Geng L, Hong Y, Wang S, Wang M. Microarray analysis of the molecular mechanisms associated with age and body mass index in human meniscal injury. Mol Med Rep 2018; 19:93-102. [PMID: 30483788 PMCID: PMC6297773 DOI: 10.3892/mmr.2018.9685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 10/04/2018] [Indexed: 12/16/2022] Open
Abstract
The aim of the present study was to identify genes and functional pathways associated with meniscal injuries affected by age or body mass index (BMI) using microarray analysis. The GSE45233 gene expression dataset with 12 injured meniscus samples associated with age and BMI and GSE66635 dataset with 12 injured and 12 normal meniscus samples were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were identified based on age or BMI in GSE45233. DEGs between injured and normal meniscus samples in GSE66635 were also identified. Common DEGs between GSE45233 and GSE66635 were identified as feature genes associated with age or BMI, followed by protein-protein interaction (PPI) network and functional pathway enrichment analyses for the feature genes. Finally, the GSE51588 genome-wide expression profile was then downloaded from the GEO database to validate the results. A total of 1,328 DEGs were identified. Of these, 28 age-associated and 20 BMI-associated meniscal injury genes were obtained. B-cell lymphoma-2 (Bcl-2) and matrix metalloproteinase-14 were identified as hub genes in the PPI networks. Functional pathway enrichment analysis revealed that vascular endothelial growth factor A (VEGFA), transferrin (TF) and Bcl-2 were involved in the hypoxia-inducible factor 1 signaling pathway. TF was involved in the mineral absorption function pathway associated with BMI. Additionally, TF and VEGFA were identified to be overlapping candidate genes of GSE45233 and GSE66635, and DEGs in GSE51588. Therefore, VEGFA, TF, and Bcl-2 may be important genes for human meniscal injuries. Additional evaluations of these results are required.
Collapse
Affiliation(s)
- Peiyan Huang
- Department of Orthopedic Surgery, Shanghai Fifth People's Hospital Affiliated to Fudan University, Shanghai 200240, P.R. China
| | - Jun Gu
- Department of Orthopedic Surgery, Shanghai Fifth People's Hospital Affiliated to Fudan University, Shanghai 200240, P.R. China
| | - Junguo Wu
- Department of Orthopedic Surgery, Shanghai Fifth People's Hospital Affiliated to Fudan University, Shanghai 200240, P.R. China
| | - Lei Geng
- Department of Orthopedic Surgery, Shanghai Fifth People's Hospital Affiliated to Fudan University, Shanghai 200240, P.R. China
| | - Yang Hong
- Department of Orthopedic Surgery, Shanghai Fifth People's Hospital Affiliated to Fudan University, Shanghai 200240, P.R. China
| | - Siqun Wang
- Department of Orthopedic Surgery, Shanghai Fifth People's Hospital Affiliated to Fudan University, Shanghai 200240, P.R. China
| | - Minghai Wang
- Department of Orthopedic Surgery, Shanghai Fifth People's Hospital Affiliated to Fudan University, Shanghai 200240, P.R. China
| |
Collapse
|
11
|
Liang Y, Idrees E, Szojka ARA, Andrews SHJ, Kunze M, Mulet-Sierra A, Jomha NM, Adesida AB. Chondrogenic differentiation of synovial fluid mesenchymal stem cells on human meniscus-derived decellularized matrix requires exogenous growth factors. Acta Biomater 2018; 80:131-143. [PMID: 30267878 DOI: 10.1016/j.actbio.2018.09.038] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 09/17/2018] [Accepted: 09/25/2018] [Indexed: 02/07/2023]
Abstract
The objective of this study was to investigate whether meniscus-derived decellularized matrix (DCM) has the capacity to induce differentiation of synovial fluid-derived mesenchymal stem cells (SF-MSCs) towards a meniscus fibrochondrocyte (MFC) phenotype. The potential roles of transforming growth factor beta-3 (TGF-β3) and insulin-like growth factor 1 (IGF-1) in the differentiation of SF-MSCs towards an MFC phenotype were also investigated. SF-MSCs were isolated via plastic adherence cell culture from the synovial fluid of five donors (5 male, average age 34 years). Porous DCM was generated by homogenizing and freeze-drying fresh normal human cadaveric meniscus tissue. SF-MSCs were seeded and cultured on the DCM scaffold in a defined serum-free media (SFM) supplemented with or without the combination of TGF-β3 and IGF-1. Cell pellets of SF-MSCs were cultured in SFM with either TGF-β3 or IGF-1 or their combination as controls. The duration of culture was 3 weeks for both experimental configurations. We assessed newly-formed tissues by biochemical assays, scanning electron microscopy (SEM), immunofluorescence and quantitative real-time PCR (qPCR). The combination of TGF-β3 and IGF-1 induced production of the cartilaginous matrix in DCM and upregulated the expression of aggrecan, collagens I and II. Moreover, the SF-MSCs exhibited a round morphology in the DCM scaffolds in the presence of the growth factors. In pellets, combined TGF-β3 and IGF-1 synergistically enhanced cartilaginous matrix production. In contrast to bone marrow mesenchymal stem cells (BM-MSCs), the differentiated SF-MSCs showed little evidence of the expression of the hypertrophic differentiation marker, collagen X. In conclusion, meniscus-derived DCM appears to require exogenous growth factor supplementation