1
|
Yu Y, Zhou Z, Song C, Zhang J. A novel controllable energy constraints-variational mode decomposition denoising algorithm. Biomed Eng Lett 2025; 15:415-426. [PMID: 40026881 PMCID: PMC11871270 DOI: 10.1007/s13534-025-00457-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/27/2024] [Accepted: 01/12/2025] [Indexed: 03/05/2025] Open
Abstract
Electrocardiogram (ECG) is mainly utilized for diagnosing heart diseases. However, various noises can influence the diagnostic accuracy. This paper presents a novel algorithm for denoising ECG signals by employing the Controlled Energy Constraint-Variational Mode Decomposition (CEC-VMD). Firstly, the noisy ECG signal is decomposed using CEC-VMD to obtain a set of intrinsic mode functions (IMFs) and a residual r. A modulation factor is utilized to minimize the modal information contained in the decomposed residuals. Furthermore, this paper presents an update formula for the modal and central frequencies based on ADMM. Finally, all the IMFs are integrated to obtain the ECG signal after denoising. By varying the value of the modulation factor, not only is the spectral energy loss of each mode reduced, but the orthogonality between the modes is also improved to better concentrate the energy of each mode. The experiments on simulated signals and MIT-BIH signals show that the average SNR after CEC-VMD denoising is 22.5139, the RMSE is 0.1128, and the CC is 0.9882. In addition, the proposed algorithm effectively improves the classification accuracy values, which are 99.0% and 99.9% for the SVM and KNN classifiers, respectively. These values are improved compared with those of EMD, VMD, SWT, SVD-VMD, and VMD-SWT. The proposed CEC-VMD technique for denoising ECG signals removes noise and better preserves features.
Collapse
Affiliation(s)
- Yue Yu
- Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122 Jiangsu China
| | - Zilong Zhou
- Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122 Jiangsu China
| | - Chaoyang Song
- Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122 Jiangsu China
| | - Jingxiang Zhang
- Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122 Jiangsu China
| |
Collapse
|
2
|
Wang XL, Wu RJ, Feng Q, Xiong JB. Long-duration electrocardiogram classification based on Subspace Search VMD and Fourier Pooling Broad Learning System. Med Eng Phys 2025; 135:104267. [PMID: 39922647 DOI: 10.1016/j.medengphy.2024.104267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 10/28/2024] [Accepted: 11/25/2024] [Indexed: 02/10/2025]
Abstract
Detecting early stages of cardiovascular disease from short-duration Electrocardiogram (ECG) signals is challenging. However, long-duration ECG data are susceptible to various types of noise during acquisition. To tackle the problem, Subspace Search Variational Mode Decomposition (SSVMD) was proposed, which determines the optimal solution by continuously narrowing the parameter subspace and implements data preprocessing by removing baseline drift noise and high-frequency noise modes. In response to the unclear spatial characteristics and excessive data dimension in long-duration ECG data, a Fourier Pooling Broad Learning System (FPBLS) is proposed. FPBLS integrates a Fourier feature layer and a broad pooling layer to express the input data with more obvious features, reducing the data dimension and maintaining effective features. The theory is verified using the MIT-BIH arrhythmia database and achieves better results compared to the latest literature method.
Collapse
Affiliation(s)
- Xiao-Li Wang
- School of Electronics and Information, Guangdong Polytechnic Normal University, Guangzhou, 510660, China
| | - Run-Jie Wu
- School of Electronics and Information, Guangdong Polytechnic Normal University, Guangzhou, 510660, China
| | - Qi Feng
- School of Electronics and Information, Guangdong Polytechnic Normal University, Guangzhou, 510660, China
| | - Jian-Bin Xiong
- School of Automation, Guangdong Polytechnic Normal University, Guangzhou, 510450, China.
| |
Collapse
|
3
|
S DL, R J. Effective cardiac disease classification using FS-XGB and GWO approach. Med Eng Phys 2024; 132:104239. [PMID: 39428137 DOI: 10.1016/j.medengphy.2024.104239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/09/2024] [Accepted: 09/15/2024] [Indexed: 10/22/2024]
Abstract
Globally, cardiovascular diseases (CVDs) are a leading cause of death; however, their impact can be greatly mitigated by early detection and treatment. Machine learning (ML)-based algorithms that use features extracted from electrocardiogram (ECG) signals are known to provide good accuracy in predicting various CVDs. Thus, in order to build more effective and efficient machine learning models, it is necessary to extract significant features from ECGs. In order to reduce overfitting and training overhead and improve model performance even more, feature selection or dimensionality reduction is essential. In this regard, the current work uses the grey wolf optimization (GWO) technique to pick a reduced feature set after extracting pertinent characteristics from ECG signals in order to identify five different types of CVDs. On the basis of the feature relevance of the chosen features, a feature-specific extreme gradient boosting approach (FS-XGB) is also suggested. The suggested FS-XGB classifier's performance is contrasted with that of other machine learning techniques, including gradient boosting method, AdaBoost, naïve Bayes, and support vector machine (SVM). The proposed methodology achieves a maximum classification accuracy, precision, recall, F1-score, and AUC value of 98.8 %, 100 %, 99.8 %, 100 %, and 98.8 %, respectively, with just seven optimal features, significantly fewer than the number of features used in existing works.
