1
|
Yeh PY, Sun CK, Sue YR. Predicting the Risk of Driving Under the Influence of Alcohol Using EEG-Based Machine Learning. Comput Biol Med 2025; 184:109405. [PMID: 39531921 DOI: 10.1016/j.compbiomed.2024.109405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/02/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Driving under the influence of alcohol (DUIA) is closely associated with alcohol use disorder (AUD). Our previous study on machine learning (ML) algorithms revealed a very high accuracy of decision trees with neuropsychological features in predicting the risk of DUIA despite limited data availability. Thus, this study aimed at comparing six well-known ML algorithms based on electroencephalographic (EEG) signals to differentiate adults with AUD and DUIA (AUD-DD) from those with AUD without DUIA (AUD-NDD) and controls. Fifteen AUD-DD and 10 AUD-NDD participants were recruited from a single tertiary referral center. Fourteen social drinkers without DUIA served as controls. Their EEG signals related to driving conditions were gathered using a VR headset with eight electrodes (F3, F4, Fz, C3, C4, Cz, P3, and P4). Based on the labeled features of EEG asymmetry and theta/beta ratio (TBR), comparisons between different algorithms were conducted. Fz and Cz electrodes exhibited differences in TBR across the three groups (all p < 0.02), while there were no significant differences between AUD-DD individuals and social drinkers. In contrast, asymmetries of between-group differences were not observed (all p > 0.09). K-nearest neighbors (KNN) with TBR showed the highest accuracy (83 %) in distinguishing AUD-DD individuals from controls, while logistic regression (LR), support vector machines (SVM), and naive Bayes (NB) with EEG asymmetric features demonstrated high accuracy in identifying DUIA (all 80 %) in AUD adults. LR, SVM, and NB with asymmetry may be employed in predicting DUIA among AUD adults, while KNN with TBR may be used for identifying DUIA in the general population.
Collapse
Affiliation(s)
- Pin-Yang Yeh
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan; Clinical Psychology Center, Asia University Hospital, Taichung, Taiwan
| | - Cheuk-Kwan Sun
- Department of Emergency Medicine, E-Da Dachang Hospital, I-Shou University, Kaohsiung City, Taiwan; School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, Taiwan.
| | - Yu-Ru Sue
- Clinical Psychology Center, Asia University Hospital, Taichung, Taiwan
| |
Collapse
|
2
|
Lin PJ, Li W, Zhai X, Sun J, Pan Y, Ji L, Li C. AM-EEGNet: An advanced multi-input deep learning framework for classifying stroke patient EEG task states. Neurocomputing 2024; 585:127622. [DOI: 10.1016/j.neucom.2024.127622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2024]
|
3
|
Sadiq MT, Yousaf A, Siuly S, Almogren A. Fast Fractional Fourier Transform-Aided Novel Graphical Approach for EEG Alcoholism Detection. Bioengineering (Basel) 2024; 11:464. [PMID: 38790331 PMCID: PMC11117540 DOI: 10.3390/bioengineering11050464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/01/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Given its detrimental effect on the brain, alcoholism is a severe disorder that can produce a variety of cognitive, emotional, and behavioral issues. Alcoholism is typically diagnosed using the CAGE assessment approach, which has drawbacks such as being lengthy, prone to mistakes, and biased. To overcome these issues, this paper introduces a novel paradigm for identifying alcoholism by employing electroencephalogram (EEG) signals. The proposed framework is divided into various steps. To begin, interference and artifacts in the EEG data are removed using a multiscale principal component analysis procedure. This cleaning procedure contributes to information quality improvement. Second, an innovative graphical technique based on fast fractional Fourier transform coefficients is devised to visualize the chaotic character and complexities of the EEG signals. This elucidates the properties of regular and alcoholic EEG signals. Third, thirty-four graphical features are extracted to interpret the EEG signals' haphazard behavior and differentiate between regular and alcoholic trends. Fourth, we propose an ensembled feature selection method for obtaining an effective and reliable feature group. Following that, we study many neural network classifiers to choose the optimal classifier for building an efficient framework. The experimental findings show that the suggested method obtains the best classification performance by employing a recurrent neural network (RNN), with 97.5% accuracy, 96.7% sensitivity, and 98.3% specificity for the sixteen selected features. The proposed framework can aid physicians, businesses, and product designers to develop a real-time system.
Collapse
Affiliation(s)
- Muhammad Tariq Sadiq
- School of Computer Science and Electronic Engineering, University of Essex, Colchester Campus, Colchester CO4 3SQ, UK;
| | - Adnan Yousaf
- Department of Electrical Engineering, Superior University, Lahore 54000, Pakistan;
| | - Siuly Siuly
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne 3011, Australia
| | - Ahmad Almogren
- Department of Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh 11633, Saudi Arabia;
| |
Collapse
|
4
|
Cao J, Yang L, Sarrigiannis PG, Blackburn D, Zhao Y. Dementia classification using a graph neural network on imaging of effective brain connectivity. Comput Biol Med 2024; 168:107701. [PMID: 37984205 DOI: 10.1016/j.compbiomed.2023.107701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/16/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023]
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are two of the most common forms of neurodegenerative diseases. The literature suggests that effective brain connectivity (EBC) has the potential to track differences between AD, PD and healthy controls (HC). However, how to effectively use EBC estimations for the research of disease diagnosis remains an open problem. To deal with complex brain networks, graph neural network (GNN) has been increasingly popular in very recent years and the effectiveness of combining EBC and GNN techniques has been unexplored in the field of dementia diagnosis. In this study, a novel directed structure learning GNN (DSL-GNN) was developed and performed on the imaging of EBC estimations and power spectrum density (PSD) features. In comparison to the previous studies on GNN, our proposed approach enhanced the functionality for processing directional information, which builds the basis for more efficiently performing GNN on EBC. Another contribution of this study is the creation of a new framework for applying univariate and multivariate features simultaneously in a classification task. The proposed framework and DSL-GNN are validated in four discrimination tasks and our approach exhibited the best performance, against the existing methods, with the highest accuracy of 94.0% (AD vs. HC), 94.2% (PD vs. HC), 97.4% (AD vs. PD) and 93.0% (AD vs. PD vs. HC). In a word, this research provides a robust analytical framework to deal with complex brain networks containing causal directional information and implies promising potential in the diagnosis of two of the most common neurodegenerative conditions.
