1
|
Fu X, Duan H, Zang X, Liu C, Li X, Zhang Q, Zhang Z, Zou Q, Cui F. Hyb_SEnc: An Antituberculosis Peptide Predictor Based on a Hybrid Feature Vector and Stacked Ensemble Learning. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:1897-1910. [PMID: 39083393 DOI: 10.1109/tcbb.2024.3425644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Tuberculosis has plagued mankind since ancient times, and the struggle between humans and tuberculosis continues. Mycobacterium tuberculosis is the leading cause of tuberculosis, infecting nearly one-third of the world's population. The rise of peptide drugs has created a new direction in the treatment of tuberculosis. Therefore, for the treatment of tuberculosis, the prediction of anti-tuberculosis peptides is crucial. This paper proposes an anti-tuberculosis peptide prediction method based on hybrid features and stacked ensemble learning. First, a random forest (RF) and extremely randomized tree (ERT) are selected as first-level learning of stacked ensembles. Then, the five best-performing feature encoding methods are selected to obtain the hybrid feature vector, and then the decision tree and recursive feature elimination (DT-RFE) are used to refine the hybrid feature vector. After selection, the optimal feature subset is used as the input of the stacked ensemble model. At the same time, logistic regression (LR) is used as a stacked ensemble secondary learner to build the final stacked ensemble model Hyb_SEnc. The prediction accuracy of Hyb_SEnc achieved 94.68% and 95.74% on the independent test sets of AntiTb_MD and AntiTb_RD, respectively.
Collapse
|
2
|
Sui J, Chen J, Chen Y, Iwamori N, Sun J. GASIDN: identification of sub-Golgi proteins with multi-scale feature fusion. BMC Genomics 2024; 25:1019. [PMID: 39478465 PMCID: PMC11526662 DOI: 10.1186/s12864-024-10954-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024] Open
Abstract
The Golgi apparatus is a crucial component of the inner membrane system in eukaryotic cells, playing a central role in protein biosynthesis. Dysfunction of the Golgi apparatus has been linked to neurodegenerative diseases. Accurate identification of sub-Golgi protein types is therefore essential for developing effective treatments for such diseases. Due to the expensive and time-consuming nature of experimental methods for identifying sub-Golgi protein types, various computational methods have been developed as identification tools. However, the majority of these methods rely solely on neighboring features in the protein sequence and neglect the crucial spatial structure information of the protein.To discover alternative methods for accurately identifying sub-Golgi proteins, we have developed a model called GASIDN. The GASIDN model extracts multi-dimension features by utilizing a 1D convolution module on protein sequences and a graph learning module on contact maps constructed from AlphaFold2.The model utilizes the deep representation learning model SeqVec to initialize protein sequences. GASIDN achieved accuracy values of 98.4% and 96.4% in independent testing and ten-fold cross-validation, respectively, outperforming the majority of previous predictors. To the best of our knowledge, this is the first method that utilizes multi-scale feature fusion to identify and locate sub-Golgi proteins. In order to assess the generalizability and scalability of our model, we conducted experiments to apply it in the identification of proteins from other organelles, including plant vacuoles and peroxisomes. The results obtained from these experiments demonstrated promising outcomes, indicating the effectiveness and versatility of our model. The source code and datasets can be accessed at https://github.com/SJNNNN/GASIDN .
