1
|
Lana JF, de Brito GC, Kruel A, Brito B, Santos GS, Caliari C, Salamanna F, Sartori M, Barbanti Brodano G, Costa FR, Jeyaraman M, Dallo I, Bernaldez P, Purita J, de Andrade MAP, Everts PA. Evolution and Innovations in Bone Marrow Cellular Therapy for Musculoskeletal Disorders: Tracing the Historical Trajectory and Contemporary Advances. Bioengineering (Basel) 2024; 11:979. [PMID: 39451354 PMCID: PMC11504458 DOI: 10.3390/bioengineering11100979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Bone marrow cellular therapy has undergone a remarkable evolution, significantly impacting the treatment of musculoskeletal disorders. This review traces the historical trajectory from early mythological references to contemporary scientific advancements. The groundbreaking work of Friedenstein in 1968, identifying fibroblast colony-forming cells in bone marrow, laid the foundation for future studies. Caplan's subsequent identification of mesenchymal stem cells (MSCs) in 1991 highlighted their differentiation potential and immunomodulatory properties, establishing them as key players in regenerative medicine. Contemporary research has focused on refining techniques for isolating and applying bone marrow-derived MSCs. These cells have shown promise in treating conditions like osteonecrosis, osteoarthritis, and tendon injuries thanks to their ability to promote tissue repair, modulate immune responses, and enhance angiogenesis. Clinical studies have demonstrated significant improvements in pain relief, functional recovery, and tissue regeneration. Innovations such as the ACH classification system and advancements in bone marrow aspiration methods have standardized practices, improving the consistency and efficacy of these therapies. Recent clinical trials have validated the therapeutic potential of bone marrow-derived products, highlighting their advantages in both surgical and non-surgical applications. Studies have shown that MSCs can reduce inflammation, support bone healing, and enhance cartilage repair. However, challenges remain, including the need for rigorous characterization of cell populations and standardized reporting in clinical trials. Addressing these issues is crucial for advancing the field and ensuring the reliable application of these therapies. Looking ahead, future research should focus on integrating bone marrow-derived products with other regenerative techniques and exploring non-surgical interventions. The continued innovation and refinement of these therapies hold promise for revolutionizing the treatment of musculoskeletal disorders, offering improved patient outcomes, and advancing the boundaries of medical science.
Collapse
Affiliation(s)
- José Fábio Lana
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (J.F.L.); (G.C.d.B.); (A.K.); (B.B.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (I.D.); (J.P.); (P.A.E.)
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, SP, Brazil
- Clinical Research, Anna Vitória Lana Institute (IAVL), Indaiatuba 13334-170, SP, Brazil
- Medical School, Jaguariúna University Center (UniFAJ), Jaguariúna 13820-000, SP, Brazil
| | - Gabriela Caponero de Brito
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (J.F.L.); (G.C.d.B.); (A.K.); (B.B.)
| | - André Kruel
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (J.F.L.); (G.C.d.B.); (A.K.); (B.B.)
| | - Benjamim Brito
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (J.F.L.); (G.C.d.B.); (A.K.); (B.B.)
| | - Gabriel Silva Santos
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (J.F.L.); (G.C.d.B.); (A.K.); (B.B.)
| | - Carolina Caliari
- Cell Therapy, In Situ Terapia Celular, Ribeirão Preto 14056-680, SP, Brazil;
| | - Francesca Salamanna
- Surgical Sciences and Technologies, IRCCS Instituto Ortopedizo Rizzoli, 40136 Bologna, Italy; (F.S.); (M.S.)
| | - Maria Sartori
- Surgical Sciences and Technologies, IRCCS Instituto Ortopedizo Rizzoli, 40136 Bologna, Italy; (F.S.); (M.S.)
| | | | - Fábio Ramos Costa
- Department of Orthopaedics, FC Sports Traumatology, Salvador 40296-210, BA, Brazil;
| | - Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr. MGR Educational and Research Institute, Chennai 600077, Tamil Nadu, India;
- Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India
- Clinical Research Scientist, Virginia Tech India, Chennai 600095, Tamil Nadu, India
| | - Ignácio Dallo
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (I.D.); (J.P.); (P.A.E.)
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, SP, Brazil
- Orthopedics, SportMe Medical Center, 41013 Seville, Spain;
| | | | - Joseph Purita
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (I.D.); (J.P.); (P.A.E.)
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, SP, Brazil
| | | | - Peter Albert Everts
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (I.D.); (J.P.); (P.A.E.)