Collapse
Affiliation(s)
- Jun Cao
- School of Aerospace, Transport and Manufacturing, Cranfield University, Bedfordshire, MK43 0AL, UK; School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Lichao Yang
- School of Aerospace, Transport and Manufacturing, Cranfield University, Bedfordshire, MK43 0AL, UK
| | | | - Daniel Blackburn
- Department of Neurosciences, Sheffield Teaching Hospitals, NHS Foundation Trust, Royal Hallamshire Hospital, Sheffield, UK
| | - Yifan Zhao
- School of Aerospace, Transport and Manufacturing, Cranfield University, Bedfordshire, MK43 0AL, UK.
| |
Collapse
|
5
|
Sadiq MT, Siuly S, Almogren A, Li Y, Wen P. Efficient novel network and index for alcoholism detection from EEGs. Health Inf Sci Syst 2023; 11:27. [PMID: 37337563 PMCID: PMC10276798 DOI: 10.1007/s13755-023-00227-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/17/2023] [Indexed: 06/21/2023] Open
Abstract
Background Alcoholism is a catastrophic condition that causes brain damage as well as neurological, social, and behavioral difficulties. Limitations This illness is often assessed using the Cut down, Annoyed, Guilty, and Eye-opener examination technique, which assesses the intensity of an alcohol problem. This technique is protracted, arduous, error-prone, and errant. Method As a result, the intention of this paper is to design a cutting-edge system for automatically identifying alcoholism utilizing electroencephalography (EEG) signals, that can alleviate these problems and aid practitioners and investigators. First, we investigate the feasibility of using the Fast Walsh-Hadamard transform of EEG signals to explore the unpredictable essence and variability of EEG indicators in the suggested framework. Second, thirty-six linear and nonlinear features for deciphering the dynamic pattern of healthy and alcoholic EEG signals are discovered. Subsequently, we suggested a strategy for selecting powerful features. Finally, nineteen machine learning algorithms and five neural network classifiers are used to assess the overall performance of selected attributes. Results The extensive experiments show that the suggested method provides the best classification efficiency, with 97.5% accuracy, 96.7% sensitivity, and 98.3% specificity for the features chosen using the correlation-based FS approach with Recurrent Neural Networks. With recently introduced matrix determinant features, a classification accuracy of 93.3% is also attained. Moreover, we developed a novel index that uses clinically meaningful features to differentiate between healthy and alcoholic categories with a unique integer. This index can assist health care workers, commercial companies, and design engineers in developing a real-time system with 100% classification results for the computerized framework.
Collapse
Affiliation(s)
- Muhammad Tariq Sadiq
- Advanced Engineering Centre, School of Architecture, Technology and Engineering, University of Brighton, Brighton, BN2 4AT UK
| | - Siuly Siuly
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, 3011 Australia
| | - Ahmad Almogren
- Department of Computer Science, College of Computer and Information Sciences, King Saud University, 11633 Riyadh, Saudi Arabia
| | - Yan Li
- School of Mathematics Physics and Computing, University of Southern Queensland, Toowoomba Campus, Toowoomba, 4350 Australia
| | - Paul Wen
- School of Engineering, University of Southern Queensland, Toowoomba Campus, Toowoomba, 4350 Australia
| |
Collapse
|
6
|
Chen Z, Hu B, Liu X, Becker B, Eickhoff SB, Miao K, Gu X, Tang Y, Dai X, Li C, Leonov A, Xiao Z, Feng Z, Chen J, Chuan-Peng H. Sampling inequalities affect generalization of neuroimaging-based diagnostic classifiers in psychiatry. BMC Med 2023; 21:241. [PMID: 37400814 DOI: 10.1186/s12916-023-02941-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/13/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND The development of machine learning models for aiding in the diagnosis of mental disorder is recognized as a significant breakthrough in the field of psychiatry. However, clinical practice of such models remains a challenge, with poor generalizability being a major limitation. METHODS Here, we conducted a pre-registered meta-research assessment on neuroimaging-based models in the psychiatric literature, quantitatively examining global and regional sampling issues over recent decades, from a view that has been relatively underexplored. A total of 476 studies (n = 118,137) were included in the current assessment. Based on these findings, we built a comprehensive 5-star rating system to quantitatively evaluate the quality of existing machine learning models for psychiatric diagnoses. RESULTS A global sampling inequality in these models was revealed quantitatively (sampling Gini coefficient (G) = 0.81, p < .01), varying across different countries (regions) (e.g., China, G = 0.47; the USA, G = 0.58; Germany, G = 0.78; the UK, G = 0.87). Furthermore, the severity of this sampling inequality was significantly predicted by national economic levels (β = - 2.75, p < .001, R2adj = 0.40; r = - .84, 95% CI: - .41 to - .97), and was plausibly predictable for model performance, with higher sampling inequality for reporting higher classification accuracy. Further analyses showed that lack of independent testing (84.24% of models, 95% CI: 81.0-87.5%), improper cross-validation (51.68% of models, 95% CI: 47.2-56.2%), and poor technical transparency (87.8% of models, 95% CI: 84.9-90.8%)/availability (80.88% of models, 95% CI: 77.3-84.4%) are prevailing in current diagnostic classifiers despite improvements over time. Relating to these observations, model performances were found decreased in studies with independent cross-country sampling validations (all p < .001, BF10 > 15). In light of this, we proposed a purpose-built quantitative assessment checklist, which demonstrated that the overall ratings of these models increased by publication year but were negatively associated with model performance. CONCLUSIONS Together, improving sampling economic equality and hence the quality of machine learning models may be a crucial facet to plausibly translating neuroimaging-based diagnostic classifiers into clinical practice.
Collapse
Affiliation(s)
- Zhiyi Chen
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China.
- Faculty of Psychology, Southwest University, Chongqing, China.
| | - Bowen Hu
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Xuerong Liu
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, Chengdu, China
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kuan Miao
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Xingmei Gu
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Yancheng Tang
- School of Business and Management, Shanghai International Studies University, Shanghai, China
| | - Xin Dai
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Chao Li
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangdong, China
| | - Artemiy Leonov
- School of Psychology, Clark University, Worcester, MA, USA
| | - Zhibing Xiao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Zhengzhi Feng
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Ji Chen
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China.