to direct differentiation of SF-MSCs. STATEMENT OF SIGNIFICANCE: Meniscus tears are the most common injury of the knee joint. These tears pose a major risk factor for the early development of knee osteoarthritis. Unfortunately, the majority of these tears occur in the inner region of the meniscus and lacks blood supply with no reparative or regenerative capacity. The goal of this study was to determine if the native extracellular matrix (ECM) of human meniscus has the capacity to differentiate human knee synovial fluid resident mesenchymal stem cells (SF-MSCs) towards a meniscus phenotype as a potential strategy to repair avascular meniscal tears. Our findings show that the human meniscus-derived ECM without supplementation with growth factors (TGF-β3 and IGF-1) cannot differentiate SF-MSCs towards a meniscus phenotype. The use of meniscus-derived scaffolds as a material to stimulate endogenous repair of meniscus tears via differentiation of SF-MSCs may require supplementation with TGF-β3 and IGF-1.
Collapse
Affiliation(s)
- Yan Liang
- University of Alberta, Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Edmonton, Alberta T6G 2E1, Canada; Division of Burn and Reconstructive Surgery, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Enaam Idrees
- University of Alberta, Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Edmonton, Alberta T6G 2E1, Canada
| | - Alexander R A Szojka
- University of Alberta, Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Edmonton, Alberta T6G 2E1, Canada
| | - Stephen H J Andrews
- University of Alberta, Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Edmonton, Alberta T6G 2E1, Canada
| | - Melanie Kunze
- University of Alberta, Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Edmonton, Alberta T6G 2E1, Canada
| | - Aillette Mulet-Sierra
- University of Alberta, Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Edmonton, Alberta T6G 2E1, Canada
| | - Nadr M Jomha
- University of Alberta, Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Edmonton, Alberta T6G 2E1, Canada
| | - Adetola B Adesida
- University of Alberta, Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Edmonton, Alberta T6G 2E1, Canada.
| |
Collapse
|
12
|
Lee KI, Olmer M, Baek J, D'Lima DD, Lotz MK. Platelet-derived growth factor-coated decellularized meniscus scaffold for integrative healing of meniscus tears. Acta Biomater 2018; 76:126-134. [PMID: 29908335 DOI: 10.1016/j.actbio.2018.06.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 11/30/2022]
Abstract
The aim of this study was to examine the potential of platelet-derived growth factor (PDGF)-coated decellularized meniscus scaffold in mediating integrative healing of meniscus tears by inducing endogenous cell migration. Fresh bovine meniscus was chemically decellularized and covalently conjugated with heparin and PDGF-BB. In vitro PDGF release kinetics was measured. The scaffold was transplanted into experimental tears in avascular bovine meniscus explants and cultured for 2 and 4 weeks. The number migrating and proliferating cells at the borderline between the scaffold and injured explant and PDGF receptor-β (PDGFRβ) expressing cells were counted. The alignment of the newly produced ECM and collagen was analyzed by Safranin-O, picrosirius red staining, and differential interference contrast (DIC). Tensile testing of the explants was performed after culture for 2 and 4 weeks. Heparin conjugated scaffold showed immobilization of high levels of PDGF-BB, with sustained release over 2 weeks. Insertion of the PDGF-BB treated scaffold in defects in avascular meniscus led to increased PDGFRβ expression, cell migration and proliferation into the defect zone. Safranin-O, picrosirius red staining and DIC showed tissue integration between the scaffold and injured explants. Tensile properties of injured explants treated with PDGF-BB coated scaffold were significantly higher than in the scaffold without PDGF. In conclusion, PDGF-BB-coated scaffold increased PDGFRβ expression and promoted migration of endogenous meniscus cells to the defect area. New matrix was formed that bridged the space between the native meniscus and the scaffold and this was associated with improved biomechanical properties. The PDGF-BB-coated scaffold will be promising for clinical translation to healing of meniscus tears. STATEMENT OF SIGNIFICANCE Meniscus tears are the most common injury of the knee joint. The most prevalent forms that occur in the inner third typically do not spontaneously heal and represent a major risk factor for the development of knee osteoarthritis. The goal of this project was to develop an approach that is readily applicable for clinical use. We selected a natural and readily available decellularized meniscus scaffold and conjugated it with PDGF, which we had previously found to have strong chemotactic activity for chondrocytes and progenitor cells. The present results show that insertion of the PDGF-conjugated scaffold in defects in avascular meniscus led to endogenous cell migration and proliferation into the defect zone with tissue integration between the scaffold and injured explants and improved tensile properties. This PDGF-conjugated scaffold will be promising for a translational approach to healing of meniscus tears.