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, SP, Brazil
- Gulf Coast Biologics, Fort Myers, FL 33916, USA
| |
Collapse
|
2
|
Lee JS, Gillinov SM, Siddiq BS, Dowley KS, Martin SD. Surgical Applications for Bone Marrow Aspirate Concentrate. Arthroscopy 2024; 40:2350-2352. [PMID: 39428140 DOI: 10.1016/j.arthro.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 05/03/2024] [Indexed: 10/22/2024]
Abstract
Bone marrow aspirate concentrate (BMAC) is an autologous orthobiologic agent that may be of benefit in specific surgical scenarios. Composed of elements isolated from bone marrow, including mesenchymal stromal cells, bone marrow-derived platelets, red and white blood cells, and hematopoietic precursors, BMAC has gained appeal for its potential to slow the progression of chondral degeneration, improve function, and provide symptomatic relief. BMAC is typically prepared during the final stages of a surgical procedure, beginning with bone marrow aspirate harvested from the iliac crest, distal femur, body of the ilium, or proximal humerus and then centrifuged to yield concentrated marrow cells. In a published technique for BMAC use in arthroscopic acetabular labral repair, 120 mL of BMA is harvested from the body of the ilium and then centrifuged to yield approximately 4 to 6 mL of BMAC. The biologic activity of BMAC is 2-fold: (1) mesenchymal stromal cells are pluripotent stem cells that stimulate a robust tissue response for cartilage repair through their potential to differentiate into chondrocytes that induce chondrogenesis, and (2) bone marrow-derived platelets produce growth factors, cytokines, and chemokines that promote collagen synthesis, wound healing, and suppression of proinflammatory cytokines. To date, BMAC has shown promise as an efficacious adjuvant therapy. When comparing patient outcomes, studies have found that patients receiving BMAC achieved lower rates of revision rotator cuff repair, higher functional outcome scores following arthroscopic acetabular labral repair, and significant reductions in pain levels in the context of knee cartilage defects. These findings, however, must be interpreted with caution, as there remains a paucity of randomized controlled trials investigating the mid- and long-term efficacy of BMAC. Overall, as treatments for patients with both progressive chondral degeneration and acute orthopaedic injuries continue to evolve, BMAC serves as promising orthobiologic therapy to improve outcomes.
Collapse
Affiliation(s)
- Jonathan S Lee
- Sports Medicine, Department of Orthopedic Surgery, Massachusetts General Hospital, Boston, Massachusetts, U.S.A..
| | - Stephen M Gillinov
- Sports Medicine, Department of Orthopedic Surgery, Massachusetts General Hospital, Boston, Massachusetts, U.S.A
| | - Bilal S Siddiq
- Sports Medicine, Department of Orthopedic Surgery, Massachusetts General Hospital, Boston, Massachusetts, U.S.A
| | - Kieran S Dowley
- Sports Medicine, Department of Orthopedic Surgery, Massachusetts General Hospital, Boston, Massachusetts, U.S.A
| | - Scott D Martin
- Sports Medicine, Department of Orthopedic Surgery, Massachusetts General Hospital, Boston, Massachusetts, U.S.A
| |
Collapse
|
3
|
Goldberg AJ, Masci L, O'Donnell P, Green R, Brooking D, Bassett P, Lowdell MW, Smith RKW. Autologous bone marrow derived mesenchymal stem cells are safe for the treatment of Achilles tendinopathy. Sci Rep 2024; 14:11421. [PMID: 38763976 PMCID: PMC11102920 DOI: 10.1038/s41598-024-61399-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/06/2024] [Indexed: 05/21/2024] Open
Abstract
Achilles tendinopathy is a disabling condition that affects more than 50% of runners. Pre-clinical studies in a large animal model of naturally-occurring tendinopathy similar to human Achilles tendinopathy has shown benefits of autologous bone marrow-derived mesenchymal stem cell (MSC) implantation. However, MSCs are advanced therapies medicinal products (ATMPs), with strict regulatory requirements. Guided by the regulator we carried out a first in man study to assess the safety and efficacy of autologous MSC injection in human patients with non-insertional Achilles tendinopathy. Ten patients, mean age 47 with mid-portion Achilles tendon pain and swelling for more than 6 months, underwent autologous cultured cell injections (median 12.2 × 106, range 5-19 × 106 cells) into their Achilles tendon. At 24 weeks follow-up, no serious adverse reactions or important medical events were observed. MOXFQ, EQ-5D-5L, and VISA-A scores improved clinically at 12 and 24 weeks. VAS pain improved increasingly at 6, 12 and 24 weeks. MOXFQ Pain and VISA-A Scores improved > 12 points from baseline to 24 weeks in 8 patients. Maximum anteroposterior tendon thickness as measured by greyscale US decreased by mean 0.8 mm at 24 weeks. This phase IIa study demonstrated the safety of autologous MSC injection for non-insertional Achilles tendinopathy and provides proof-of-concept of the technique in patients, all of whom had previously failed conservative treatments for chronic disease and leads the way for a larger randomised controlled trial.