- Department of Psychiatry, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
| | - Hu Chuan-Peng
- School of Psychology, Nanjing Normal University, Nanjing, China
| |
Collapse
|
7
|
Abstract
The medical disorders of alcoholism rank among the leading public health problems worldwide and the need for predictive and prognostic risk markers for assessing alcohol use disorders (AUD) has been widely acknowledged. Early-phase detection of problem drinking and associated tissue toxicity are important prerequisites for timely initiations of appropriate treatments and improving patient's committing to the objective of reducing drinking. Recent advances in clinical chemistry have provided novel approaches for a specific detection of heavy drinking through assays of unique ethanol metabolites, phosphatidylethanol (PEth) or ethyl glucuronide (EtG). Carbohydrate-deficient transferrin (CDT) measurements can be used to indicate severe alcohol problems. Hazardous drinking frequently manifests as heavy episodic drinking or in combinations with other unfavorable lifestyle factors, such as smoking, physical inactivity, poor diet or adiposity, which aggravate the metabolic consequences of alcohol intake in a supra-additive manner. Such interactions are also reflected in multiple disease outcomes and distinct abnormalities in biomarkers of liver function, inflammation and oxidative stress. Use of predictive biomarkers either alone or as part of specifically designed biological algorithms helps to predict both hepatic and extrahepatic morbidity in individuals with such risk factors. Novel approaches for assessing progression of fibrosis, a major determinant of prognosis in AUD, have also been made available. Predictive algorithms based on the combined use of biomarkers and clinical observations may prove to have a major impact on clinical decisions to detect AUD in early pre-symptomatic stages, stratify patients according to their substantially different disease risks and predict individual responses to treatment.
Collapse
Affiliation(s)
- Onni Niemelä
- Department of Laboratory Medicine and Medical Research Unit, Seinäjoki Central Hospital and Tampere University, Seinäjoki, Finland.
| |
Collapse
|
8
|
Taremian F, Eskandari Z, Dadashi M, Hosseini SR. Disrupted resting-state functional connectivity of frontal network in opium use disorder. APPLIED NEUROPSYCHOLOGY. ADULT 2023; 30:297-305. [PMID: 34155942 DOI: 10.1080/23279095.2021.1938051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Opioid use disorder (OUD) as a chronic relapsing disorder is initially driven by dysfunction of brain reward networks and associated with several psychiatric disorders. Resting-state EEG was recorded in 24 healthy participants as well as 31 patients with OUD. Healthy participants do not meet OUD criteria. After pre-processing of the raw EEG, functional connectivity in the frontal network using eLORETA and all networks using graph analysis method were calculated. Patients with OUD had higher electrical neuronal activity compared to healthy participants in higher frequency bands. The statistical analysis revealed that patients with OUD had significantly decreased phase synchronization in β1 and β2 frequency bands compared with the healthy group in the frontal network. Regarding global network topology, we found a significant decrease in the characteristic path length and an increase in global efficiency, clustering coefficient, and transitivity in patients compared with the healthy group. These changes indicated that local specialization and global integration of the brain were disrupted in OUD and it suggests a tendency toward random network configuration of functional brain networks in patients with OUD. Disturbances in EEG-based brain network indices might reflect an altered cortical functional network in OUD. These findings might provide useful biomarkers to understand cortical brain pathology in opium use disorder.
Collapse
Affiliation(s)
- Farhad Taremian
- Substance Abuse and Dependence Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
- Department of Clinical Psychology, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Zakaria Eskandari
- Department of Clinical Psychology and Addiction Studies, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohsen Dadashi
- Department of Clinical Psychology and Addiction Studies, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Seyed Ruhollah Hosseini
- Department of Psychology, Faculty of Education Sciences and Psychology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
9
|
Marvi N, Haddadnia J, Fayyazi Bordbar MR. An automated drug dependence detection system based on EEG. Comput Biol Med 2023; 158:106853. [PMID: 37030264 DOI: 10.1016/j.compbiomed.2023.106853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/13/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023]
Abstract
OBJECTIVE Substance abuse causes damage to the brain structure and function. This research aim is to design an automated drug dependence detection system based on EEG signals in a Multidrug (MD) abuser. METHODS EEG signals were recorded from participants categorized into MD-dependents (n = 10) and Healthy Control (HC) (n = 12). The Recurrence Plot investigates the dynamic characteristics of the EEG signal. The entropy index (ENTR) measured from the Recurrence Quantification Analysis was considered the complexity index of the delta, theta, alpha, beta, gamma, and all-band EEG signals. Statistical analysis was performed by t-test. The support vector machine technique was used for the data classification. RESULTS The results show decreased ENTR indices in the delta, alpha, beta, gamma, and all-band EEG signal and increased theta band in MD abusers compared to the HC group. That indicated the reduction of complexity in the delta, alpha, beta, gamma, and all-band EEG signals in the MD group. Additionally, the SVM classifier distinguished the MD group from the HC group with 90% accuracy, 89.36% sensitivity, 90.7% specificity, and 89.8% F1 score. CONCLUSIONS AND SIGNIFICANCE The nonlinear analysis of brain data was used to build an automatic diagnostic aid system that could identify HC people apart from those who abuse MD.
Collapse
|
10
|
Chen Z, Liu X, Yang Q, Wang YJ, Miao K, Gong Z, Yu Y, Leonov A, Liu C, Feng Z, Chuan-Peng H. Evaluation of Risk of Bias in Neuroimaging-Based Artificial Intelligence Models for Psychiatric Diagnosis: A Systematic Review. JAMA Netw Open 2023; 6:e231671. [PMID: 36877519 PMCID: PMC9989906 DOI: 10.1001/jamanetworkopen.2023.1671] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
IMPORTANCE Neuroimaging-based artificial intelligence (AI) diagnostic models have proliferated in psychiatry. However, their clinical applicability and reporting quality (ie, feasibility) for clinical practice have not been systematically evaluated. OBJECTIVE To systematically assess the risk of bias (ROB) and reporting quality of neuroimaging-based AI models for psychiatric diagnosis. EVIDENCE REVIEW PubMed was searched for peer-reviewed, full-length articles published between January 1, 1990, and March 16, 2022. Studies aimed at developing or validating neuroimaging-based AI models for clinical diagnosis of psychiatric disorders were included. Reference lists were further searched for suitable original studies. Data extraction followed the CHARMS (Checklist for Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modeling Studies) and PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) guidelines. A closed-loop cross-sequential design was used for quality control. The PROBAST (Prediction Model Risk of Bias Assessment Tool) and modified CLEAR (Checklist for Evaluation of Image-Based Artificial Intelligence Reports) benchmarks were used to systematically evaluate ROB and reporting quality. FINDINGS A total of 517 studies presenting 555 AI models were included and evaluated. Of these models, 461 (83.1%; 95% CI, 80.0%-86.2%) were rated as having a high overall ROB based on the PROBAST. The ROB was particular high in the analysis domain, including inadequate sample size (398 of 555 models [71.7%; 95% CI, 68.0%-75.6%]), poor model performance examination (with 100% of models lacking calibration examination), and lack of handling data complexity (550 of 555 models [99.1%; 95% CI, 98.3%-99.9%]). None of the AI models was perceived to be applicable to clinical practices. Overall reporting completeness (ie, number of reported items/number of total items) for the AI models was 61.2% (95% CI, 60.6%-61.8%), and the completeness was poorest for the technical assessment domain with 39.9% (95% CI, 38.8%-41.1%). CONCLUSIONS AND RELEVANCE This systematic review found that the clinical applicability and feasibility of neuroimaging-based AI models for psychiatric diagnosis were challenged by a high ROB and poor reporting quality. Particularly in the analysis domain, ROB in AI diagnostic models should be addressed before clinical application.