Collapse
Affiliation(s)
- Daphin Lilda S
- Dept. of Electrical and Electronics Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India.
| | - Jayaparvathy R
- Dept. of Electrical and Electronics Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India
| |
Collapse
|
4
|
Moreno-Sánchez PA, García-Isla G, Corino VDA, Vehkaoja A, Brukamp K, van Gils M, Mainardi L. ECG-based data-driven solutions for diagnosis and prognosis of cardiovascular diseases: A systematic review. Comput Biol Med 2024; 172:108235. [PMID: 38460311 DOI: 10.1016/j.compbiomed.2024.108235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/07/2024] [Accepted: 02/25/2024] [Indexed: 03/11/2024]
Abstract
Cardiovascular diseases (CVD) are a leading cause of death globally, and result in significant morbidity and reduced quality of life. The electrocardiogram (ECG) plays a crucial role in CVD diagnosis, prognosis, and prevention; however, different challenges still remain, such as an increasing unmet demand for skilled cardiologists capable of accurately interpreting ECG. This leads to higher workload and potential diagnostic inaccuracies. Data-driven approaches, such as machine learning (ML) and deep learning (DL) have emerged to improve existing computer-assisted solutions and enhance physicians' ECG interpretation of the complex mechanisms underlying CVD. However, many ML and DL models used to detect ECG-based CVD suffer from a lack of explainability, bias, as well as ethical, legal, and societal implications (ELSI). Despite the critical importance of these Trustworthy Artificial Intelligence (AI) aspects, there is a lack of comprehensive literature reviews that examine the current trends in ECG-based solutions for CVD diagnosis or prognosis that use ML and DL models and address the Trustworthy AI requirements. This review aims to bridge this knowledge gap by providing a systematic review to undertake a holistic analysis across multiple dimensions of these data-driven models such as type of CVD addressed, dataset characteristics, data input modalities, ML and DL algorithms (with a focus on DL), and aspects of Trustworthy AI like explainability, bias and ethical considerations. Additionally, within the analyzed dimensions, various challenges are identified. To these, we provide concrete recommendations, equipping other researchers with valuable insights to understand the current state of the field comprehensively.
Collapse
Affiliation(s)
| | - Guadalupe García-Isla
- Department of Electronics Information and Bioengineering, Politecnico di Milano, Italy
| | - Valentina D A Corino
- Department of Electronics Information and Bioengineering, Politecnico di Milano, Italy
| | - Antti Vehkaoja
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | - Mark van Gils
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Luca Mainardi
- Department of Electronics Information and Bioengineering, Politecnico di Milano, Italy
| |
Collapse
|
5
|
Qu J, Sun Q, Wu W, Zhang F, Liang C, Chen Y, Wang C. An interpretable shapelets-based method for myocardial infarction detection using dynamic learning and deep learning. Physiol Meas 2024; 45:035001. [PMID: 38266290 DOI: 10.1088/1361-6579/ad2217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/24/2024] [Indexed: 01/26/2024]
Abstract
Objective.Myocardial infarction (MI) is a prevalent cardiovascular disease that contributes to global mortality rates. Timely diagnosis and treatment of MI are crucial in reducing its fatality rate. Currently, electrocardiography (ECG) serves as the primary tool for clinical diagnosis. However, detecting MI accurately through ECG remains challenging due to the complex and subtle pathological ECG changes it causes. To enhance the accuracy of ECG in detecting MI, a more thorough exploration of ECG signals is necessary to extract significant features.Approach.In this paper, we propose an interpretable shapelet-based approach for MI detection using dynamic learning and deep learning. Firstly, the intrinsic dynamics of ECG signals are learned through dynamic learning. Then, a deep neural network is utilized to extract and select shapelets from ECG dynamics, which can capture locally specific ECG changes, and serve as discriminative features for identifying MI patients. Finally, the ensemble model for MI detection is built by integrating shapelets of multi-dimensional ECG dynamic signals.Main results.The performance of the proposed method is evaluated on the public PTB dataset with accuracy, sensitivity, and specificity of 94.11%, 94.97%, and 90.98%.Significance.The shapelets obtained in this study exhibit significant morphological differences between MI and healthy subjects.