Collapse
Affiliation(s)
- Andrew J Goldberg
- Division of Surgery, UCL Institute of Orthopaedics & Musculoskeletal Science, Royal Free Hospital, 9th Floor (East), 2QG, 10 Pond St, London, NW3 2PS, UK.
- Department of Research and Innovation, Royal National Orthopaedic Hospital (RNOH), Brockley Hill, Stanmore, Middlesex, UK.
- MSK Lab, Faculty of Medicine, Department of Surgery & Cancer, Imperial College London, Level 2, Faculty Building, South Kensington Campus, London, SW7 2AZ, UK.
- The London Ankle & Arthritis Centre, The Wellington Hospital, Wellington Place, London, NW8 9LE, UK.
| | - Lorenzo Masci
- Institute of Sport Exercise and Health, Tottenham Court Road, London, UK
| | - Paul O'Donnell
- Division of Surgery, UCL Institute of Orthopaedics & Musculoskeletal Science, Royal Free Hospital, 9th Floor (East), 2QG, 10 Pond St, London, NW3 2PS, UK
- Department of Radiology, Royal National Orthopaedic Hospital NHS Trust, Brockley Hill, Stanmore, HA7 4LP, UK
| | - Ruth Green
- Department of Radiology, Royal National Orthopaedic Hospital NHS Trust, Brockley Hill, Stanmore, HA7 4LP, UK
| | - Deirdre Brooking
- Department of Research and Innovation, Royal National Orthopaedic Hospital (RNOH), Brockley Hill, Stanmore, Middlesex, UK
| | - Paul Bassett
- Statsconsultancy Ltd., 40 Longwood Lane, Amersham, Bucks, HP7 9EN, UK
| | - Mark W Lowdell
- Centre for Cell, Gene & Tissue Therapeutics, Royal Free Hospital, Pond Street, London, NW3 2QG, UK
| | - Roger K W Smith
- Department of Veterinary Clinical Sciences and Services, The Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire, AL9 7TA, UK
| |
Collapse
|
4
|
Lubowitz JH, Matzkin E, Rossi MJ. The Second Annual Musculoskeletal Biologics Special Issue Highlights Evidence-Based Therapies. Arthroscopy 2024; 40:1379-1383. [PMID: 38354761 DOI: 10.1016/j.arthro.2024.01.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/16/2024]
Abstract
Orthopaedic biologics continues to hold great promise. The editors of Arthroscopy; Arthroscopy Techniques; and Arthroscopy, Sports Medicine, and Rehabilitation once again Call for Papers and invite authors to submit clinical musculoskeletal biologics original scientific research and technical notes with video. Our top articles are awarded inclusion in the Annual Musculoskeletal Biologics Special Issue.
Collapse
|
5
|
Weissman AC, Yazdi AA, Cole BJ. Orthopaedic Musculoskeletal Biologics Research Impacts Patient Care: The Second Annual Arthroscopy Orthobiologics Virtual Special Issue. Arthroscopy 2024; 40:1384-1385. [PMID: 38342285 DOI: 10.1016/j.arthro.2024.01.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/13/2024]
Abstract
The field of orthobiologics is rapidly evolving, offering clinicians a shift in treatment from symptom relief to the potential for disease modification and tissue repair. These agents, derived from autologous tissues, components of blood, and growth factors, are used as surgical adjuncts or as standalone treatments. Their clinical applications are expanding to encompass a variety of conditions, supported by a growing base of research efforts. Arthroscopy and its companion publications are committed to evidence-based research with a robust history of publications that enhance clinical decision-making and impact patient care. This curated collection of articles highlights the year's most compelling advancements in orthopaedic musculoskeletal biologics research.
