1
|
Thakur H, Agarwal S, Buček A, Hradecký J, Sehadová H, Mathur V, Togaev U, van de Kamp T, Hamann E, Liu RH, Verma KS, Li HF, Sillam-Dussès D, Engel MS, Šobotník J. Defensive glands in Stylotermitidae (Blattodea, Isoptera). ARTHROPOD STRUCTURE & DEVELOPMENT 2024; 79:101346. [PMID: 38520874 DOI: 10.1016/j.asd.2024.101346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/25/2024]
Abstract
The large abundance of termites is partially achieved by their defensive abilities. Stylotermitidae represented by a single extant genus, Stylotermes, is a member of a termite group Neoisoptera that encompasses 83% of termite species and 94% of termite genera and is characterized by the presence of the frontal gland. Within Neoisoptera, Stylotermitidae represents a species-poor sister lineage of all other groups. We studied the structure of the frontal, labral and labial glands in soldiers and workers of Stylotermes faveolus, and the composition of the frontal gland secretion in S. faveolus and Stylotermes halumicus. We show that the frontal gland is a small active secretory organ in soldiers and workers. It produces a cocktail of monoterpenes in soldiers, and some of these monoterpenes and unidentified proteins in workers. The labral and labial glands are developed similarly to other termite species and contribute to defensive activities (labral in both castes, labial in soldiers) or to the production of digestive enzymes (labial in workers). Our results support the importance of the frontal gland in the evolution of Neoisoptera. Toxic, irritating and detectable monoterpenes play defensive and pheromonal functions and are likely critical novelties contributing to the ecological success of these termites.
Collapse
Affiliation(s)
- Himanshu Thakur
- Department of Entomology, CSK Himachal Pradesh Krishi Vishvavidyalaya, Palampur, Himachal Pradesh, India
| | - Surbhi Agarwal
- Animal Plant Interactions Lab, Department of Zoology, Sri Venkateswara College, Benito Juarez Marg, Dhaula Kuan, New Delhi, India
| | - Aleš Buček
- Biology Centre, Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic
| | - Jaromír Hradecký
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Hana Sehadová
- Biology Centre, Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic; University of South Bohemia in Ceske Budejovice, Branišovská 31, 370 05, Ceske Budejovice, Czech Republic
| | - Vartika Mathur
- Animal Plant Interactions Lab, Department of Zoology, Sri Venkateswara College, Benito Juarez Marg, Dhaula Kuan, New Delhi, India
| | - Ulugbek Togaev
- Academy of Science of Uzbekistan, Institute of Bioorganic Chemistry and National University of Uzbekistan, Tashkent, Uzbekistan
| | - Thomas van de Kamp
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany; Laboratory for Applications of Synchrotron Radiation (LAS), Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131, Karlsruhe, Germany
| | - Elias Hamann
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Ren-Han Liu
- Department of Entomology, National Chung Hsing University, Taichung, 402202, Taiwan
| | - Kuldeep S Verma
- Department of Entomology, CSK Himachal Pradesh Krishi Vishvavidyalaya, Palampur, Himachal Pradesh, India
| | - Hou-Feng Li
- Department of Entomology, National Chung Hsing University, Taichung, 402202, Taiwan
| | - David Sillam-Dussès
- University Sorbonne Paris Nord, Laboratory of Experimental and Comparative Ethology, LEEC, UR 4443, Villetaneuse, France.
| | - Michael S Engel
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, 10024-5192, USA
| | - Jan Šobotník
- Biology Centre, Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic; Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic.
| |
Collapse
|
2
|
Aumont C, Beránková T, McMahon DP, Radek R, Akama PD, Sillam-Dussès D, Šobotník J. The ultrastructure of the rostral gland in soldiers of Verrucositermes tuberosus (Blattodea: Termitidae: Nasutitermitinae). ARTHROPOD STRUCTURE & DEVELOPMENT 2023; 73:101238. [PMID: 36796136 DOI: 10.1016/j.asd.2023.101238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
The soil-feeding habit is an evolutionary novelty found in some advanced groups of termites. The study of such groups is important to revealing interesting adaptations to this way-of-life. The genus Verrucositermes is one such example, characterized by peculiar outgrowths on the head capsule, antennae and maxillary palps, which are not found in any other termite. These structures have been hypothesized to be linked to the presence of a new exocrine organ, the rostral gland, whose structure has remained unexplored. We have thus studied the ultrastructure of the epidermal layer of the head capsule of Verrucositermes tuberosus soldiers. We describe the ultrastructure of the rostral gland, which consists of class 3 secretory cells only. The dominant secretory organelles comprise rough endoplasmic reticulum and Golgi apparatus, which provide secretions delivered to the surface of the head, likely made of peptide-derived components of unclear function. We discuss a possible role of the rostral gland of soldiers as an adaptation to the frequent encounter with soil pathogens during search for new food resources.