Collapse
Affiliation(s)
- Jierui Qu
- School of Control Science and Engineering, Shandong University, Jinan 250061, People's Republic of China
| | - Qinghua Sun
- School of Control Science and Engineering, Shandong University, Jinan 250061, People's Republic of China
- Center for Intelligent Medical Engineering, Shandong University, Jinan 250061, People's Republic of China
| | - Weiming Wu
- School of Control Science and Engineering, Shandong University, Jinan 250061, People's Republic of China
- Center for Intelligent Medical Engineering, Shandong University, Jinan 250061, People's Republic of China
| | - Fukai Zhang
- School of Control Science and Engineering, Shandong University, Jinan 250061, People's Republic of China
- Center for Intelligent Medical Engineering, Shandong University, Jinan 250061, People's Republic of China
| | - Chunmiao Liang
- School of Control Science and Engineering, Shandong University, Jinan 250061, People's Republic of China
- Center for Intelligent Medical Engineering, Shandong University, Jinan 250061, People's Republic of China
| | - Yuguo Chen
- Department of Emergency, Qilu Hospital of Shandong University, Jinan 250012, People's Republic of China
| | - Cong Wang
- School of Control Science and Engineering, Shandong University, Jinan 250061, People's Republic of China
- Center for Intelligent Medical Engineering, Shandong University, Jinan 250061, People's Republic of China
| |
Collapse
|
6
|
Kijonka J, Vavra P, Penhaker M, Bibbo D, Kudrna P, Kubicek J. Present results and methods of vectorcardiographic diagnostics of ischemic heart disease. Comput Biol Med 2024; 169:107781. [PMID: 38103481 DOI: 10.1016/j.compbiomed.2023.107781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/03/2023] [Accepted: 11/28/2023] [Indexed: 12/19/2023]
Abstract
This article presents an overview of existing approaches to perform vectorcardiographic (VCG) diagnostics of ischemic heart disease (IHD). Individual methodologies are divided into categories to create a comprehensive and clear overview of electrical cardiac activity measurement, signal pre-processing, features extraction and classification procedures. An emphasis is placed on methods describing the electrical heart space (EHS) by several features extraction techniques based on spatiotemporal characteristics or signal modelling and signal transformations. Performance of individual methodologies are compared depending on classification of extent of ischemia, acute forms - myocardial infarction (MI) and myocardial scars localization. Based on a comparison of imaging methods, the advantages of VCG over the standard 12-leads ECG such as providing a 3D orthogonal leads imaging, better performance, and appropriate computer processing are highlighted. The issues of electrical cardiac activity measurements on body surface, the lack of VKG databases supported by a more accurate imaging method, possibility of comparison with the physiology of individual cases are outlined as potential reserves for future research.
Collapse
Affiliation(s)
- Jan Kijonka
- Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17.listopadu 15, Ostrava, Poruba, 708 00, Czech Republic.
| | - Petr Vavra
- Department of Surgical Studies, Faculty of Medicine of the University of Ostrava, Syllabova 19, 703 00, Ostrava 3, Czech Republic; Surgery Clinic, University Hospital Ostrava, 17. listopadu 13, Ostrava, Czech Republic.
| | - Marek Penhaker
- Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17.listopadu 15, Ostrava, Poruba, 708 00, Czech Republic; Faculty of Electrical Engineering and Information Technology, University of Zilina, Zilina, Czech Republic.
| | - Daniele Bibbo
- Department of Industrial, Electronic and Mechanical Engineering, Roma Tre University, Via Vito Volterra, 62, 00146, Rome, Italy.
| | - Petr Kudrna
- Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, Nam. Sitna 3105, 272 01, Kladno, Czech Republic.
| | - Jan Kubicek
- Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17.listopadu 15, Ostrava, Poruba, 708 00, Czech Republic.
| |
Collapse
|
7
|
Han Y, Zhao Y, Lin Z, Liang Z, Chen S, Zhang J. Differential diagnosis between dilated cardiomyopathy and ischemic cardiomyopathy based on variational mode decomposition and high order spectra analysis. Health Inf Sci Syst 2023; 11:43. [PMID: 37744026 PMCID: PMC10511396 DOI: 10.1007/s13755-023-00244-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/26/2023] [Indexed: 09/26/2023] Open
Abstract
The clinical manifestations of ischemic cardiomyopathy (ICM) bear resemblance to dilated cardiomyopathy (DCM). The definitive diagnosis of DCM necessitates the identification of invasive, costly, and contraindicated coronary angiography. Many diagnostic studies of cardiovascular disease have tried modal decomposition based on electrocardiogram (ECG) signals. However, these studies ignored the connection between modes and other fields, thus limiting the interpretability of modes to ECG signals and the classification performance of models. This study proposes a classification algorithm based on variational mode decomposition (VMD) and high order spectra, which decomposes the preprocessed ECG signal and extracts its first five modes obtained through VMD. After that, these modes are estimated for their corresponding bispectrums, and the feature vector is composed of fifteen features including bispectral, frequency, and nonlinear features based on this. Finally, a dataset containing 75 subjects (38 DCM, 37 ICM) is classified and compared using random forest (RF), decision tree, support vector machine, and K-nearest neighbor. The results show that, in comparison to previous approaches, the technique proposed provides a better categorization for DCM and ICM of ECG signals, which delivers 98.21% classification accuracy, 98.22% sensitivity, and 98.19% specificity. And mode 3 always has the best performance among single mode. The proposed computerized framework significantly improves automatic diagnostic performance, which can help relieve the working pressure on doctors, possible economic burden and health threaten.
Collapse
Affiliation(s)
- Yuduan Han
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yunyue Zhao
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat‐sen University, Guangzhou, China
| | - Zhuochen Lin
- Department of Medical Records, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zichao Liang
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Siyang Chen
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jinxin Zhang
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
A Review on the Applications of Time-Frequency Methods in ECG Analysis. JOURNAL OF HEALTHCARE ENGINEERING 2023. [DOI: 10.1155/2023/3145483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The joint time-frequency analysis method represents a signal in both time and frequency. Thus, it provides more information compared to other one-dimensional methods. Several researchers recently used time-frequency methods such as the wavelet transform, short-time Fourier transform, empirical mode decomposition and reported impressive results in various electrophysiological studies. The current review provides comprehensive knowledge about different time-frequency methods and their applications in various ECG-based analyses. Typical applications include ECG signal denoising, arrhythmia detection, sleep apnea detection, biometric identification, emotion detection, and driver drowsiness detection. The paper also discusses the limitations of these methods. The review will form a reference for future researchers willing to conduct research in the same field.