Collapse
|
6
|
Klein C, Dahmen J, Emanuel KS, Stufkens S, Kerkhoffs GMMJ. Limited evidence in support of bone marrow aspirate concentrate as an additive to the bone marrow stimulation for osteochondral lesions of the talus: a systematic review and meta-analysis. Knee Surg Sports Traumatol Arthrosc 2023; 31:6088-6103. [PMID: 37962614 DOI: 10.1007/s00167-023-07651-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023]
Abstract
PURPOSE Bone marrow aspirate concentrate can be used as an additive to surgical treatment of osteochondral lesions of the talus. This systematic literature review aims to study the effect of the additional use of bone marrow aspirate concentrate on top of a surgical treatment for osteochondral lesions of the talus on clinical outcomes compared to surgical treatment alone. METHODS An online literature search was conducted using PubMed (Medline), Embase (Ovid), and the Cochrane library for all studies comparing a surgical intervention with bone marrow aspirate concentrate, with a surgical intervention without bone marrow aspirate concentrate. The methodological quality was rated according to the methodological index for non-randomised studies checklist. The primary outcome measure were clinical outcomes. Secondary outcome measures consisted of revision rate, complication rate, radiographic outcome measures and histological analyses. Subgroups were created based on type of surgical intervention used in the studies. If multiple articles were included in a subgroup, a linear random-effects model was used to compare the bone marrow aspirate concentrate-augmented group with the control group. RESULTS Out of 1006 studies found, eight studies with a total of 718 patients were included. The methodological quality, assessed according to the methodological index for non-randomised studies checklist, was weak. A significantly better functional outcome measures (p < 0.05) was found in the subgroup treated with bone marrow stimulation + bone marrow aspirate concentrate compared to the group treated with bone marrow stimulation alone, based on three non-blinded studies. No significant differences regarding clinical outcomes were found in the subgroups comparing matrix-induced autologous chondrocyte implantation with matrix-induced bone marrow aspirate concentrate, osteochondral autologous transplantation alone with osteochondral autologous transplantation + bone marrow aspirate concentrate and autologous matrix-induced chondrogenesis plus peripheral blood concentrate vs. matrix-associated stem cell transplantation bone marrow aspirate concentrate. CONCLUSION There is insufficient evidence to support a positive effect on clinical outcomes of bone marrow aspirate concentrate as an additive to surgical treatment of osteochondral lesions of the talus. However, based on the safety reports and initial results, sufficiently powered, patient- and researcher-blinded, prospective randomised controlled trials are justified and recommended. Until then, we advise not to implement a therapy (addition of bone marrow aspirate concentrate) without clinical evidence that justifies the additional costs involved. LEVEL OF EVIDENCE Level III.
Collapse
Affiliation(s)
- Chiel Klein
- Department of Orthopedic Surgery and Sports Medicine, Amsterdam Movement Sciences, Amsterdam UMC, Location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Academic Center for Evidence Based Sports Medicine (ACES), Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Collaboration for Health and Safety in Sports (ACHSS), International Olympic Committee (IOC) Research Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Jari Dahmen
- Department of Orthopedic Surgery and Sports Medicine, Amsterdam Movement Sciences, Amsterdam UMC, Location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Academic Center for Evidence Based Sports Medicine (ACES), Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Collaboration for Health and Safety in Sports (ACHSS), International Olympic Committee (IOC) Research Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Kaj S Emanuel
- Department of Orthopedic Surgery and Sports Medicine, Amsterdam Movement Sciences, Amsterdam UMC, Location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Academic Center for Evidence Based Sports Medicine (ACES), Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Collaboration for Health and Safety in Sports (ACHSS), International Olympic Committee (IOC) Research Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Sjoerd Stufkens
- Department of Orthopedic Surgery and Sports Medicine, Amsterdam Movement Sciences, Amsterdam UMC, Location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Academic Center for Evidence Based Sports Medicine (ACES), Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Collaboration for Health and Safety in Sports (ACHSS), International Olympic Committee (IOC) Research Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Gino M M J Kerkhoffs
- Department of Orthopedic Surgery and Sports Medicine, Amsterdam Movement Sciences, Amsterdam UMC, Location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- Academic Center for Evidence Based Sports Medicine (ACES), Amsterdam UMC, Amsterdam, The Netherlands.
- Amsterdam Collaboration for Health and Safety in Sports (ACHSS), International Olympic Committee (IOC) Research Center, Amsterdam UMC, Amsterdam, The Netherlands.
| |
Collapse
|