Collapse
Affiliation(s)
- Jianan Sui
- School of Information Science and Engineering, University of Jinan, Jinan, China
| | - Jiazi Chen
- Laboratory of Zoology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka-shi, Fukuoka, Japan
| | - Yuehui Chen
- School of Artificial Intelligence Institute and Information Science and Engineering, University of Jinan, Jinan, China.
| | - Naoki Iwamori
- Laboratory of Zoology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka-shi, Fukuoka, Japan
| | - Jin Sun
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| |
Collapse
|
3
|
Akbar S, Ahmad A, Hayat M, Rehman AU, Khan S, Ali F. iAtbP-Hyb-EnC: Prediction of antitubercular peptides via heterogeneous feature representation and genetic algorithm based ensemble learning model. Comput Biol Med 2021; 137:104778. [PMID: 34481183 DOI: 10.1016/j.compbiomed.2021.104778] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 11/26/2022]
Abstract
Tuberculosis (TB) is a worldwide illness caused by the bacteria Mycobacterium tuberculosis. Owing to the high prevalence of multidrug-resistant tuberculosis, numerous traditional strategies for developing novel alternative therapies have been presented. The effectiveness and dependability of these procedures are not always consistent. Peptide-based therapy has recently been regarded as a preferable alternative due to its excellent selectivity in targeting specific cells without affecting the normal cells. However, due to the rapid growth of the peptide samples, predicting TB accurately has become a challenging task. To effectively identify antitubercular peptides, an intelligent and reliable prediction model is indispensable. An ensemble learning approach was used in this study to improve expected results by compensating for the shortcomings of individual classification algorithms. Initially, three distinct representation approaches were used to formulate the training samples: k-space amino acid composition, composite physiochemical properties, and one-hot encoding. The feature vectors of the applied feature extraction methods are then combined to generate a heterogeneous vector. Finally, utilizing individual and heterogeneous vectors, five distinct nature classification models were used to evaluate prediction rates. In addition, a genetic algorithm-based ensemble model was used to improve the suggested model's prediction and training capabilities. Using Training and independent datasets, the proposed ensemble model achieved an accuracy of 94.47% and 92.68%, respectively. It was observed that our proposed "iAtbP-Hyb-EnC" model outperformed and reported ~10% highest training accuracy than existing predictors. The "iAtbP-Hyb-EnC" model is suggested to be a reliable tool for scientists and might play a valuable role in academic research and drug discovery. The source code and all datasets are publicly available at https://github.com/Farman335/iAtbP-Hyb-EnC.
Collapse
Affiliation(s)
- Shahid Akbar
- Department of Computer Science, Abdul Wali Khan University, Mardan, KP, 23200, Pakistan.
| | - Ashfaq Ahmad
- Department of Computer Science, Abdul Wali Khan University, Mardan, KP, 23200, Pakistan.
| | - Maqsood Hayat
- Department of Computer Science, Abdul Wali Khan University, Mardan, KP, 23200, Pakistan.
| | - Ateeq Ur Rehman
- Department of Information Technology, The University of Haripur, KP, Pakistan.
| | - Salman Khan
- Department of Computer Science, Abdul Wali Khan University, Mardan, KP, 23200, Pakistan.
| | - Farman Ali
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
4
|
Lv Z, Wang P, Zou Q, Jiang Q. Identification of Sub-Golgi protein localization by use of deep representation learning features. Bioinformatics 2020; 36:5600-5609. [PMID: 33367627 PMCID: PMC8023683 DOI: 10.1093/bioinformatics/btaa1074] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022] Open
Abstract
Motivation The Golgi apparatus has a key functional role in protein biosynthesis within the eukaryotic cell with malfunction resulting in various neurodegenerative diseases. For a better understanding of the Golgi apparatus, it is essential to identification of sub-Golgi protein localization. Although some machine learning methods have been used to identify sub-Golgi localization proteins by sequence representation fusion, more accurate sub-Golgi protein identification is still challenging by existing methodology. Results we developed a protein sub-Golgi localization identification protocol using deep representation learning features with 107 dimensions. By this protocol, we demonstrated that instead of multi-type protein sequence feature representation fusion as in previous state-of-the-art sub-Golgi-protein localization classifiers, it is sufficient to exploit only one type of feature representation for more accurately identification of sub-Golgi proteins. Compared with independent testing results for benchmark datasets, our protocol is able to perform generally, reliably and robustly for sub-Golgi protein localization prediction. Availabilityand implementation A use-friendly webserver is freely accessible at http://isGP-DRLF.aibiochem.net and the prediction code is accessible at https://github.com/zhibinlv/isGP-DRLF. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Zhibin Lv