Collapse
|
9
|
Sun Q, Xu Z, Liang C, Zhang F, Li J, Liu R, Chen T, Ji B, Chen Y, Wang C. A dynamic learning-based ECG feature extraction method for myocardial infarction detection. Physiol Meas 2023; 43. [PMID: 36595315 DOI: 10.1088/1361-6579/acaa1a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/08/2022] [Indexed: 12/13/2022]
Abstract
Objective.Myocardial infarction (MI) is one of the leading causes of human mortality in all cardiovascular diseases globally. Currently, the 12-lead electrocardiogram (ECG) is widely used as a first-line diagnostic tool for MI. However, visual inspection of pathological ECG variations induced by MI remains a great challenge for cardiologists, since pathological changes are usually complex and slight.Approach.To have an accuracy of the MI detection, the prominent features extracted from in-depth mining of ECG signals need to be explored. In this study, a dynamic learning algorithm is applied to discover prominent features for identifying MI patients via mining the hidden inherent dynamics in ECG signals. Firstly, the distinctive dynamic features extracted from the multi-scale decomposition of dynamic modeling of the ECG signals effectively and comprehensibly represent the pathological ECG changes. Secondly, a few most important dynamic features are filtered through a hybrid feature selection algorithm based on filter and wrapper to form a representative reduced feature set. Finally, different classifiers based on the reduced feature set are trained and tested on the public PTB dataset and an independent clinical data set.Main results.Our proposed method achieves a significant improvement in detecting MI patients under the inter-patient paradigm, with an accuracy of 94.75%, sensitivity of 94.18%, and specificity of 96.33% on the PTB dataset. Furthermore, classifiers trained on PTB are verified on the test data set collected from 200 patients, yielding a maximum accuracy of 84.96%, sensitivity of 85.04%, and specificity of 84.80%.Significance.The experimental results demonstrate that our method performs distinctive dynamic feature extraction and may be used as an effective auxiliary tool to diagnose MI patients.
Collapse
Affiliation(s)
- Qinghua Sun
- School of Control Science and Engineering, Shandong University, Jinan 250061, People's Republic of China.,Center for Intelligent Medical Engineering, Shandong University, Jinan 250061, People's Republic of China
| | - Zhanfei Xu
- School of Control Science and Engineering, Shandong University, Jinan 250061, People's Republic of China
| | - Chunmiao Liang
- School of Control Science and Engineering, Shandong University, Jinan 250061, People's Republic of China
| | - Fukai Zhang
- School of Control Science and Engineering, Shandong University, Jinan 250061, People's Republic of China.,Center for Intelligent Medical Engineering, Shandong University, Jinan 250061, People's Republic of China
| | - Jiali Li
- School of Control Science and Engineering, Shandong University, Jinan 250061, People's Republic of China
| | - Rugang Liu
- Department of Emergency, Qilu Hospital of Shandong University, Jinan 250012, People's Republic of China
| | - Tianrui Chen
- School of Control Science and Engineering, Shandong University, Jinan 250061, People's Republic of China.,Center for Intelligent Medical Engineering, Shandong University, Jinan 250061, People's Republic of China
| | - Bing Ji
- School of Control Science and Engineering, Shandong University, Jinan 250061, People's Republic of China.,Center for Intelligent Medical Engineering, Shandong University, Jinan 250061, People's Republic of China
| | - Yuguo Chen
- Department of Emergency, Qilu Hospital of Shandong University, Jinan 250012, People's Republic of China
| | - Cong Wang
- School of Control Science and Engineering, Shandong University, Jinan 250061, People's Republic of China.,Center for Intelligent Medical Engineering, Shandong University, Jinan 250061, People's Republic of China
| |
Collapse
|
10
|
Classification of cardiac electrical signals between patients with myocardial infarction and normal subjects by using nonlinear dynamics features and different classification models. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Moridian P, Shoeibi A, Khodatars M, Jafari M, Pachori RB, Khadem A, Alizadehsani R, Ling SH. Automatic diagnosis of sleep apnea from biomedical signals using artificial intelligence techniques: Methods, challenges, and future works. WIRES DATA MINING AND KNOWLEDGE DISCOVERY 2022; 12. [DOI: 10.1002/widm.1478] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 09/09/2022] [Indexed: 01/03/2025]
Abstract
AbstractApnea is a sleep disorder that stops or reduces airflow for a short time during sleep. Sleep apnea may last for a few seconds and happen for many while sleeping. This reduction in breathing is associated with loud snoring, which may awaken the person with a feeling of suffocation. So far, a variety of methods have been introduced by researchers to diagnose sleep apnea, among which the polysomnography (PSG) method is known to be the best. Analysis of PSG signals is very complicated. Many studies have been conducted on the automatic diagnosis of sleep apnea from biological signals using artificial intelligence (AI), including machine learning (ML) and deep learning (DL) methods. This research reviews and investigates the studies on the diagnosis of sleep apnea using AI methods. First, computer aided diagnosis system (CADS) for sleep apnea using ML and DL techniques along with its parts including dataset, preprocessing, and ML and DL methods are introduced. This research also summarizes the important specifications of the studies on the diagnosis of sleep apnea using ML and DL methods in a table. In the following, a comprehensive discussion is made on the studies carried out in this field. The challenges in the diagnosis of sleep apnea using AI methods are of paramount importance for researchers. Accordingly, these obstacles are elaborately addressed. In another section, the most important future works for studies on sleep apnea detection from PSG signals and AI techniques are presented. Ultimately, the essential findings of this study are provided in the conclusion section.This article is categorized under:
Technologies > Artificial Intelligence
Application Areas > Data Mining Software Tools
Algorithmic Development > Biological Data Mining
Collapse
Affiliation(s)
- Parisa Moridian
- Faculty of Engineering, Science and Research Branch Islamic Azad University Tehran Iran
| | - Afshin Shoeibi
- Faculty of Electrical Engineering BDAL Lab, K. N. Toosi University of Technology Tehran Iran
| | - Marjane Khodatars
- Department of Medical Engineering, Mashhad Branch Islamic Azad University Mashhad Iran
| | - Mahboobeh Jafari
- Electrical and Computer Engineering Faculty Semnan University Semnan Iran
| | - Ram Bilas Pachori
- Department of Electrical Engineering Indian Institute of Technology Indore Indore India
| | - Ali Khadem
- Department of Biomedical Engineering Faculty of Electrical Engineering, K. N. Toosi University of Technology Tehran Iran
| | - Roohallah Alizadehsani
- Institute for Intelligent Systems Research and Innovation (IISRI) Deakin University Geelong Victoria Australia
| | - Sai Ho Ling
- Faculty of Engineering and IT University of Technology Sydney (UTS) Sydney New South Wales Australia
| |
Collapse
|
12
|
Huang JD, Wang J, Ramsey E, Leavey G, Chico TJA, Condell J. Applying Artificial Intelligence to Wearable Sensor Data to Diagnose and Predict Cardiovascular Disease: A Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:8002. [PMID: 36298352 PMCID: PMC9610988 DOI: 10.3390/s22208002] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/06/2022] [Accepted: 10/13/2022] [Indexed: 06/06/2023]
Abstract
Cardiovascular disease (CVD) is the world's leading cause of mortality. There is significant interest in using Artificial Intelligence (AI) to analyse data from novel sensors such as wearables to provide an earlier and more accurate prediction and diagnosis of heart disease. Digital health technologies that fuse AI and sensing devices may help disease prevention and reduce the substantial morbidity and mortality caused by CVD worldwide. In this review, we identify and describe recent developments in the application of digital health for CVD, focusing on AI approaches for CVD detection, diagnosis, and prediction through AI models driven by data collected from wearables. We summarise the literature on the use of wearables and AI in cardiovascular disease diagnosis, followed by a detailed description of the dominant AI approaches applied for modelling and prediction using data acquired from sensors such as wearables. We discuss the AI algorithms and models and clinical applications and find that AI and machine-learning-based approaches are superior to traditional or conventional statistical methods for predicting cardiovascular events. However, further studies evaluating the applicability of such algorithms in the real world are needed. In addition, improvements in wearable device data accuracy and better management of their application are required. Lastly, we discuss the challenges that the introduction of such technologies into routine healthcare may face.
Collapse
Affiliation(s)
- Jian-Dong Huang
- School of Computing, Engineering and Intelligent Systems, Ulster University at Magee, Londonderry BT48 7JL, UK
| | - Jinling Wang
- School of Computing, Engineering and Intelligent Systems, Ulster University at Magee, Londonderry BT48 7JL, UK
| | - Elaine Ramsey
- Department of Global Business & Enterprise, Ulster University at Magee, Londonderry BT48 7JL, UK
| | - Gerard Leavey
- School of Psychology, Ulster University at Coleraine, Londonderry BT52 1SA, UK
| | - Timothy J. A. Chico
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Joan Condell
- School of Computing, Engineering and Intelligent Systems, Ulster University at Magee, Londonderry BT48 7JL, UK
| |
Collapse
|
13
|
Hassannataj Joloudari J, Mojrian S, Nodehi I, Mashmool A, Kiani Zadegan Z, Khanjani Shirkharkolaie S, Alizadehsani R, Tamadon T, Khosravi S, Akbari Kohnehshari M, Hassannatajjeloudari E, Sharifrazi D, Mosavi A, Loh HW, Tan RS, Acharya UR. Application of artificial intelligence techniques for automated detection of myocardial infarction: a review. Physiol Meas 2022; 43. [PMID: 35803247 DOI: 10.1088/1361-6579/ac7fd9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 07/08/2022] [Indexed: 11/11/2022]
Abstract
Myocardial infarction (MI) results in heart muscle injury due to receiving insufficient blood flow. MI is the most common cause of mortality in middle-aged and elderly individuals worldwide. To diagnose MI, clinicians need to interpret electrocardiography (ECG) signals, which requires expertise and is subject to observer bias. Artificial intelligence-based methods can be utilized to screen for or diagnose MI automatically using ECG signals. In this work, we conducted a comprehensive assessment of artificial intelligence-based approaches for MI detection based on ECG and some other biophysical signals, including machine learning (ML) and deep learning (DL) models. The performance of traditional ML methods relies on handcrafted features and manual selection of ECG signals, whereas DL models can automate these tasks. The review observed that deep convolutional neural networks (DCNNs) yielded excellent classification performance for MI diagnosis, which explains why they have become prevalent in recent years. To our knowledge, this is the first comprehensive survey of artificial intelligence techniques employed for MI diagnosis using ECG and some other biophysical signals.