Collapse
Affiliation(s)
- Zhiyi Chen
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Xuerong Liu
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Qingwu Yang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yan-Jiang Wang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Kuan Miao
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Zheng Gong
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Yang Yu
- School of Psychology, Third Military Medical University, Chongqing, China
| | - Artemiy Leonov
- Department of Psychology, Clark University, Worcester, Massachusetts
| | - Chunlei Liu
- School of Psychology, Qufu Normal University, Qufu, China
| | - Zhengzhi Feng
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Hu Chuan-Peng
- School of Psychology, Nanjing Normal University, Nanjing, China
| |
Collapse
|
11
|
Chawla P, Rana SB, Kaur H, Singh K. Computer-aided diagnosis of autism spectrum disorder from EEG signals using deep learning with FAWT and multiscale permutation entropy features. Proc Inst Mech Eng H 2023; 237:282-294. [PMID: 36515392 DOI: 10.1177/09544119221141751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Autism spectrum disorder (ASD), a neurodevelopment disorder, is characterized by significant difficulties in social interaction and emerges as a major threat to children. Its computer-aided diagnosis used by neurologists improves the detection process and has a favorable impact on patients' health. Currently, a biomarker termed electroencephalography (EEG) is considered as vital tool to detect abnormal electrical activity in the brain. In this context, the present paper brings forth a novel approach for automated diagnosis of ASD from multichannel EEG signals using flexible analytic wavelet transform (FAWT). Firstly, this approach processes the acquired EEG signals with filtering and segmentation into short-duration EEG segments in the range of 5-20 s. These segmented EEG signals are decomposed into five levels using FAWT technique to obtain various sub-bands. Further, multiscale permutation entropy values are extracted from decomposed sub-bands which are used as feature vectors in the present work. Afterwards, these feature vectors are evaluated by traditional machine learning algorithms viz., k-nearest neighbor, logistic regression, support vector machine, and random forest, as well as convolutional neural network (CNN) as deep learning algorithm with different segment durations. The analysis of results reveals that CNN provides maximum accuracy, sensitivity, specificity, and area under the curve of 99.19%, 99.34%, 99.21%, and 0.9997, respectively, for 10 s duration EEG segment to identify ASD patients among healthy individuals. Thus, the proposed CNN architecture would be extremely helpful during diagnostic process of autism disease for neurologists.
Collapse
Affiliation(s)
- Parikha Chawla
- Department of Engineering & Technology, Guru Nanak Dev University Regional Campus, Gurdaspur, Punjab, India
| | - Shashi B Rana
- Department of Engineering & Technology, Guru Nanak Dev University Regional Campus, Gurdaspur, Punjab, India
| | - Hardeep Kaur
- Department of Electronics Technology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Kuldeep Singh
- Department of Electronics Technology, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
12
|
Yang L, Du Y, Yang W, Liu J. Machine learning with neuroimaging biomarkers: Application in the diagnosis and prediction of drug addiction. Addict Biol 2023; 28:e13267. [PMID: 36692873 DOI: 10.1111/adb.13267] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/19/2022] [Accepted: 12/14/2022] [Indexed: 01/18/2023]
Abstract
Drug abuse is a serious problem worldwide. Owing to intermittent intake of certain substances and the early inconspicuous clinical symptoms, this brings huge challenges for timely diagnosing addiction status and preventing substance use disorders (SUDs). As a non-invasive technique, neuroimaging can capture neurobiological signatures of abnormality in multiple brain regions caused by drug consumption in each clinical stage, like parenchymal morphology alteration as well as aberrant functional activity and connectivity of cerebral areas, making it realizable to diagnosis, prediction and even preemptive therapy of addiction. Machine learning (ML) algorithms primarily used for classification have been extensively applied in analysing medical imaging datasets. Significant neurobiological characteristics employed and revealed by classifiers were used to diagnose addictive states and predict initiation and vulnerability to drug usage, treatment abstinence, relapse and resilience of addicts and the risk of SUD. In this review, we summarize application of ML methods in neuroimaging focusing on addicts' diagnosis of clinical status and risk prediction and elucidate the discriminative neurobiological features from brain electrophysiological, morphological and functional perspectives that contribute most to the classifier, finally highlighting the auxiliary role of ML in addiction treatment.
Collapse
Affiliation(s)
- Longtao Yang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yanyao Du
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wenhan Yang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Medical Imaging in Hunan Province, Changsha, China.,Department of Radiology Quality Control Center in Hunan Province, Changsha, China
| |
Collapse
|
13
|
Chawla P, Rana SB, Kaur H, Singh K, Yuvaraj R, Murugappan M. A decision support system for automated diagnosis of Parkinson’s disease from EEG using FAWT and entropy features. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
14
|
Liu H, Shi R, Liao R, Liu Y, Che J, Bai Z, Cheng N, Ma H. Machine Learning Based on Event-Related EEG of Sustained Attention Differentiates Adults with Chronic High-Altitude Exposure from Healthy Controls. Brain Sci 2022; 12:brainsci12121677. [PMID: 36552137 PMCID: PMC9775506 DOI: 10.3390/brainsci12121677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/20/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
(1) Objective: The aim of this study was to examine the effect of high altitude on inhibitory control processes that underlie sustained attention in the neural correlates of EEG data, and explore whether the EEG data reflecting inhibitory control contain valuable information to classify high-altitude chronic hypoxia and plain controls. (2) Methods: 35 chronic high-altitude hypoxic adults and 32 matched controls were recruited. They were required to perform the go/no-go sustained attention task (GSAT) using event-related potentials. Three machine learning algorithms, namely a support vector machine (SVM), logistic regression (LR), and a decision tree (DT), were trained based on the related ERP components and neural oscillations to build a dichotomous classification model. (3) Results: Behaviorally, we found that the high altitude (HA) group had lower omission error rates during all observation periods than the low altitude (LA) group. Meanwhile, the ERP results showed that the HA participants had significantly shorter latency than the LAs for sustained potential (SP), indicating vigilance to response-related conflict. Meanwhile, event-related spectral perturbation (ERSP) analysis suggested that lowlander immigrants exposed to high altitudes may have compensatory activated prefrontal cortexes (PFC), as reflected by slow alpha, beta, and theta frequency-band neural oscillations. Finally, the machine learning results showed that the SVM achieved the optimal classification F1 score in the later stage of sustained attention, with an F1 score of 0.93, accuracy of 92.54%, sensitivity of 91.43%, specificity of 93.75%, and area under ROC curve (AUC) of 0.97. The results proved that SVM classification algorithms could be applied to identify chronic high-altitude hypoxia. (4) Conclusions: Compared with other methods, the SVM leads to a good overall performance that increases with the time spent on task, illustrating that the ERPs and neural oscillations may provide neuroelectrophysiological markers for identifying chronic plateau hypoxia.