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Pingping Wang
- Center for Bioinformatics, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China.,Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China.,Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China
| | - Qinghua Jiang
- Center for Bioinformatics, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China
| |
Collapse
|
5
|
Ma L, Jiang H, Yang W, Zhu Q. A Novel Method to Identify Golgi Protein Types Based on Hybrid Feature and SVM Algorithm. INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE AND APPLICATIONS 2020. [DOI: 10.1142/s1469026820500273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Accurate identification of Golgi protein types can provide useful clues to reveal the correlation between GA dysfunction and disease pathology and improve the ability to develop more effective treatments for the diseases. This paper introduces an effective and robust method to classify Golgi protein type with traditional machine learning algorithms. In which various features such as n-GDip, DCCA, psePSSM were used as training features and SVM with linear kernel was employed as a classifier. To solve the imbalance problem of the benchmark datasets, the oversampling technique SMOTE was adopted. To deal with the huge amount of features, the PCA algorithm and Fisher feature selection method were adopted to reduce feature dimensions and remove redundant features. The experimental results show that the proposed method had a further improvement compared with other traditional machine learning methods in 10-fold cross-validation, Jackknife cross-validation and independent testing, which means a further step for the clinical application of computational methods to predict the Golgi protein types.
Collapse
Affiliation(s)
- Liang Ma
- Information Department, Affiliated Hospital of Nantong University, No. 20 Xisi Road, Nantong, Jiangsu 226000, P. R. China
| | - Hailin Jiang
- Information Department, Affiliated Hospital of Nantong University, No. 20 Xisi Road, Nantong, Jiangsu 226000, P. R. China
| | - Wanli Yang
- Information Department, Affiliated Hospital of Nantong University, No. 20 Xisi Road, Nantong, Jiangsu 226000, P. R. China
| | - Quanjie Zhu
- Information Department, Affiliated Hospital of Nantong University, No. 20 Xisi Road, Nantong, Jiangsu 226000, P. R. China
| |
Collapse
|
6
|
Prediction of N6-methyladenosine sites using convolution neural network model based on distributed feature representations. Neural Netw 2020; 129:385-391. [PMID: 32593932 DOI: 10.1016/j.neunet.2020.05.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 05/21/2020] [Accepted: 05/24/2020] [Indexed: 01/24/2023]
Abstract
N6-methyladenosine (m6A) is a well-studied and most common interior messenger RNA (mRNA) modification that plays an important function in cell development. N6A is found in all kingdoms of life and many other cellular processes such as RNA splicing, immune tolerance, regulatory functions, RNA processing, and cancer. Despite the crucial role of m6A in cells, it was targeted computationally, but unfortunately, the obtained results were unsatisfactory. It is imperative to develop an efficient computational model that can truly represent m6A sites. In this regard, an intelligent and highly discriminative computational model namely: m6A-word2vec is introduced for the discrimination of m6A sites. Here, a concept of natural language processing in the form of word2vec is used to represent the motif of the target class automatically. These motifs (numerical descriptors) are automatically targeted from the human genome without any clear definition. Further, the extracted feature space is then forwarded to the convolution neural network model as input for prediction. The developed computational model obtained 83.17%, 92.69%, and 90.50% accuracy for benchmark datasets S1, S2, and S3, respectively, using a 10-fold cross-validation test. The predictive outcomes validate that the developed intelligent computational model showed better performance compared to existing computational models. It is thus greatly estimated that the introduced computational model "m6A-word2vec" may be a supportive and practical tool for elementary and pharmaceutical research such as in drug design along with academia.
