1
|
Liu RW, Ong W, Makmur A, Kumar N, Low XZ, Shuliang G, Liang TY, Ting DFK, Tan JH, Hallinan JTPD. Application of Artificial Intelligence Methods on Osteoporosis Classification with Radiographs-A Systematic Review. Bioengineering (Basel) 2024; 11:484. [PMID: 38790351 PMCID: PMC11117497 DOI: 10.3390/bioengineering11050484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/24/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Osteoporosis is a complex endocrine disease characterized by a decline in bone mass and microstructural integrity. It constitutes a major global health problem. Recent progress in the field of artificial intelligence (AI) has opened new avenues for the effective diagnosis of osteoporosis via radiographs. This review investigates the application of AI classification of osteoporosis in radiographs. A comprehensive exploration of electronic repositories (ClinicalTrials.gov, Web of Science, PubMed, MEDLINE) was carried out in adherence to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 2020 statement (PRISMA). A collection of 31 articles was extracted from these repositories and their significant outcomes were consolidated and outlined. This encompassed insights into anatomical regions, the specific machine learning methods employed, the effectiveness in predicting BMD, and categorizing osteoporosis. Through analyzing the respective studies, we evaluated the effectiveness and limitations of AI osteoporosis classification in radiographs. The pooled reported accuracy, sensitivity, and specificity of osteoporosis classification ranges from 66.1% to 97.9%, 67.4% to 100.0%, and 60.0% to 97.5% respectively. This review underscores the potential of AI osteoporosis classification and offers valuable insights for future research endeavors, which should focus on addressing the challenges in technical and clinical integration to facilitate practical implementation of this technology.
Collapse
Affiliation(s)
- Ren Wei Liu
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Road, Singapore 119074, Singapore (D.F.K.T.)
| | - Wilson Ong
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Road, Singapore 119074, Singapore (D.F.K.T.)
| | - Andrew Makmur
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Road, Singapore 119074, Singapore (D.F.K.T.)
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - Naresh Kumar
- University Spine Centre, Department of Orthopaedic Surgery, National University Health System, 1E, Lower Kent Ridge Road, Singapore 119228, Singapore
| | - Xi Zhen Low
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Road, Singapore 119074, Singapore (D.F.K.T.)
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - Ge Shuliang
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Road, Singapore 119074, Singapore (D.F.K.T.)
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - Tan Yi Liang
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Road, Singapore 119074, Singapore (D.F.K.T.)
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - Dominic Fong Kuan Ting
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Road, Singapore 119074, Singapore (D.F.K.T.)
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - Jiong Hao Tan
- University Spine Centre, Department of Orthopaedic Surgery, National University Health System, 1E, Lower Kent Ridge Road, Singapore 119228, Singapore
| | - James Thomas Patrick Decourcy Hallinan
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Road, Singapore 119074, Singapore (D.F.K.T.)
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| |
Collapse
|
2
|
Harris C, Okorie U, Makrogiannis S. Spatially localized sparse approximations of deep features for breast mass characterization. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:15859-15882. [PMID: 37919992 PMCID: PMC10949936 DOI: 10.3934/mbe.2023706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
We propose a deep feature-based sparse approximation classification technique for classification of breast masses into benign and malignant categories in film screen mammographs. This is a significant application as breast cancer is a leading cause of death in the modern world and improvements in diagnosis may help to decrease rates of mortality for large populations. While deep learning techniques have produced remarkable results in the field of computer-aided diagnosis of breast cancer, there are several aspects of this field that remain under-studied. In this work, we investigate the applicability of deep-feature-generated dictionaries to sparse approximation-based classification. To this end we construct dictionaries from deep features and compute sparse approximations of Regions Of Interest (ROIs) of breast masses for classification. Furthermore, we propose block and patch decomposition methods to construct overcomplete dictionaries suitable for sparse coding. The effectiveness of our deep feature spatially localized ensemble sparse analysis (DF-SLESA) technique is evaluated on a merged dataset of mass ROIs from the CBIS-DDSM and MIAS datasets. Experimental results indicate that dictionaries of deep features yield more discriminative sparse approximations of mass characteristics than dictionaries of imaging patterns and dictionaries learned by unsupervised machine learning techniques such as K-SVD. Of note is that the proposed block and patch decomposition strategies may help to simplify the sparse coding problem and to find tractable solutions. The proposed technique achieves competitive performances with state-of-the-art techniques for benign/malignant breast mass classification, using 10-fold cross-validation in merged datasets of film screen mammograms.