Collapse
Affiliation(s)
- Javad Hassannataj Joloudari
- Computer Engineering, University of Birjand, South Khorasan Province, Birjand, Iran, Birjand, South Khorasan, 9717434765, Iran (the Islamic Republic of)
| | - Sanaz Mojrian
- Mazandaran University of Science and Technology, Mazandaran Province, Babol, Danesh 5, No. Sheykh Tabarasi, Iran, Babol, 47166-85635, Iran (the Islamic Republic of)
| | - Issa Nodehi
- University of Qom, Qom, shahid khodakaram blvd، Iran, Qom, Qom, 1519-37195, Iran (the Islamic Republic of)
| | - Amir Mashmool
- University of Geneva, Via del Molo, 65, 16128 Genova GE, Italy, Geneva, Geneva, 16121, ITALY
| | - Zeynab Kiani Zadegan
- University of Birjand, South Khorasan Province, Birjand, Iran, Birjand, 9717434765, Iran (the Islamic Republic of)
| | - Sahar Khanjani Shirkharkolaie
- Mazandaran University of Science and Technology, Mazandaran Province, Babol, Danesh 5, No. Sheykh Tabarasi, Iran, Babol, 47166-85635, Iran (the Islamic Republic of)
| | - Roohallah Alizadehsani
- Deakin University - Geelong Waterfront Campus, IISRI, Geelong, Victoria, 3220, AUSTRALIA
| | - Tahereh Tamadon
- University of Birjand, South Khorasan Province, Birjand, Iran, Birjand, 9717434765, Iran (the Islamic Republic of)
| | - Samiyeh Khosravi
- University of Birjand, South Khorasan Province, Birjand, Iran, Birjand, 9717434765, Iran (the Islamic Republic of)
| | - Mitra Akbari Kohnehshari
- Bu Ali Sina University, QFRQ+V8H District 2, Hamedan, Iran, Hamedan, Hamedan, 6516738695, Iran (the Islamic Republic of)
| | - Edris Hassannatajjeloudari
- Maragheh University of Medical Sciences, 87VG+9J6, Maragheh, East Azerbaijan Province, Iran, Maragheh, East Azerbaijan, 55158-78151, Iran (the Islamic Republic of)
| | - Danial Sharifrazi
- Islamic Azad University Shiraz, Shiraz University, Iran, Shiraz, Fars, 74731-71987, Iran (the Islamic Republic of)
| | - Amir Mosavi
- Faculty of Informatics, Obuda University, Faculty of Informatics, Obuda University, Budapest, Hungary, Budapest, 1034, HUNGARY
| | - Hui Wen Loh
- Singapore University of Social Sciences, SG, Clementi Rd, 463, Singapore 599494, Singapore, 599491, SINGAPORE
| | - Ru-San Tan
- Department of Cardiology, National Heart Centre Singapore, 5 Hospital Dr, Singapore 169609, Singapore, 168752, SINGAPORE
| | - U Rajendra Acharya
- Electronic Computer Engineering Division, Ngee Ann Polytechnic, 535 Clementi Road, Singapore 599489, Singapore, 599489, SINGAPORE
| |
Collapse
|
14
|
Novel FEM-Based Wavelet Bases and Their Contextualized Applications to Bearing Fault Diagnosis. MACHINES 2022. [DOI: 10.3390/machines10060440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Feature extraction herein refers to using an appropriate wavelet basis to filter vibration signals with the aim to reveal fault transient characteristics, which underlies bearing fault diagnosis. Wavelet transform has developed into a well-established signal processing approach with wide applications in bearing fault diagnosis. Nevertheless, a suitable wavelet basis is essential for wavelet transform to perform its best. So far, numerous wavelet bases are available for bearing diagnosis, most of which, however, have a waveform analogous to that of impulse responses of a single-degree-of-freedom system. In fact, bearings are of multi-degree-of-freedom and not totally rigid. Furthermore, a specific wavelet basis is definitely unable to accommodate all bearing vibrations, given that fault characteristics vary with bearings’ operating conditions and fault types. As such, a simulated wavelet-driven personalized scheme is proposed to improve bearing fault diagnosis for contextualized engineering practical applications. For a specific bearing of interest, personalized finite element models (FEM) with various faults are constructed and corresponding fault-induced responses are then obtained. Afterward, FEM-based wavelet bases are formulated and specified by its discrete values from such responses. Taking NU306 bearing with inner or outer defect for example, FEM-based wavelet basis is applied to the corresponding experimental signals by means of wavelet filtering. The comparisons with adaptive Morlet and impulse wavelet demonstrate that the personalized FEM-based wavelet basis match very well with the fault-induced transients present in experimental bearing vibrations and thus have a promising superiority and expandability.