Collapse
|
7
|
Medina-Ortiz D, Contreras S, Quiroz C, Olivera-Nappa Á. Development of Supervised Learning Predictive Models for Highly Non-linear Biological, Biomedical, and General Datasets. Front Mol Biosci 2020; 7:13. [PMID: 32118039 PMCID: PMC7031350 DOI: 10.3389/fmolb.2020.00013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/22/2020] [Indexed: 11/13/2022] Open
Abstract
In highly non-linear datasets, attributes or features do not allow readily finding visual patterns for identifying common underlying behaviors. Therefore, it is not possible to achieve classification or regression using linear or mildly non-linear hyperspace partition functions. Hence, supervised learning models based on the application of most existing algorithms are limited, and their performance metrics are low. Linear transformations of variables, such as principal components analysis, cannot avoid the problem, and even models based on artificial neural networks and deep learning are unable to improve the metrics. Sometimes, even when features allow classification or regression in reported cases, performance metrics of supervised learning algorithms remain unsatisfyingly low. This problem is recurrent in many areas of study as, per example, the clinical, biotechnological, and protein engineering areas, where many of the attributes are correlated in an unknown and very non-linear fashion or are categorical and difficult to relate to a target response variable. In such areas, being able to create predictive models would dramatically impact the quality of their outcomes, generating an immediate added value for both the scientific and general public. In this manuscript, we present RV-Clustering, a library of unsupervised learning algorithms, and a new methodology designed to find optimum partitions within highly non-linear datasets that allow deconvoluting variables and notoriously improving performance metrics in supervised learning classification or regression models. The partitions obtained are statistically cross-validated, ensuring correct representativity and no over-fitting. We have successfully tested RV-Clustering in several highly non-linear datasets with different origins. The approach herein proposed has generated classification and regression models with high-performance metrics, which further supports its ability to generate predictive models for highly non-linear datasets. Advantageously, the method does not require significant human input, which guarantees a higher usability in the biological, biomedical, and protein engineering community with no specific knowledge in the machine learning area.
Collapse
Affiliation(s)
- David Medina-Ortiz
- Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile.,Centre for Biotechnology and Bioengineering, Universidad de Chile, Santiago, Chile
| | - Sebastián Contreras
- Centre for Biotechnology and Bioengineering, Universidad de Chile, Santiago, Chile
| | - Cristofer Quiroz
- Facultad de Ingeniería, Universidad Autónoma de Chile, Talca, Chile
| | - Álvaro Olivera-Nappa
- Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile.,Centre for Biotechnology and Bioengineering, Universidad de Chile, Santiago, Chile
| |
Collapse
|
8
|
Lv Z, Jin S, Ding H, Zou Q. A Random Forest Sub-Golgi Protein Classifier Optimized via Dipeptide and Amino Acid Composition Features. Front Bioeng Biotechnol 2019; 7:215. [PMID: 31552241 PMCID: PMC6737778 DOI: 10.3389/fbioe.2019.00215] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 08/22/2019] [Indexed: 02/01/2023] Open
Abstract
To gain insight into the malfunction of the Golgi apparatus and its relationship to various genetic and neurodegenerative diseases, the identification of sub-Golgi proteins, both cis-Golgi and trans-Golgi proteins, is of great significance. In this study, a state-of-art random forests sub-Golgi protein classifier, rfGPT, was developed. The rfGPT used 2-gap dipeptide and split amino acid composition for the feature vectors and was combined with the synthetic minority over-sampling technique (SMOTE) and an analysis of variance (ANOVA) feature selection method. The rfGPT was trained on a sub-Golgi protein sequence data set (137 sequences), with sequence identity less than 25%. For the optimal rfGPT classifier with 93 features, the accuracy (ACC) was 90.5%; the Matthews correlation coefficient (MCC) was 0.811; the sensitivity (Sn) was 92.6%; and the specificity (Sp) was 88.4%. The independent testing scores for the rfGPT were ACC = 90.6%; MCC = 0.696; Sn = 96.1%; and Sp = 69.2%. Although the independent testing accuracy was 4.4% lower than that for the best reported sub-Golgi classifier trained on a data set with 40% sequence identity (304 sequences), the rfGPT is currently the top sub-Golgi protein predictor utilizing feature vectors without any position-specific scoring matrix and its derivative features. Therefore, the rfGPT is a more practical tool, because no sequence alignment is required with tens of millions of protein sequences. To date, the rfGPT is the Golgi classifier with the best independent testing scores, optimized by training on smaller benchmark data sets. Feature importance analysis proves that the non-polar and aliphatic residues composition, the (aromatic residues) + (non-polar, aliphatic residues) dipeptide and aromatic residues composition between NH2-termial and COOH-terminal of protein sequences are the three top biological features for distinguishing the sub-Golgi proteins.