Collapse
Affiliation(s)
- Kwang Il Lee
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Merissa Olmer
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jihye Baek
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; Shiley Center for Orthopaedic Research and Education at Scripps Clinic, La Jolla, CA 92037, USA
| | - Darryl D D'Lima
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; Shiley Center for Orthopaedic Research and Education at Scripps Clinic, La Jolla, CA 92037, USA
| | - Martin K Lotz
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
13
|
Xie J, Zhang D, Lin Y, Yuan Q, Zhou X. Anterior Cruciate Ligament Transection-Induced Cellular and Extracellular Events in Menisci: Implications for Osteoarthritis. Am J Sports Med 2018. [PMID: 29513553 DOI: 10.1177/0363546518756087] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND The meniscus plays an important role in knee joint diseases such as osteoarthritis (OA). Meniscal injuries can be accompanied by joint catabolic events initiated by inflammation, leading to articular cartilage destruction, but the cellular events responsible for intrinsic meniscal injury and the extracellular matrix changes necessary for meniscal degradation are not well known. PURPOSE To explore the cellular and matrix-related changes of menisci based on a mouse OA model of anterior cruciate ligament transection (ACLT). STUDY DESIGN Controlled laboratory study. METHODS A mouse ACLT OA model was established by transection of anterior cruciate ligaments on the right knee joints of 8-week-old male (n = 34) and female (n = 34) C57 mice. The knee joints were collected at 1, 2, 4, and 8 weeks after ACLT surgery, and the meniscal changes were analyzed by radiography, histology, immunohistochemistry, immunoblot, and quantitative real-time polymerase chain reaction. RESULTS The deterioration of menisci was more extensive than that of articular cartilage and subchondral bone at 4 weeks after ACLT surgery. The rapid loss of collagen II and Sox9 in chondrocyte-like cells in the white-white zone of menisci was confirmed, and the activation of potential meniscus progenitor cells and chondroblasts was identified based on the increase of CD90, CD105, and Runx2. Further, the intrinsic inflammation in the bone marrow-like zone of menisci was activated by enhancement of dendritic cells (CD11c+), T cells (CD3+), and macrophages (F4/80+) with the increase of the inflammatory factors interleukin 1β and tumor necrosis factor α. Finally, the extracellular matrix events involving changes in chemokines, increases of matrix proteases (matrix metalloproteinases and ADAMTS5), and decreases of lysyl oxidase family were elucidated. CONCLUSION ACLT-induced meniscal changes not only could explain the contribution of the meniscus to the progress of OA but also could provide a cue for initiation of preventive treatments in the early stages of OA. CLINICAL RELEVANCE This study provides support for better protection of menisci in ACL injury-induced conditions such as OA and indicates that menisci should be considered in the development of clinical pharmacological interventions.