Collapse
Affiliation(s)
- Haining Liu
- Psychology Department, Chengde Medical University, Chengde 067000, China
- Hebei Key Laboratory of Nerve Injury and Repair, Chengde Medical University, Chengde 067000, China
- Hebei International Research Center of Medical Engineering, Chengde Medical University, Chengde 067000, China
| | - Ruijuan Shi
- Plateau Brain Science Research Center, Tibet University/South China Normal University, Lhasa 850012, China
| | - Runchao Liao
- Department of Biomedical Engineering, Chengde Medical University, Chengde 067000, China
| | - Yanli Liu
- Department of Biomedical Engineering, Chengde Medical University, Chengde 067000, China
- Correspondence: (Y.L.); (H.M.); Tel.: +86-187-3246-7083 (Y.L.); +86-150-8905-6060 (H.M.)
| | - Jiajun Che
- Psychology Department, Chengde Medical University, Chengde 067000, China
| | - Ziyu Bai
- Psychology Department, Chengde Medical University, Chengde 067000, China
| | - Nan Cheng
- Psychology Department, Chengde Medical University, Chengde 067000, China
| | - Hailin Ma
- Hebei International Research Center of Medical Engineering, Chengde Medical University, Chengde 067000, China
- Correspondence: (Y.L.); (H.M.); Tel.: +86-187-3246-7083 (Y.L.); +86-150-8905-6060 (H.M.)
| |
Collapse
|
15
|
Xie JY, Li RH, Yuan W, Du J, Zhou DS, Cheng YQ, Xu XM, Liu H, Yuan TF. Advances in neuroimaging studies of alcohol use disorder (AUD). PSYCHORADIOLOGY 2022; 2:146-155. [PMID: 38665276 PMCID: PMC11003430 DOI: 10.1093/psyrad/kkac018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 04/28/2024]
Abstract
Alcohol use disorder (AUD) is a worldwide problem and the most common substance use disorder. Chronic alcohol consumption may have negative effects on the body, the mind, the family, and even society. With the progress of current neuroimaging methods, an increasing number of imaging techniques are being used to objectively detect brain impairment induced by alcoholism and serve a vital role in the diagnosis, prognosis, and treatment assessment of AUD. This article organizes and analyzes the research on alcohol dependence concerning the main noninvasive neuroimaging methods, structural magnetic resonance imaging, functional magnetic resonance imaging, and electroencephalography, as well as the most common noninvasive brain stimulation - transcranial magnetic stimulation, and intersperses the article with joint intra- and intergroup studies, providing an outlook on future research directions.
Collapse
Affiliation(s)
- Ji-Yu Xie
- School of Mental Health, Wenzhou Medical University, Wenzho 325000, Zhejiangu, China
| | - Rui-Hua Li
- Shandong Mental Health Center, Shandong University, Jinan 250014, Shandong, China
| | - Wei Yuan
- Shandong Mental Health Center, Shandong University, Jinan 250014, Shandong, China
| | - Jiang Du
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030, China
| | - Dong-Sheng Zhou
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo 315000, Zhejiang, China
| | - Yu-Qi Cheng
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming 650000, Yunnan, China
| | - Xue-Ming Xu
- Department of Psychiatry, Taizhou Second People's Hospital, Taizhou 318000, Zhejiang, China
| | - Heng Liu
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563000, Guizhou, China
| | - Ti-Fei Yuan
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030, China
| |
Collapse
|
16
|
Bradshaw S, Jones A, Lucero Jones R, Shumway S, Kimball T. Examining Interhemispheric PFC Connectivity during AUD Abstinence with Multilevel Modeling. ALCOHOLISM TREATMENT QUARTERLY 2022. [DOI: 10.1080/07347324.2022.2073853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Spencer Bradshaw
- Human Development and Family Studies, Utah State University, Logan, UT, USA
| | - Adam Jones
- Human Development, Family Studies, and Counseling, Texas Woman’s University, Denton, TX, USA
| | - Rebecca Lucero Jones
- Human Development, Family Studies, and Counseling, Texas Woman’s University, Denton, TX, USA
| | - Sterling Shumway
- Department of Community, Family, & Addiction Sciences, Texas Tech University, Lubbock, TX, USA
| | - Thomas Kimball
- Department of Community, Family, & Addiction Sciences, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
17
|
Cresta Morgado P, Carusso M, Alonso Alemany L, Acion L. Practical foundations of machine learning for addiction research. Part I. Methods and techniques. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2022; 48:260-271. [PMID: 35389305 DOI: 10.1080/00952990.2021.1995739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 06/14/2023]
Abstract
Machine learning assembles a broad set of methods and techniques to solve a wide range of problems, such as identifying individuals with substance use disorders (SUD), finding patterns in neuroimages, understanding SUD prognostic factors and their association, or determining addiction genetic underpinnings. However, the addiction research field underuses machine learning. This two-part narrative review focuses on machine learning tools and concepts, providing an introductory insight into their capabilities to facilitate their understanding and acquisition by addiction researchers. This first part presents supervised and unsupervised methods such as linear models, naive Bayes, support vector machines, artificial neural networks, and k-means. We illustrate each technique with examples of its use in current addiction research. We also present some open-source programming tools and methodological good practices that facilitate using these techniques. Throughout this work, we emphasize a continuum between applied statistics and machine learning, we show their commonalities, and provide sources for further reading to deepen the understanding of these methods. This two-part review is a primer for the next generation of addiction researchers incorporating machine learning in their projects. Researchers will find a bridge between applied statistics and machine learning, ways to expand their analytical toolkit, recommendations to incorporate well-established good practices in addiction data analysis (e.g., stating the rationale for using newer analytical tools, calculating sample size, improving reproducibility), and the vocabulary to enhance collaboration between researchers who do not conduct data analyses and those who do.