Collapse
Affiliation(s)
- Zhibin Lv
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Shunshan Jin
- Department of Neurology, Heilongjiang Province Land Reclamation Headquarters General Hospital, Harbin, China
| | - Hui Ding
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China.,Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
9
|
Zhao W, Li GP, Wang J, Zhou YK, Gao Y, Du PF. Predicting protein sub-Golgi locations by combining functional domain enrichment scores with pseudo-amino acid compositions. J Theor Biol 2019; 473:38-43. [DOI: 10.1016/j.jtbi.2019.04.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/22/2019] [Accepted: 04/29/2019] [Indexed: 12/11/2022]
|
10
|
Yang W, Zhu XJ, Huang J, Ding H, Lin H. A Brief Survey of Machine Learning Methods in Protein Sub-Golgi Localization. Curr Bioinform 2019. [DOI: 10.2174/1574893613666181113131415] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background:The location of proteins in a cell can provide important clues to their functions in various biological processes. Thus, the application of machine learning method in the prediction of protein subcellular localization has become a hotspot in bioinformatics. As one of key organelles, the Golgi apparatus is in charge of protein storage, package, and distribution.Objective:The identification of protein location in Golgi apparatus will provide in-depth insights into their functions. Thus, the machine learning-based method of predicting protein location in Golgi apparatus has been extensively explored. The development of protein sub-Golgi apparatus localization prediction should be reviewed for providing a whole background for the fields.Method:The benchmark dataset, feature extraction, machine learning method and published results were summarized.Results:We briefly introduced the recent progresses in protein sub-Golgi apparatus localization prediction using machine learning methods and discussed their advantages and disadvantages.Conclusion:We pointed out the perspective of machine learning methods in protein sub-Golgi localization prediction.
Collapse
Affiliation(s)
- Wuritu Yang
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Xiao-Juan Zhu
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Jian Huang
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Hui Ding
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Hao Lin
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| |
Collapse
|
11
|
Tahir M, Hayat M, Khan SA. iNuc-ext-PseTNC: an efficient ensemble model for identification of nucleosome positioning by extending the concept of Chou's PseAAC to pseudo-tri-nucleotide composition. Mol Genet Genomics 2018; 294:199-210. [PMID: 30291426 DOI: 10.1007/s00438-018-1498-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/28/2018] [Indexed: 10/28/2022]
Abstract
Nucleosome is a central element of eukaryotic chromatin, which composes of histone proteins and DNA molecules. It performs vital roles in many eukaryotic intra-nuclear processes, for instance, chromatin structure and transcriptional regulation formation. Identification of nucleosome positioning via wet lab is difficult; so, the attention is diverted towards the accurate intelligent automated prediction. In this regard, a novel intelligent automated model "iNuc-ext-PseTNC" is developed to identify the nucleosome positioning in genomes accurately. In this predictor, the sequences of DNA are mathematically represented by two different discrete feature extraction techniques, namely pseudo-tri-nucleotide composition (PseTNC) and pseudo-di-nucleotide composition. Several contemporary machine learning algorithms were examined. Further, the predictions of individual classifiers were integrated through an evolutionary genetic algorithm. The success rates of the ensemble model are higher than individual classifiers. After analyzing the prediction results, it is noticed that iNuc-ext-PseTNC model has achieved better performance in combination with PseTNC feature space, which are 94.3%, 93.14%, and 88.60% of accuracies using six-fold cross-validation test for the three benchmark datasets S1, S2, and S3, respectively. The achieved outcomes exposed that the results of iNuc-ext-PseTNC model are prominent compared to the existing methods so far notifiable in the literature. It is ascertained that the proposed model might be more fruitful and a practical tool for rudimentary academia and research.