Collapse
Affiliation(s)
- Cédric Aumont
- Institute of Biology, Freie Universität Berlin, 14195, Berlin, Germany; Department for Materials and the Environment, BAM Federal Institute for Materials Research and Testing, 12205, Berlin, Germany
| | - Tereza Beránková
- Czech University of Life Sciences, Faculty of Tropical AgriSciences, 165 00, Prague 6 Suchdol, Czech Republic
| | - Dino P McMahon
- Institute of Biology, Freie Universität Berlin, 14195, Berlin, Germany; Department for Materials and the Environment, BAM Federal Institute for Materials Research and Testing, 12205, Berlin, Germany
| | - Renate Radek
- Institute of Biology, Freie Universität Berlin, 14195, Berlin, Germany
| | - Pierre D Akama
- Département des Sciences Biologiques, Ecole Normale Supérieure, Université de Yaoundé I, Yaoundé, Cameroon
| | - David Sillam-Dussès
- Laboratory of Experimental and Comparative Ethology, LEEC, UR 4443, University Sorbonne Paris Nord, 93430, Villetaneuse, France
| | - Jan Šobotník
- Czech University of Life Sciences, Faculty of Tropical AgriSciences, 165 00, Prague 6 Suchdol, Czech Republic.
| |
Collapse
|
3
|
Beránková T, Buček A, Bourguignon T, Arias JR, Akama PD, Sillam-Dussès D, Šobotník J. The ultrastructure of the intramandibular gland in soldiers of the termite Machadotermes rigidus (Blattodea: Termitidae: Apicotermitinae). ARTHROPOD STRUCTURE & DEVELOPMENT 2022; 67:101136. [PMID: 35152166 DOI: 10.1016/j.asd.2021.101136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Machadotermes is one of the basal Apicotermitinae genera, living in tropical West Africa. Old observations suggested the presence of a new gland, the intramandibular gland, in Machadotermes soldiers. Here, by combining micro-computed tomography, optical and electron microscopy, we showed that the gland exists in Machadotermes soldiers only as an active exocrine organ, consisting of numerous class III cells (bicellular units made of secretory and canal cells), within which the secretion is produced in rough endoplasmic reticulum, and modified and stored in Golgi apparatus. The final secretion is released out from the body through epicuticular canals running through the mandible cuticle to the exterior. We also studied three other Apicotermitinae, Indotermes, Duplidentitermes, and Jugositermes, in which this gland is absent. We speculate that the secretion of this gland may be used as a general protectant or antimicrobial agent. In addition, we observed that the frontal gland, a specific defensive organ in termites, is absent in Machadotermes soldiers while it is tiny in Indotermes soldiers and small in Duplidentitermes and Jugositermes soldiers. At last, we could also observe in all these species the labral, mandibular and labial glands, other exocrine glands present in all termite species studied so far.
Collapse
Affiliation(s)
- Tereza Beránková
- Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Aleš Buček
- Okinawa Institute of Science & Technology Graduate University, Okinawa, Japan
| | - Thomas Bourguignon
- Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czech Republic; Okinawa Institute of Science & Technology Graduate University, Okinawa, Japan
| | - Johanna Romero Arias
- Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Pierre D Akama
- Département des Sciences Biologiques, Ecole Normale Supérieure, Université de Yaoundé I, Yaoundé, Cameroon
| | - David Sillam-Dussès
- Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czech Republic; Laboratory of Experimental and Comparative Ethology, LEEC, UR 4443, University Sorbonne Paris Nord, Villetaneuse, France.
| | - Jan Šobotník
- Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czech Republic.
| |
Collapse
|