Collapse
|
15
|
Zhang S, Liu G, Xiao R, Cui W, Cai J, Hu X, Sun Y, Qiu J, Qi Y. A combination of statistical parameters for epileptic seizure detection and classification using VMD and NLTWSVM. Biocybern Biomed Eng 2022. [DOI: 10.1016/j.bbe.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Dee EC, Yu RC, Celi LA, Nehal US. AIM and Business Models of Healthcare. Artif Intell Med 2022. [DOI: 10.1007/978-3-030-64573-1_247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Martin H, Morar U, Izquierdo W, Cabrerizo M, Cabrera A, Adjouadi M. Real-time frequency-independent single-Lead and single-beat myocardial infarction detection. Artif Intell Med 2021; 121:102179. [PMID: 34763801 DOI: 10.1016/j.artmed.2021.102179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 07/29/2021] [Accepted: 09/21/2021] [Indexed: 11/26/2022]
Abstract
This study proposes a novel real-time frequency-independent myocardial infarction detector for Lead II electrocardiograms. The underlying Deep-LSTM network is trained using the PTB-XL database, the largest to date publicly available electrocardiography dataset, and is tested over the same and the older PTB database. By testing the model over distinct datasets, collected under different conditions and from different patients, a more realistic measure of the performance can be gauged from the deployed system. The detector is trained over 3589 myocardial infarction (MI) patients and 7115 healthy controls (HC) while it is evaluated on 1076 MIs and 1840 HCs. The proposed algorithm, achieved an accuracy of 77.12%, recall/sensitivity of 75.85%, and a specificity of 83.02% over the entire PTB database; 85.07%, 81.54%, 87.31% over the PTB-XL validation set (fold 9), and 84.17%, 78.37%, 87.55% over the PTB-XL test set (fold 10). The model also achieves stable performance metrics over the frequency range of 202 Hz to 2.8 kHz. The processing time is dependent on the sampling frequency, ranging from 130 ms at 202 Hz to 1.8 s at 2.8 kHz. Such outcome is within the time required for real-time processing (less than 300 ms for fast heartbeats), between 202 Hz and 500 Hz making the algorithm practically real-time. Therefore, the proposed MI detector could be readily deployed onto existing wearable and/or portable devices and test instruments; potentially having significant societal and clinical impact in the lives of patients at risk for myocardial infarction.
Collapse
Affiliation(s)
- Harold Martin
- CATE, Department of Electrical and Computer Engineering, Florida International University, Miami, FL, USA.
| | - Ulyana Morar
- CATE, Department of Electrical and Computer Engineering, Florida International University, Miami, FL, USA
| | - Walter Izquierdo
- CATE, Department of Electrical and Computer Engineering, Florida International University, Miami, FL, USA
| | - Mercedes Cabrerizo
- CATE, Department of Electrical and Computer Engineering, Florida International University, Miami, FL, USA
| | | | - Malek Adjouadi
- CATE, Department of Electrical and Computer Engineering, Florida International University, Miami, FL, USA
| |
Collapse
|
18
|
Multitask Interactive Attention Learning Model Based on Hand Images for Assisting Chinese Medicine in Predicting Myocardial Infarction. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:6046184. [PMID: 34737789 PMCID: PMC8563122 DOI: 10.1155/2021/6046184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/25/2022]
Abstract
Acute myocardial infarction (AMI) is one of the most serious and dangerous cardiovascular diseases. In recent years, the number of patients around the world has been increasing significantly, among which people under the age of 45 have become the high-risk group for sudden death of AMI. AMI occurs quickly and does not show obvious symptoms before onset. In addition, postonset clinical testing is also a complex and invasive test, which may cause some postoperative complications. Therefore, it is necessary to propose a noninvasive and convenient auxiliary diagnostic method. In traditional Chinese medicine (TCM), it is an effective auxiliary diagnostic strategy to complete the disease diagnosis through some body surface features. It is helpful to observe whether the palmar thenar undergoes hypertrophy and whether the metacarpophalangeal joint is swelling in detecting acute myocardial infarction. Combined with deep learning, we propose a depth model based on traditional palm image (MTIALM), which can help doctors of traditional Chinese medicine to predict myocardial infarction. By building the shared network, the model learns information that covers all the tasks. In addition, task-specific attention branch networks are built to simultaneously detect the symptoms of different parts of the palm. The information interaction module (IIM) is proposed to further integrate the information between task branches to ensure that the model learns as many features as possible. Experimental results show that the accuracy of our model in the detection of metacarpophalangeal joints and palmar thenar is 83.16% and 84.15%, respectively, which are significantly improved compared with the traditional classification methods.