Collapse
Affiliation(s)
- Muhammad Tahir
- Department of Computer Science, Abdul Wali Khan University Mardan, Mardan, KP, Pakistan
| | - Maqsood Hayat
- Department of Computer Science, Abdul Wali Khan University Mardan, Mardan, KP, Pakistan.
| | - Sher Afzal Khan
- Department of Computer Science, Abdul Wali Khan University Mardan, Mardan, KP, Pakistan
| |
Collapse
|
12
|
Rahman MS, Rahman MK, Kaykobad M, Rahman MS. isGPT: An optimized model to identify sub-Golgi protein types using SVM and Random Forest based feature selection. Artif Intell Med 2017; 84:90-100. [PMID: 29183738 DOI: 10.1016/j.artmed.2017.11.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/13/2017] [Accepted: 11/17/2017] [Indexed: 10/18/2022]
Abstract
The Golgi Apparatus (GA) is a key organelle for protein synthesis within the eukaryotic cell. The main task of GA is to modify and sort proteins for transport throughout the cell. Proteins permeate through the GA on the ER (Endoplasmic Reticulum) facing side (cis side) and depart on the other side (trans side). Based on this phenomenon, we get two types of GA proteins, namely, cis-Golgi protein and trans-Golgi protein. Any dysfunction of GA proteins can result in congenital glycosylation disorders and some other forms of difficulties that may lead to neurodegenerative and inherited diseases like diabetes, cancer and cystic fibrosis. So, the exact classification of GA proteins may contribute to drug development which will further help in medication. In this paper, we focus on building a new computational model that not only introduces easy ways to extract features from protein sequences but also optimizes classification of trans-Golgi and cis-Golgi proteins. After feature extraction, we have employed Random Forest (RF) model to rank the features based on the importance score obtained from it. After selecting the top ranked features, we have applied Support Vector Machine (SVM) to classify the sub-Golgi proteins. We have trained regression model as well as classification model and found the former to be superior. The model shows improved performance over all previous methods. As the benchmark dataset is significantly imbalanced, we have applied Synthetic Minority Over-sampling Technique (SMOTE) to the dataset to make it balanced and have conducted experiments on both versions. Our method, namely, identification of sub-Golgi Protein Types (isGPT), achieves accuracy values of 95.4%, 95.9% and 95.3% for 10-fold cross-validation test, jackknife test and independent test respectively. According to different performance metrics, isGPT performs better than state-of-the-art techniques. The source code of isGPT, along with relevant dataset and detailed experimental results, can be found at https://github.com/srautonu/isGPT.
Collapse
Affiliation(s)
- M Saifur Rahman
- Department of CSE, BUET, ECE Building, West Palasi, Dhaka 1205, Bangladesh.
| | | | - M Kaykobad
- Department of CSE, BUET, ECE Building, West Palasi, Dhaka 1205, Bangladesh.
| | - M Sohel Rahman
- Department of CSE, BUET, ECE Building, West Palasi, Dhaka 1205, Bangladesh.