Collapse
Affiliation(s)
- Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Williams LB, Adesida AB. Angiogenic approaches to meniscal healing. Injury 2018; 49:467-472. [PMID: 29395218 DOI: 10.1016/j.injury.2018.01.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/09/2018] [Accepted: 01/17/2018] [Indexed: 02/02/2023]
Abstract
Meniscal injuries commonly result in osteoarthritis causing long term morbidity, lifelong treatment, joint replacement and significant financial burden to the Canadian healthcare system. Injuries to the outer third of the meniscus often heal well due to adequate blood supply. Healing of injuries in the inner two thirds of the meniscus are often critically retarded due to a lack of blood flow necessitating partial meniscectomy in many instances. Localized angiogenesis in the inner meniscus has yet to be achieved despite a belief that vascularization of these lesions corresponds with meniscal healing. This review briefly summarizes the growth factors that have been assessed for a role in meniscal healing and points to a significant knowledge gap in our understanding of meniscal healing.
Collapse
Affiliation(s)
- Lynn B Williams
- Laboratory of Stem Cell Biology and Orthopaedic Tissue Engineering, Divisions of Orthopaedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Adetola B Adesida
- Laboratory of Stem Cell Biology and Orthopaedic Tissue Engineering, Divisions of Orthopaedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
15
|
Lee HR, Shon OJ, Park SI, Kim HJ, Kim S, Ahn MW, Do SH. Platelet-Rich Plasma Increases the Levels of Catabolic Molecules and Cellular Dedifferentiation in the Meniscus of a Rabbit Model. Int J Mol Sci 2016; 17:ijms17010120. [PMID: 26784189 PMCID: PMC4730361 DOI: 10.3390/ijms17010120] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/24/2015] [Accepted: 01/11/2016] [Indexed: 01/10/2023] Open
Abstract
Despite the susceptibility to frequent intrinsic and extrinsic injuries, especially in the inner zone, the meniscus does not heal spontaneously owing to its poor vascularity. In this study, the effect of platelet-rich plasma (PRP), containing various growth factors, on meniscal mechanisms was examined under normal and post-traumatic inflammatory conditions. Isolated primary meniscal cells of New Zealand white (NZW) rabbits were incubated for 3, 10, 14 and 21 days with PRP(−), 10% PRP (PRP(+)), IL(+) or IL(+)PRP(+). The meniscal cells were collected and examined using reverse-transcription polymerase chain reaction (RT-PCR). Culture media were examined by immunoblot analyses for matrix metalloproteinases (MMP) catabolic molecules. PRP containing growth factors improved the cellular viability of meniscal cells in a concentration-dependent manner at Days 1, 4 and 7. However, based on RT-PCR, meniscal cells demonstrated dedifferentiation, along with an increase in type I collagen in the PRP(+) and in IL(+)PRP(+). In PRP(+), the aggrecan expression levels were lower than in the PRP(−) until Day 21. The protein levels of MMP-1 and MMP-3 were higher in each PRP group, i.e., PRP(+) and IL(+)PRP(+), at each culture time. A reproducible 2-mm circular defect on the meniscus of NZW rabbit was used to implant fibrin glue (control) or PRP in vivo. After eight weeks, the lesions in the control and PRP groups were occupied with fibrous tissue, but not with meniscal cells. This study shows that PRP treatment of the meniscus results in an increase of catabolic molecules, especially those related to IL-1α-induced inflammation, and that PRP treatment for an in vivo meniscus injury accelerates fibrosis, instead of meniscal cartilage.
Collapse
Affiliation(s)
- Hye-Rim Lee
- Department of Veterinary Clinical Pathology, College of Veterinary Medicine, Konkuk University, Seoul 143-701, Korea.
| | - Oog-Jin Shon
- Department of Orthopedic Surgery, College of Medicine, Yeungnam University, Daegu 705-717, Korea.
| | - Se-Il Park
- Cardiovascular Product Evaluation Center, College of Medicine, Yonsei University, Seoul 120-752, Korea.
| | - Han-Jun Kim
- Department of Veterinary Clinical Pathology, College of Veterinary Medicine, Konkuk University, Seoul 143-701, Korea.
| | - Sukyoung Kim
- School of Materials Science and Engineering, Yeungnam University, Gyeongsan 712-749, Korea.
| | - Myun-Whan Ahn
- Department of Orthopedic Surgery, College of Medicine, Yeungnam University, Daegu 705-717, Korea.
| | - Sun Hee Do
- Department of Veterinary Clinical Pathology, College of Veterinary Medicine, Konkuk University, Seoul 143-701, Korea.
| |
Collapse
|