Collapse
|
19
|
Detection of Myocardial Infarction Using ECG and Multi-Scale Feature Concatenate. SENSORS 2021; 21:s21051906. [PMID: 33803265 PMCID: PMC7967244 DOI: 10.3390/s21051906] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 12/14/2022]
Abstract
Diverse computer-aided diagnosis systems based on convolutional neural networks were applied to automate the detection of myocardial infarction (MI) found in electrocardiogram (ECG) for early diagnosis and prevention. However, issues, particularly overfitting and underfitting, were not being taken into account. In other words, it is unclear whether the network structure is too simple or complex. Toward this end, the proposed models were developed by starting with the simplest structure: a multi-lead features-concatenate narrow network (N-Net) in which only two convolutional layers were included in each lead branch. Additionally, multi-scale features-concatenate networks (MSN-Net) were also implemented where larger features were being extracted through pooling the signals. The best structure was obtained via tuning both the number of filters in the convolutional layers and the number of inputting signal scales. As a result, the N-Net reached a 95.76% accuracy in the MI detection task, whereas the MSN-Net reached an accuracy of 61.82% in the MI locating task. Both networks give a higher average accuracy and a significant difference of p < 0.001 evaluated by the U test compared with the state-of-the-art. The models are also smaller in size thus are suitable to fit in wearable devices for offline monitoring. In conclusion, testing throughout the simple and complex network structure is indispensable. However, the way of dealing with the class imbalance problem and the quality of the extracted features are yet to be discussed.
Collapse
|
20
|
Ulukaya S, Serbes G, Kahya YP. Resonance based separation and energy based classification of lung sounds using tunable wavelet transform. Comput Biol Med 2021; 131:104288. [PMID: 33676336 DOI: 10.1016/j.compbiomed.2021.104288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND AND OBJECTIVE The locations and occurrence pattern of adventitious sounds in the respiratory cycle have critical diagnostic information. In a lung sound sample, the crackles and wheezes may exist individually or they may coexist in a successive/overlapping manner superimposed onto the breath noise. The performance of the linear time-frequency representation based signal decomposition methods has been limited in the crackle/wheeze separation problem due to the common signal components that may arise in both time and frequency domain. However, the proposed resonance based decomposition can be used to isolate crackles and wheezes which behave oppositely in time domain even if they share common frequency bands. METHODS In the proposed study, crackle and/or wheeze containing synthetic and recorded lung-sound signals were decomposed by using the resonance information which is produced by joint application of the Tunable Q-factor Wavelet Transform and Morphological Component Analysis. The crackle localization and signal reconstruction performance of the proposed approach was compared with the previously suggested Independent Component Analysis and Empirical Mode Decomposition methods in a quantitative and qualitative manner. Additionally, the decomposition ability of the proposed approach was also used to discriminate crackle and wheeze waveforms in an unsupervised way by employing signal energy. RESULTS Results have shown that the proposed approach has significant superiority over its competitors in terms of the crackle localization and signal reconstruction ability. Moreover, the calculated energy values have revealed that the transient crackles and rhythmic wheezes can be successfully decomposed into low and high resonance channels by preserving the discriminative information. CONCLUSIONS It is concluded that previous works suffer from deforming the waveform of the crackles whose time domain parameters are vital in computerized diagnostic classification systems. Therefore, a method should provide automatic and simultaneous decomposition ability, with smaller root mean square error and higher accuracy as demonstrated by the proposed approach.
Collapse
Affiliation(s)
- Sezer Ulukaya
- Department of Electrical and Electronics Engineering, Boǧaziçi University, 34342, Istanbul, Turkey; Department of Electrical and Electronics Engineering, Trakya University, 22030, Edirne, Turkey.
| | - Gorkem Serbes
- Department of Biomedical Engineering, Yildiz Technical University, 34220, Istanbul, Turkey.
| | - Yasemin P Kahya
- Department of Electrical and Electronics Engineering, Boǧaziçi University, 34342, Istanbul, Turkey.
| |
Collapse
|
21
|
Path Planning of Unmanned Autonomous Helicopter Based on Human-Computer Hybrid Augmented Intelligence. Neural Plast 2021; 2021:6639664. [PMID: 33519928 PMCID: PMC7817272 DOI: 10.1155/2021/6639664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/12/2020] [Accepted: 12/22/2020] [Indexed: 11/18/2022] Open
Abstract
Unmanned autonomous helicopter (UAH) path planning problem is an important component of the UAH mission planning system. The performance of the automatic path planner determines the quality of the UAH flight path. Aiming to produce a high-quality flight path, a path planning system is designed based on human-computer hybrid augmented intelligence framework for the UAH in this paper. Firstly, an improved artificial bee colony (I-ABC) algorithm is proposed based on the dynamic evaluation selection strategy and the complex optimization method. In the I-ABC algorithm, the following way of on-looker bees and the update strategy of nectar source are optimized to accelerate the convergence rate and retain the exploration ability of the population. In addition, a space clipping operation is proposed based on the attention mechanism for constructing a new spatial search area. The search time can be further reduced by the space clipping operation under the path planning result within acceptable changes. Moreover, the entire optimization process and results can be feeded back to the knowledge database by the human-computer hybrid augmented intelligence framework to guide subsequent path planning issues. Finally, the simulation results confirm that a feasible and effective flight path can be quickly generated by the UAH path planning system based on human-computer hybrid augmented intelligence.
Collapse
|
22
|
Dee EC, Yu RC, Celi LA, Nehal US. AIM and Business Models of Healthcare. Artif Intell Med 2021. [DOI: 10.1007/978-3-030-58080-3_247-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|