Collapse
Affiliation(s)
- Chelsea Harris
- Division of Physics, Engineering, Mathematics, and Computer Science, Delaware State University, 1200 N DuPont Hwy, Dover, DE 19901, USA
| | - Uchenna Okorie
- Division of Physics, Engineering, Mathematics, and Computer Science, Delaware State University, 1200 N DuPont Hwy, Dover, DE 19901, USA
| | - Sokratis Makrogiannis
- Division of Physics, Engineering, Mathematics, and Computer Science, Delaware State University, 1200 N DuPont Hwy, Dover, DE 19901, USA
| |
Collapse
|
4
|
Kong SH, Shin CS. Applications of Machine Learning in Bone and Mineral Research. Endocrinol Metab (Seoul) 2021; 36:928-937. [PMID: 34674509 PMCID: PMC8566132 DOI: 10.3803/enm.2021.1111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/23/2021] [Accepted: 09/09/2021] [Indexed: 12/26/2022] Open
Abstract
In this unprecedented era of the overwhelming volume of medical data, machine learning can be a promising tool that may shed light on an individualized approach and a better understanding of the disease in the field of osteoporosis research, similar to that in other research fields. This review aimed to provide an overview of the latest studies using machine learning to address issues, mainly focusing on osteoporosis and fractures. Machine learning models for diagnosing and classifying osteoporosis and detecting fractures from images have shown promising performance. Fracture risk prediction is another promising field of research, and studies are being conducted using various data sources. However, these approaches may be biased due to the nature of the techniques or the quality of the data. Therefore, more studies based on the proposed guidelines are needed to improve the technical feasibility and generalizability of artificial intelligence algorithms.
Collapse
Affiliation(s)
- Sung Hye Kong
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul,
Korea
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam,
Korea
| | - Chan Soo Shin
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul,
Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul,
Korea
| |
Collapse
|
5
|
Smets J, Shevroja E, Hügle T, Leslie WD, Hans D. Machine Learning Solutions for Osteoporosis-A Review. J Bone Miner Res 2021; 36:833-851. [PMID: 33751686 DOI: 10.1002/jbmr.4292] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/04/2021] [Accepted: 03/16/2021] [Indexed: 12/11/2022]
Abstract
Osteoporosis and its clinical consequence, bone fracture, is a multifactorial disease that has been the object of extensive research. Recent advances in machine learning (ML) have enabled the field of artificial intelligence (AI) to make impressive breakthroughs in complex data environments where human capacity to identify high-dimensional relationships is limited. The field of osteoporosis is one such domain, notwithstanding technical and clinical concerns regarding the application of ML methods. This qualitative review is intended to outline some of these concerns and to inform stakeholders interested in applying AI for improved management of osteoporosis. A systemic search in PubMed and Web of Science resulted in 89 studies for inclusion in the review. These covered one or more of four main areas in osteoporosis management: bone properties assessment (n = 13), osteoporosis classification (n = 34), fracture detection (n = 32), and risk prediction (n = 14). Reporting and methodological quality was determined by means of a 12-point checklist. In general, the studies were of moderate quality with a wide range (mode score 6, range 2 to 11). Major limitations were identified in a significant number of studies. Incomplete reporting, especially over model selection, inadequate splitting of data, and the low proportion of studies with external validation were among the most frequent problems. However, the use of images for opportunistic osteoporosis diagnosis or fracture detection emerged as a promising approach and one of the main contributions that ML could bring to the osteoporosis field. Efforts to develop ML-based models for identifying novel fracture risk factors and improving fracture prediction are additional promising lines of research. Some studies also offered insights into the potential for model-based decision-making. Finally, to avoid some of the common pitfalls, the use of standardized checklists in developing and sharing the results of ML models should be encouraged. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Julien Smets
- Center of Bone Diseases, Bone and Joint Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Enisa Shevroja
- Center of Bone Diseases, Bone and Joint Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Thomas Hügle
- Department of Rheumatology, Lausanne University Hospital, Lausanne, Switzerland
| | | | - Didier Hans
- Center of Bone Diseases, Bone and Joint Department, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|