Collapse
Affiliation(s)
- Pablo Cresta Morgado
- Instituto de Cálculo, FCEyN, Universidad de Buenos Aires - CONICET, Buenos Aires, Argentina
| | - Martín Carusso
- Instituto de Cálculo, FCEyN, Universidad de Buenos Aires - CONICET, Buenos Aires, Argentina
| | | | - Laura Acion
- Instituto de Cálculo, FCEyN, Universidad de Buenos Aires - CONICET, Buenos Aires, Argentina
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
18
|
Abenna S, Nahid M, Bajit A. Motor imagery based brain-computer interface: improving the EEG classification using Delta rhythm and LightGBM algorithm. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Ha J, Park S, Im CH, Kim L. Classification of Gamers Using Multiple Physiological Signals: Distinguishing Features of Internet Gaming Disorder. Front Psychol 2021; 12:714333. [PMID: 34630223 PMCID: PMC8498337 DOI: 10.3389/fpsyg.2021.714333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/26/2021] [Indexed: 11/13/2022] Open
Abstract
The proliferating and excessive use of internet games has caused various comorbid diseases, such as game addiction, which is now a major social problem. Recently, the American Psychiatry Association classified “Internet gaming disorder (IGD)” as an addiction/mental disorder. Although many studies have been conducted on the diagnosis, treatment, and prevention of IGD, screening studies for IGD are still scarce. In this study, we classified gamers using multiple physiological signals to contribute to the treatment and prevention of IGD. Participating gamers were divided into three groups based on Young’s Internet Addiction Test score and average game time as follows: Group A, those who rarely play games; Group B, those who enjoy and play games regularly; and Group C, those classified as having IGD. In our game-related cue-based experiment, we obtained self-reported craving scores and multiple physiological data such as electrooculogram (EOG), photoplethysmogram (PPG), and electroencephalogram (EEG) from the users while they watched neutral (natural scenery) or stimulating (gameplay) videos. By analysis of covariance (ANCOVA), 13 physiological features (vertical saccadic movement from EOG, standard deviation of N-N intervals, and PNN50 from PPG, and many EEG spectral power indicators) were determined to be significant to classify the three groups. The classification was performed using a 2-layers feedforward neural network. The fusion of three physiological signals showed the best result compared to other cases (combination of EOG and PPG or EEG only). The accuracy was 0.90 and F-1 scores were 0.93 (Group A), 0.89 (Group B), and 0.88 (Group C). However, the subjective self-reported scores did not show a significant difference among the three groups by ANCOVA analysis. The results indicate that the fusion of physiological signals can be an effective method to objectively classify gamers.
Collapse
Affiliation(s)
- Jihyeon Ha
- Center for Bionics, Korea Institute of Science and Technology, Seoul, South Korea.,Department of Biomedical Engineering, Hanyang University, Seoul, South Korea
| | - Sangin Park
- Center for Bionics, Korea Institute of Science and Technology, Seoul, South Korea
| | - Chang-Hwan Im
- Department of Biomedical Engineering, Hanyang University, Seoul, South Korea
| | - Laehyun Kim
- Center for Bionics, Korea Institute of Science and Technology, Seoul, South Korea.,Department of HY-KIST Bio-Convergence, Hanyang University, Seoul, South Korea
| |
Collapse
|
20
|
Marcon G, de Ávila Pereira F, Zimerman A, da Silva BC, von Diemen L, Passos IC, Recamonde-Mendoza M. Patterns of high-risk drinking among medical students: A web-based survey with machine learning. Comput Biol Med 2021; 136:104747. [PMID: 34449306 DOI: 10.1016/j.compbiomed.2021.104747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/20/2021] [Accepted: 08/04/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Prior studies have found increased rates of alcohol consumption among physicians and medical students. The present study aims to build machine learning (ML) models to identify patterns of high-risk drinking (HRD), including alcohol use disorder, within this population. METHODS We analyzed data collected through a web-based survey among Brazilian medical students. Variables included sociodemographic data, personal information, university status, and mental health. Stratification for HRD was carried out based on the AUDIT-C scores. Three ML algorithms were used to build classifiers to predict HRD among medical students: elastic net regularization, random forest, and artificial neural networks. Model interpretation techniques were adopted to assess the most influential predictors for models' decisions, which represent potential factors associated with HRD. RESULTS A total of 4840 medical students were included in the study. The prevalence of HRD was 53.03%. The three ML models built were able to distinguish individuals with HRD from low-risk drinking (LRD) with very similar performance. The average AUC scores in the cross-validation procedure were around 0.72, and this performance was replicated in the test set. The most important features for the ML models were the use of tobacco and cannabis, monthly family income, marital status, sexual orientation, and physical activities. CONCLUSIONS This study proposes that ML models may serve as tools for initial screening of students regarding their susceptibility for at-risk drinking or alcohol use disorder. In addition, we identified several key factors associated with HRD that could be further investigated and explored for preventive and assistance measures.
Collapse
Affiliation(s)
- Grasiela Marcon
- Department of Psychiatry, Faculty of Medicine, Universidade Federal da Fronteira Sul, Brazil; Laboratory of Molecular Psychiatry, Centro de Pesquisa Experimental (CPE) e Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil; Graduate Program in Psychiatry and Behavioral Sciences, Department of Psychiatry, Faculty of Medicine, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Flávia de Ávila Pereira
- Institute of Informatics, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Aline Zimerman
- Laboratory of Molecular Psychiatry, Centro de Pesquisa Experimental (CPE) e Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil; Graduate Program in Psychiatry and Behavioral Sciences, Department of Psychiatry, Faculty of Medicine, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Bruno Castro da Silva
- College of Information and Computer Sciences, University of Massachusetts (UMass), Amherst, MA, United States.
| | - Lisia von Diemen
- Graduate Program in Psychiatry and Behavioral Sciences, Department of Psychiatry, Faculty of Medicine, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil; Center for Drug and Alcohol Research, Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Ives Cavalcante Passos
- Laboratory of Molecular Psychiatry, Centro de Pesquisa Experimental (CPE) e Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil; Graduate Program in Psychiatry and Behavioral Sciences, Department of Psychiatry, Faculty of Medicine, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Mariana Recamonde-Mendoza
- Institute of Informatics, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil; Bioinformatics Core, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.
