1
|
Ribak G, Stearns O, Sundararajan K, Dickerson-Evans D, Melamed D, Rabinovich M, Gurka R. Insect wing flexibility improves the aerodynamic performance of small revolving wings. iScience 2025; 28:112035. [PMID: 40124483 PMCID: PMC11927721 DOI: 10.1016/j.isci.2025.112035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/03/2024] [Accepted: 02/12/2025] [Indexed: 03/25/2025] Open
Abstract
Insect wings are flexible, elastically deforming under loads experienced during flapping. The adaptive value of this flexibility was tested using a revolving wing set-up. We show that the wing flexibility of the beetle Batocera rufomaculata suppresses the reduction in lift coefficient that is expected to occur with a reduction of wing size compared to rigid propeller blades. Moreover, the scaling of wing flexibility with size is intra-specifically tuned through changes in wing-vein cross-section, resulting in smaller wings achieving proportionally larger chordwise deformations compared to larger wings, when loaded with aerodynamic forces. These elastic deformations control the separation of flow from the wing as a function of angle-of-attack, as evidenced by the turbulence activity in the flow field directly beneath the revolving wings. The study underlines the contribution of flexibility to control the flow over insect wings through passive wing deformations without the need for input or feedback from the nervous system.
Collapse
Affiliation(s)
- Gal Ribak
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Steinhardt Museum of Natural History, Tel Aviv 6997801, Israel
| | - Ori Stearns
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Kiruthika Sundararajan
- Department of Physics and Engineering Science, Coastal Carolina University, Conway, SC 29526, USA
| | - Duvall Dickerson-Evans
- Department of Physics and Engineering Science, Coastal Carolina University, Conway, SC 29526, USA
| | - Dana Melamed
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Maya Rabinovich
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Roi Gurka
- Department of Physics and Engineering Science, Coastal Carolina University, Conway, SC 29526, USA
| |
Collapse
|
2
|
Fattepur G, Patil AY, Kumar P, Kumar A, Hegde C, Siddhalingeshwar IG, Kumar R, Khan TMY. Bio-inspired designs: leveraging biological brilliance in mechanical engineering-an overview. 3 Biotech 2024; 14:312. [PMID: 39606010 PMCID: PMC11589069 DOI: 10.1007/s13205-024-04153-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 11/03/2024] [Indexed: 11/29/2024] Open
Abstract
Nature's evolutionary mastery has perfected design over the years, yielding organisms superbly adapted to their surroundings. This research delves into the promising domain of bio-inspired designs, poised to revolutionize mechanical engineering. Leveraging insights drawn from prior conversations, we categorize innovations influenced by life on land, in water, and through the air, emphasizing their pivotal contributions to mechanical properties. Our comprehensive review reveals a wealth of bio-inspired designs that have already made substantial inroads in mechanical engineering. From avian-inspired lightweight yet robust materials to hydrodynamically optimized forms borrowed from marine creatures, these innovations hold immense potential for enhancing mechanical systems. In conclusion, this study underscores the transformative potential of bio-inspired designs, offering improved mechanical characteristics and the promise of sustainability and efficiency across a broad spectrum of applications. This research envisions a future where bio-inspired designs shape the mechanical landscape, fostering a more harmonious coexistence between human technology and the natural world.
