1
|
Konar D, Bhattacharyya S, Gandhi TK, Panigrahi BK, Jiang R. 3-D Quantum-Inspired Self-Supervised Tensor Network for Volumetric Segmentation of Medical Images. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:10312-10325. [PMID: 37022399 DOI: 10.1109/tnnls.2023.3240238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
This article introduces a novel shallow 3-D self-supervised tensor neural network in quantum formalism for volumetric segmentation of medical images with merits of obviating training and supervision. The proposed network is referred to as the 3-D quantum-inspired self-supervised tensor neural network (3-D-QNet). The underlying architecture of 3-D-QNet is composed of a trinity of volumetric layers, viz., input, intermediate, and output layers interconnected using an S -connected third-order neighborhood-based topology for voxelwise processing of 3-D medical image data, suitable for semantic segmentation. Each of the volumetric layers contains quantum neurons designated by qubits or quantum bits. The incorporation of tensor decomposition in quantum formalism leads to faster convergence of network operations to preclude the inherent slow convergence problems faced by the classical supervised and self-supervised networks. The segmented volumes are obtained once the network converges. The suggested 3-D-QNet is tailored and tested on the BRATS 2019 Brain MR image dataset and the Liver Tumor Segmentation Challenge (LiTS17) dataset extensively in our experiments. The 3-D-QNet has achieved promising dice similarity (DS) as compared with the time-intensive supervised convolutional neural network (CNN)-based models, such as 3-D-UNet, voxelwise residual network (VoxResNet), Dense-Res-Inception Net (DRINet), and 3-D-ESPNet, thereby showing a potential advantage of our self-supervised shallow network on facilitating semantic segmentation.
Collapse
|
2
|
Xu C, Liao M, Wang C, Sun J, Lin H. Memristive competitive hopfield neural network for image segmentation application. Cogn Neurodyn 2023; 17:1061-1077. [PMID: 37522050 PMCID: PMC10374519 DOI: 10.1007/s11571-022-09891-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 09/06/2022] [Accepted: 09/18/2022] [Indexed: 11/30/2022] Open
Abstract
Image segmentation implementation provides simplified and effective feature information of image. Neural network algorithms have made significant progress in the application of image segmentation task. However, few studies focus on the implementation of hardware circuits with high-efficiency analog calculations and parallel operations for image segmentation problem. In this paper, a memristor-based competitive Hopfield neural network circuit is proposed to deal with the image segmentation problem. In this circuit, the memristive cross array is applied to store synaptic weights and perform matrix operations. The competition module based on the Winner-take-all mechanism is composed of the competition neurons and the competition control circuit, which simplifies the energy function of the Hopfield neural network and realizes the output function. Operational amplifiers and ABM modules are used to integrate operations and process external input information, respectively. Based on these designs, the circuit can automatically implement iteration and update of data. A series of PSPICE simulations are designed to verify the image segmentation capability of this circuit. Comparative experimental results and analysis show that this circuit has effective improvements both in processing speed and segmentation accuracy compared with other methods. Moreover, the proposed circuit shows good robustness to noise and memristive variation.
Collapse
Affiliation(s)
- Cong Xu
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082 China
| | - Meiling Liao
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082 China
| | - Chunhua Wang
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082 China
| | - Jingru Sun
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082 China
| | - Hairong Lin
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082 China
| |
Collapse
|
3
|
Konar D, Bhattacharyya S, Panigrahi BK, Behrman EC. Qutrit-Inspired Fully Self-Supervised Shallow Quantum Learning Network for Brain Tumor Segmentation. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022; 33:6331-6345. [PMID: 33983887 DOI: 10.1109/tnnls.2021.3077188] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Classical self-supervised networks suffer from convergence problems and reduced segmentation accuracy due to forceful termination. Qubits or bilevel quantum bits often describe quantum neural network models. In this article, a novel self-supervised shallow learning network model exploiting the sophisticated three-level qutrit-inspired quantum information system, referred to as quantum fully self-supervised neural network (QFS-Net), is presented for automated segmentation of brain magnetic resonance (MR) images. The QFS-Net model comprises a trinity of a layered structure of qutrits interconnected through parametric Hadamard gates using an eight-connected second-order neighborhood-based topology. The nonlinear transformation of the qutrit states allows the underlying quantum neural network model to encode the quantum states, thereby enabling a faster self-organized counterpropagation of these states between the layers without supervision. The suggested QFS-Net model is tailored and extensively validated on the Cancer Imaging Archive (TCIA) dataset collected from the Nature repository. The experimental results are also compared with state-of-the-art supervised (U-Net and URes-Net architectures) and the self-supervised QIS-Net model and its classical counterpart. Results shed promising segmented outcomes in detecting tumors in terms of dice similarity and accuracy with minimum human intervention and computational resources. The proposed QFS-Net is also investigated on natural gray-scale images from the Berkeley segmentation dataset and yields promising outcomes in segmentation, thereby demonstrating the robustness of the QFS-Net model.