| |
Collapse
|
21
|
Chen J, Wang S, He E, Wang H, Wang L. Recognizing drowsiness in young men during real driving based on electroencephalography using an end-to-end deep learning approach. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Tomasi D, Wiers CE, Manza P, Shokri-Kojori E, Michele-Vera Y, Zhang R, Kroll D, Feldman D, McPherson K, Biesecker C, Schwandt M, Diazgranados N, Koob GF, Wang GJ, Volkow ND. Accelerated Aging of the Amygdala in Alcohol Use Disorders: Relevance to the Dark Side of Addiction. Cereb Cortex 2021; 31:3254-3265. [PMID: 33629726 DOI: 10.1093/cercor/bhab006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
Here we assessed changes in subcortical volumes in alcohol use disorder (AUD). A simple morphometry-based classifier (MC) was developed to identify subcortical volumes that distinguished 32 healthy controls (HCs) from 33 AUD patients, who were scanned twice, during early and later withdrawal, to assess the effect of abstinence on MC-features (Discovery cohort). We validated the novel classifier in an independent Validation cohort (19 AUD patients and 20 HCs). MC-accuracy reached 80% (Discovery) and 72% (Validation). MC features included the hippocampus, amygdala, cerebellum, putamen, corpus callosum, and brain stem, which were smaller and showed stronger age-related decreases in AUD than HCs, and the ventricles and cerebrospinal fluid, which were larger in AUD and older participants. The volume of the amygdala showed a positive association with anxiety and negative urgency in AUD. Repeated imaging during the third week of detoxification revealed slightly larger subcortical volumes in AUD patients, consistent with partial recovery during abstinence. The steeper age-associated volumetric reductions in stress- and reward-related subcortical regions in AUD are consistent with accelerated aging, whereas the amygdalar associations with negative urgency and anxiety in AUD patients support its involvement in the "dark side of addiction".
Collapse
Affiliation(s)
- Dardo Tomasi
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Corinde E Wiers
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Peter Manza
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | | | - Yonga Michele-Vera
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Rui Zhang
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Danielle Kroll
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Dana Feldman
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | | | | | - Melanie Schwandt
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Nancy Diazgranados
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - George F Koob
- National Institute on Drug Abuse, Bethesda, MD 21224, USA
| | - Gene-Jack Wang
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| |
Collapse
|
23
|
Khan DM, Yahya N, Kamel N, Faye I. Effective Connectivity in Default Mode Network for Alcoholism Diagnosis. IEEE Trans Neural Syst Rehabil Eng 2021; 29:796-808. [PMID: 33900918 DOI: 10.1109/tnsre.2021.3075737] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alcohol Use Disorder (AUD) is a chronic relapsing brain disease characterized by excessive alcohol use, loss of control over alcohol intake, and negative emotional states under no alcohol consumption. The key factor in successful treatment of AUD is the accurate diagnosis for better medical and therapy management. Conventionally, for individuals to be diagnosed with AUD, certain criteria as outlined in the Diagnostic and Statistical Manual of Mental Disorders (DSM) should be met. However, this process is subjective in nature and could be misleading due to memory problems and dishonesty of some AUD patients. In this paper, an assessment scheme for objective diagnosis of AUD is proposed. For this purpose, EEG recording of 31 healthy controls and 31 AUD patients are used for the calculation of effective connectivity (EC) between the various regions of the brain Default Mode Network (DMN). The EC is estimated using partial directed coherence (PDC) which are then used as input to a 3D Convolutional Neural Network (CNN) for binary classification of AUD cases. Using 5-fold cross validation, the classification of AUD vs. HC effective connectivity matrices using the proposed 3D-CNN gives an accuracy of 87.85 ± 4.64 %. For further validation, 32 and 30 subjects are randomly selected for training and testing, respectively, giving 100% correct classification of all the testing subjects.
Collapse
|
24
|
Wimalarathna H, Ankmnal-Veeranna S, Allan C, Agrawal SK, Allen P, Samarabandu J, Ladak HM. Comparison of machine learning models to classify Auditory Brainstem Responses recorded from children with Auditory Processing Disorder. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 200:105942. [PMID: 33515845 DOI: 10.1016/j.cmpb.2021.105942] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 01/10/2021] [Indexed: 06/12/2023]
Abstract
INTRODUCTION Auditory brainstem responses (ABRs) offer a unique opportunity to assess the neural integrity of the peripheral auditory nervous system in individuals presenting with listening difficulties. ABRs are typically recorded and analyzed by an audiologist who manually measures the timing and quality of the waveforms. The interpretation of ABRs requires considerable experience and training, and inappropriate interpretation can lead to incorrect judgments about the integrity of the system. Machine learning (ML) techniques may be a suitable approach to automate ABR interpretation and reduce human error. OBJECTIVES The main objective of this paper was to identify a suitable ML technique to automate the analysis of ABR responses recorded as a part of the electrophysiological testing in the Auditory Processing Disorder clinical test battery. METHODS ABR responses recorded during routine clinical assessment from 136 children being evaluated for auditory processing difficulties were analyzed using several common ML algorithms: Support Vector Machines (SVM), Random Forests (RF), Decision Trees (DT), Gradient Boosting (GB), Extreme Gradient Boosting (Xgboost), and Neural Networks (NN). A variety of signal feature extraction techniques were used to extract features from the ABR waveforms as inputs to the ML algorithms. Statistical significance testing and confusion matrices were used to identify the most robust model capable of accurately identifying neurological abnormalities present in ABRs. RESULTS Clinically significant features in the time-frequency representation of the signal were identified. The ML model trained using the Xgboost algorithm was identified as the most robust model with an accuracy of 92% compared to other models. CONCLUSION The findings of the present study demonstrate that it is possible to develop accurate ML models to automate the process of analyzing ABR waveforms recorded at suprathreshold levels. There is currently no ML-based application to screen children with listening difficulties. Therefore, it is expected that this work will be translated into an evaluation tool that can be used by audiologists in the clinic. Furthermore, this work may aid future researchers in exploring ML paradigms to improve clinical test batteries used by audiologists in achieving accurate diagnoses.
Collapse
Affiliation(s)
- Hasitha Wimalarathna
- Department of Electrical & Computer Engineering, Western University, London, Ontario, Canada; National Centre for Audiology, Western University, London, Ontario, Canada.