Collapse
Affiliation(s)
- Gururaj Fattepur
- School of Mechanical Engineering, KLE Technological University, Hubli, Karnataka 580031 India
| | - Arun Y. Patil
- Bio-Inspired Design and Optimization Centre (BIODOC), Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
- Department of Mechanical Engineering, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Piyush Kumar
- Department of Mechanical Engineering, Faculty of Engineering and Technology, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069 India
- Department of Mechanical Engineering, Vivekananda Global University, Jaipur, Rajasthan 303012 India
| | - Anil Kumar
- School of Engineering and Technology, Shobhit University, Gangoh, Uttar Pradesh 247341 India
- Department of Mechanical Engineering, Arka Jain University, Jamshedpur, Jharkhand 831001 India
| | - Chandrashekhar Hegde
- School of Mechanical Engineering, KLE Technological University, Hubli, Karnataka 580031 India
| | - I. G. Siddhalingeshwar
- School of Mechanical Engineering, KLE Technological University, Hubli, Karnataka 580031 India
| | - Raman Kumar
- University School of Mechanical Engineering, Rayat Bahra University, Kharar, Punjab 140103 India
- Faculty of Engineering, Sohar University, PO Box 44, Sohar, PCI 311 Oman
| | - T. M. Yunus Khan
- Department of Mechanical Engineering, College of Engineering, King Khalid University, 61421 Abha, Saudi Arabia
| |
Collapse
|
3
|
Hammad A, Armanini SF. Landing and take-off capabilities of bioinspired aerial vehicles: a review. BIOINSPIRATION & BIOMIMETICS 2024; 19:031001. [PMID: 38467070 DOI: 10.1088/1748-3190/ad3263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/11/2024] [Indexed: 03/13/2024]
Abstract
Bioinspired flapping-wing micro aerial vehicles (FWMAVs) have emerged over the last two decades as a promising new type of robot. Their high thrust-to-weight ratio, versatility, safety, and maneuverability, especially at small scales, could make them more suitable than fixed-wing and multi-rotor vehicles for various applications, especially in cluttered, confined environments and in close proximity to humans, flora, and fauna. Unlike natural flyers, however, most FWMAVs currently have limited take-off and landing capabilities. Natural flyers are able to take off and land effortlessly from a wide variety of surfaces and in complex environments. Mimicking such capabilities on flapping-wing robots would considerably enhance their practical usage. This review presents an overview of take-off and landing techniques for FWMAVs, covering different approaches and mechanism designs, as well as dynamics and control aspects. The special case of perching is also included. As well as discussing solutions investigated for FWMAVs specifically, we also present solutions that have been developed for different types of robots but may be applicable to flapping-wing ones. Different approaches are compared and their suitability for different applications and types of robots is assessed. Moreover, research and technology gaps are identified, and promising future work directions are identified.
Collapse
Affiliation(s)
- Ahmad Hammad
- eAviation Laboratory, TUM School of Engineering and Design, Technical University Munich, Ottobrunn, Germany
| | - Sophie F Armanini
- eAviation Laboratory, TUM School of Engineering and Design, Technical University Munich, Ottobrunn, Germany
| |
Collapse
|
4
|
Yang Y, Liu X, Li W, Li C, Ma G, Yang G, Ren J, Ge S. Detection of Hindwing Landmarks Using Transfer Learning and High-Resolution Networks. BIOLOGY 2023; 12:1006. [PMID: 37508435 PMCID: PMC10376506 DOI: 10.3390/biology12071006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/25/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
Hindwing venation is one of the most important morphological features for the functional and evolutionary analysis of beetles, as it is one of the key features used for the analysis of beetle flight performance and the design of beetle-like flapping wing micro aerial vehicles. However, manual landmark annotation for hindwing morphological analysis is a time-consuming process hindering the development of wing morphology research. In this paper, we present a novel approach for the detection of landmarks on the hindwings of leaf beetles (Coleoptera, Chrysomelidae) using a limited number of samples. The proposed method entails the transfer of a pre-existing model, trained on a large natural image dataset, to the specific domain of leaf beetle hindwings. This is achieved by using a deep high-resolution network as the backbone. The low-stage network parameters are frozen, while the high-stage parameters are re-trained to construct a leaf beetle hindwing landmark detection model. A leaf beetle hindwing landmark dataset was constructed, and the network was trained on varying numbers of randomly selected hindwing samples. The results demonstrate that the average detection normalized mean error for specific landmarks of leaf beetle hindwings (100 samples) remains below 0.02 and only reached 0.045 when using a mere three samples for training. Comparative analyses reveal that the proposed approach out-performs a prevalently used method (i.e., a deep residual network). This study showcases the practicability of employing natural images-specifically, those in ImageNet-for the purpose of pre-training leaf beetle hindwing landmark detection models in particular, providing a promising approach for insect wing venation digitization.
Collapse
Affiliation(s)
- Yi Yang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaokun Liu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjie Li
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Congqiao Li
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ge Ma
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangqin Yang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Ren
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Siqin Ge
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|