| |
Collapse
|
13
|
Li X, Wong KC. Multiobjective Patient Stratification Using Evolutionary Multiobjective Optimization. IEEE J Biomed Health Inform 2017; 22:1619-1629. [PMID: 29990162 DOI: 10.1109/jbhi.2017.2769711] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
One of the main challenges in modern medic-ine is to stratify patients for personalized care. Many different clustering methods have been proposed to solve the problem in both quantitative and biologically meaningful manners. However, existing clustering algorithms suffer from numerous restrictions such as experimental noises, high dimensionality, and poor interpretability. To overcome those limitations altogether, we propose and formulate a multiobjective framework based on evolutionary multiobjective optimization to balance the feature relevance and redundancy for patient stratification. To demonstrate the effectiveness of our proposed algorithms, we benchmark our algorithms across 55 synthetic datasets based on a real human transcription regulation network model, 35 real cancer gene expression datasets, and two case studies. Experimental results suggest that the proposed algorithms perform better than the recent state-of-the-arts. In addition, time complexity analysis, convergence analysis, and parameter analysis are conducted to demonstrate the robustness of the proposed methods from different perspectives. Finally, the t-Distributed Stochastic Neighbor Embedding (t-SNE) is applied to project the selected feature subsets onto two or three dimensions to visualize the high-dimensional patient stratification data.
Collapse
|
14
|
Akbar S, Hayat M, Iqbal M, Jan MA. iACP-GAEnsC: Evolutionary genetic algorithm based ensemble classification of anticancer peptides by utilizing hybrid feature space. Artif Intell Med 2017; 79:62-70. [PMID: 28655440 DOI: 10.1016/j.artmed.2017.06.008] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/12/2017] [Accepted: 06/16/2017] [Indexed: 01/10/2023]
Abstract
Cancer is a fatal disease, responsible for one-quarter of all deaths in developed countries. Traditional anticancer therapies such as, chemotherapy and radiation, are highly expensive, susceptible to errors and ineffective techniques. These conventional techniques induce severe side-effects on human cells. Due to perilous impact of cancer, the development of an accurate and highly efficient intelligent computational model is desirable for identification of anticancer peptides. In this paper, evolutionary intelligent genetic algorithm-based ensemble model, 'iACP-GAEnsC', is proposed for the identification of anticancer peptides. In this model, the protein sequences are formulated, using three different discrete feature representation methods, i.e., amphiphilic Pseudo amino acid composition, g-Gap dipeptide composition, and Reduce amino acid alphabet composition. The performance of the extracted feature spaces are investigated separately and then merged to exhibit the significance of hybridization. In addition, the predicted results of individual classifiers are combined together, using optimized genetic algorithm and simple majority technique in order to enhance the true classification rate. It is observed that genetic algorithm-based ensemble classification outperforms than individual classifiers as well as simple majority voting base ensemble. The performance of genetic algorithm-based ensemble classification is highly reported on hybrid feature space, with an accuracy of 96.45%. In comparison to the existing techniques, 'iACP-GAEnsC' model has achieved remarkable improvement in terms of various performance metrics. Based on the simulation results, it is observed that 'iACP-GAEnsC' model might be a leading tool in the field of drug design and proteomics for researchers.
Collapse
Affiliation(s)
- Shahid Akbar
- Department of Computer Science, Abdul Wali Khan University Mardan, KP 23200, Pakistan.
| | - Maqsood Hayat
- Department of Computer Science, Abdul Wali Khan University Mardan, KP 23200, Pakistan.
| | - Muhammad Iqbal
- Department of Computer Science, Abdul Wali Khan University Mardan, KP 23200, Pakistan.
| | - Mian Ahmad Jan
- Department of Computer Science, Abdul Wali Khan University Mardan, KP 23200, Pakistan.
| |
Collapse
|
15
|
Tahir M, Hayat M. Machine learning based identification of protein–protein interactions using derived features of physiochemical properties and evolutionary profiles. Artif Intell Med 2017; 78:61-71. [DOI: 10.1016/j.artmed.2017.06.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/09/2017] [Accepted: 06/11/2017] [Indexed: 02/09/2023]
|