Collapse
|
4
|
Modified Remora Optimization Algorithm for Global Optimization and Multilevel Thresholding Image Segmentation. MATHEMATICS 2022. [DOI: 10.3390/math10071014] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Image segmentation is a key stage in image processing because it simplifies the representation of the image and facilitates subsequent analysis. The multi-level thresholding image segmentation technique is considered one of the most popular methods because it is efficient and straightforward. Many relative works use meta-heuristic algorithms (MAs) to determine threshold values, but they have issues such as poor convergence accuracy and stagnation into local optimal solutions. Therefore, to alleviate these shortcomings, in this paper, we present a modified remora optimization algorithm (MROA) for global optimization and image segmentation tasks. We used Brownian motion to promote the exploration ability of ROA and provide a greater opportunity to find the optimal solution. Second, lens opposition-based learning is introduced to enhance the ability of search agents to jump out of the local optimal solution. To substantiate the performance of MROA, we first used 23 benchmark functions to evaluate the performance. We compared it with seven well-known algorithms regarding optimization accuracy, convergence speed, and significant difference. Subsequently, we tested the segmentation quality of MORA on eight grayscale images with cross-entropy as the objective function. The experimental metrics include peak signal-to-noise ratio (PSNR), structure similarity (SSIM), and feature similarity (FSIM). A series of experimental results have proved that the MROA has significant advantages among the compared algorithms. Consequently, the proposed MROA is a promising method for global optimization problems and image segmentation.
Collapse
|
5
|
Konar D, Bhattacharyya S, Dey S, Panigrahi BK. Optimized activation for quantum-inspired self-supervised neural network based fully automated brain lesion segmentation. APPL INTELL 2022. [DOI: 10.1007/s10489-021-03108-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
6
|
Lin S, Jia H, Abualigah L, Altalhi M. Enhanced Slime Mould Algorithm for Multilevel Thresholding Image Segmentation Using Entropy Measures. ENTROPY 2021; 23:e23121700. [PMID: 34946006 PMCID: PMC8700578 DOI: 10.3390/e23121700] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 01/10/2023]
Abstract
Image segmentation is a fundamental but essential step in image processing because it dramatically influences posterior image analysis. Multilevel thresholding image segmentation is one of the most popular image segmentation techniques, and many researchers have used meta-heuristic optimization algorithms (MAs) to determine the threshold values. However, MAs have some defects; for example, they are prone to stagnate in local optimal and slow convergence speed. This paper proposes an enhanced slime mould algorithm for global optimization and multilevel thresholding image segmentation, namely ESMA. First, the Levy flight method is used to improve the exploration ability of SMA. Second, quasi opposition-based learning is introduced to enhance the exploitation ability and balance the exploration and exploitation. Then, the superiority of the proposed work ESMA is confirmed concerning the 23 benchmark functions. Afterward, the ESMA is applied in multilevel thresholding image segmentation using minimum cross-entropy as the fitness function. We select eight greyscale images as the benchmark images for testing and compare them with the other classical and state-of-the-art algorithms. Meanwhile, the experimental metrics include the average fitness (mean), standard deviation (Std), peak signal to noise ratio (PSNR), structure similarity index (SSIM), feature similarity index (FSIM), and Wilcoxon rank-sum test, which is utilized to evaluate the quality of segmentation. Experimental results demonstrated that ESMA is superior to other algorithms and can provide higher segmentation accuracy.