| | | | - Chris Allan
- National Centre for Audiology, Western University, London, Ontario, Canada; School of Communication Sciences & Disorders, Western University, Canada
| | - Sumit K Agrawal
- Department of Electrical & Computer Engineering, Western University, London, Ontario, Canada; National Centre for Audiology, Western University, London, Ontario, Canada; School of Biomedical Engineering, Western University, London, Ontario, Canada; Department of Medical Biophysics, Western University, London, Ontario, Canada; Department of Otolaryngology - Head and Neck Surgery, Western University, London, Ontario, Canada
| | - Prudence Allen
- National Centre for Audiology, Western University, London, Ontario, Canada; School of Communication Sciences & Disorders, Western University, Canada
| | - Jagath Samarabandu
- Department of Electrical & Computer Engineering, Western University, London, Ontario, Canada
| | - Hanif M Ladak
- Department of Electrical & Computer Engineering, Western University, London, Ontario, Canada; National Centre for Audiology, Western University, London, Ontario, Canada; School of Biomedical Engineering, Western University, London, Ontario, Canada; Department of Medical Biophysics, Western University, London, Ontario, Canada; Department of Otolaryngology - Head and Neck Surgery, Western University, London, Ontario, Canada
| |
Collapse
|
25
|
Hosseini MP, Hosseini A, Ahi K. A Review on Machine Learning for EEG Signal Processing in Bioengineering. IEEE Rev Biomed Eng 2021; 14:204-218. [PMID: 32011262 DOI: 10.1109/rbme.2020.2969915] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Electroencephalography (EEG) has been a staple method for identifying certain health conditions in patients since its discovery. Due to the many different types of classifiers available to use, the analysis methods are also equally numerous. In this review, we will be examining specifically machine learning methods that have been developed for EEG analysis with bioengineering applications. We reviewed literature from 1988 to 2018 to capture previous and current classification methods for EEG in multiple applications. From this information, we are able to determine the overall effectiveness of each machine learning method as well as the key characteristics. We have found that all the primary methods used in machine learning have been applied in some form in EEG classification. This ranges from Naive-Bayes to Decision Tree/Random Forest, to Support Vector Machine (SVM). Supervised learning methods are on average of higher accuracy than their unsupervised counterparts. This includes SVM and KNN. While each of the methods individually is limited in their accuracy in their respective applications, there is hope that the combination of methods when implemented properly has a higher overall classification accuracy. This paper provides a comprehensive overview of Machine Learning applications used in EEG analysis. It also gives an overview of each of the methods and general applications that each is best suited to.
Collapse
|
26
|
Bavkar S, Iyer B, Deosarkar S. Optimal EEG channels selection for alcoholism screening using EMD domain statistical features and harmony search algorithm. Biocybern Biomed Eng 2021. [DOI: 10.1016/j.bbe.2020.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
27
|
Khosla A, Khandnor P, Chand T. A comparative analysis of signal processing and classification methods for different applications based on EEG signals. Biocybern Biomed Eng 2020. [DOI: 10.1016/j.bbe.2020.02.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Anuragi A, Sisodia DS. Empirical wavelet transform based automated alcoholism detecting using EEG signal features. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2019.101777] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Khajehpour H, Mohagheghian F, Ekhtiari H, Makkiabadi B, Jafari AH, Eqlimi E, Harirchian MH. Computer-aided classifying and characterizing of methamphetamine use disorder using resting-state EEG. Cogn Neurodyn 2019; 13:519-530. [PMID: 31741689 PMCID: PMC6825232 DOI: 10.1007/s11571-019-09550-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/18/2019] [Accepted: 08/01/2019] [Indexed: 12/17/2022] Open
Abstract
Methamphetamine (meth) is potently addictive and is closely linked to high crime rates in the world. Since meth withdrawal is very painful and difficult, most abusers relapse to abuse in traditional treatments. Therefore, developing accurate data-driven methods based on brain functional connectivity could be helpful in classifying and characterizing the neural features of meth dependence to optimize the treatments. Accordingly, in this study, computation of functional connectivity using resting-state EEG was used to classify meth dependence. Firstly, brain functional connectivity networks (FCNs) of 36 meth dependent individuals and 24 normal controls were constructed by weighted phase lag index, in six frequency bands: delta (1-4 Hz), theta (4-8 Hz), alpha (8-15 Hz), beta (15-30 Hz), gamma (30-45 Hz) and wideband (1-45 Hz).Then, significant differences in graph metrics and connectivity values of the FCNs were used to distinguish the two groups. Support vector machine classifier had the best performance with 93% accuracy, 100% sensitivity, 83% specificity and 0.94 F-score for differentiating between MDIs and NCs. The best performance yielded when selected features were the combination of connectivity values and graph metrics in the beta frequency band.
Collapse
Affiliation(s)
- Hassan Khajehpour
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Research Center for Biomedical Technology and Robotics (RCBTR), Institute of Advanced Medical Technologies (IAMT), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Fahimeh Mohagheghian
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Hamed Ekhtiari
- Laureate Institute for Brain Research (LIBR), Tulsa, OK USA
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Bahador Makkiabadi
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Research Center for Biomedical Technology and Robotics (RCBTR), Institute of Advanced Medical Technologies (IAMT), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Amir Homayoun Jafari
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Research Center for Biomedical Technology and Robotics (RCBTR), Institute of Advanced Medical Technologies (IAMT), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Ehsan Eqlimi
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Research Center for Biomedical Technology and Robotics (RCBTR), Institute of Advanced Medical Technologies (IAMT), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Hossein Harirchian
- Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
30
|
Alcohol use disorder detection using EEG Signal features and flexible analytical wavelet transform. Biomed Signal Process Control 2019. [DOI: 10.1016/j.bspc.2018.10.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Direct Assessment of Alcohol Consumption in Mental State Using Brain Computer Interfaces and Grammatical Evolution. INVENTIONS 2018. [DOI: 10.3390/inventions3030051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Alcohol consumption affects the function of the brain and long-term excessive alcohol intake can lead to severe brain disorders. Wearable electroencephalogram (EEG) recording devices combined with Brain Computer Interface (BCI) software may serve as a tool for alcohol-related brain wave assessment. In this paper, a method for mental state assessment from alcohol-related EEG recordings is proposed. EEG recordings are acquired with the Emotiv EPOC+, after consumption of three separate doses of alcohol. Data from the four stages (alcohol-free and three levels of doses) are processed using the OpenViBE platform. Spectral and statistical features are calculated, and Grammatical Evolution is employed for discrimination across four classes. Obtained results in terms of accuracy reached high levels (89.95%), which renders the proposed approach suitable for direct assessment of the driver’s mental state for road safety and accident avoidance in a potential in-vehicle smart system.
Collapse
|
32
|
Walczak S. The Role of Artificial Intelligence in Clinical Decision Support Systems and a Classification Framework. ACTA ACUST UNITED AC 2018. [DOI: 10.4018/ijccp.2018070103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Clinical decision support systems are meant to improve the quality of decision-making in healthcare. Artificial intelligence is the science of creating intelligent systems that solve complex problems at the level of or better than human experts. Combining artificial intelligence methods into clinical decision support will enable the utilization of large quantities of data to produce relevant decision-making information to practitioners. This article examines various artificial intelligence methodologies and shows how they may be incorporated into clinical decision-making systems. A framework for describing artificial intelligence applications in clinical decision support systems is presented.
Collapse
|