Collapse
Affiliation(s)
- Shanying Lin
- College of Marine Engineering, Dalian Maritime University, Dalian 116026, China
- Correspondence: (S.L.); (H.J.)
| | - Heming Jia
- School of Information Engineering, Sanming University, Sanming 365004, China
- Correspondence: (S.L.); (H.J.)
| | - Laith Abualigah
- Faculty of Computer Sciences and Informatics, Amman Arab University, Amman 11953, Jordan; or
- School of Computer Science, Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia
| | - Maryam Altalhi
- Department of Management Information System, College of Business Administration, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| |
Collapse
|
7
|
Konar D, Bhattacharyya S, Gandhi TK, Panigrahi BK. A Quantum-Inspired Self-Supervised Network model for automatic segmentation of brain MR images. Appl Soft Comput 2020. [DOI: 10.1016/j.asoc.2020.106348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
Peeling Damage Recognition Method for Corn Ear Harvest Using RGB Image. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10103371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Corn ear damage caused by peeling significantly influence the output and quality of corn harvest. Ear damage recognition is the basis to adjust working parameters and to reduce damage. Image processing is attracting increasing attentions in the field of agriculture. Conventional image processing methods are difficult to be used for recognizing corn ear damage caused by peeling in field harvesting. To address the this problem, in this paper, we propose a peeling damage recognition method based on RGB image. For our method, we develop a dictionary-learning-based method to recognize corn kernels and a thresholding method to recognize ear damage regions. To obtain better performance, we also develop the corroding algorithm and the expanding algorithm for the post-processing of recognized results. The experimental results demonstrate the practicality and accuracy of the proposed method. This study could provide the theoretical basis to develop online peeling damage detection system for corn ear harvesters.
Collapse
|
9
|
Li X, Liu K, Dong Y. Superpixel-Based Foreground Extraction With Fast Adaptive Trimaps. IEEE TRANSACTIONS ON CYBERNETICS 2018; 48:2609-2619. [PMID: 28920912 DOI: 10.1109/tcyb.2017.2747143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Extracting the foreground from a given complex image is an important and challenging problem. Although there have been many methods to perform foreground extraction, most of them are time-consuming, and the trimaps used in the matting step are labeled manually. In this paper, we propose a fast interactive foreground extraction method based on the superpixel GrabCut and image matting. Specifically, we first extract superpixels from a given image and apply GrabCut on them to obtain a raw mask. Due to that the resulting mask border is hard and toothing, we further propose fast and adaptive trimaps (FATs), and construct an FATs-based shared matting for computing a refined mask. Finally, by interactive processing, we can obtain the final foreground. Experimental results on the BSDS500 and alphamatting datasets demonstrate that our proposed method is faster than five representative methods, and performs better than the interactive representative methods in terms of the three evaluation criteria: 1) mean square error; 2) sum of absolute difference; and 3) execution time.
Collapse
|
10
|
Mishra S, Panda M. Bat Algorithm for Multilevel Colour Image Segmentation Using Entropy-Based Thresholding. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2018. [DOI: 10.1007/s13369-017-3017-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
A cooperative honey bee mating algorithm and its application in multi-threshold image segmentation. Inf Sci (N Y) 2016. [DOI: 10.1016/j.ins.2016.06.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Ghosh P, Bhattacharjee D, Nasipuri M. Blood smear analyzer for white blood cell counting: A hybrid microscopic image analyzing technique. Appl Soft Comput 2016. [DOI: 10.1016/j.asoc.2015.12.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Bhaumik H, Bhattacharyya S, Nath MD, Chakraborty S. Hybrid soft computing approaches to content based video retrieval: A brief review. Appl Soft Comput 2016. [DOI: 10.1016/j.asoc.2016.03.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Jiang Y, Tsai P, Hao Z, Cao L. Automatic multilevel thresholding for image segmentation using stratified sampling and Tabu Search. Soft comput 2014. [DOI: 10.1007/s00500-014-1425-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Liu H, Zhao F, Jiao L. Fuzzy spectral clustering with robust spatial information for image segmentation. Appl Soft Comput 2012. [DOI: 10.1016/j.asoc.2012.05.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
16
|
|