1
|
Shang Y, Zheng M, Li J, Zheng X. An effective feature selection approach based on hybrid Grey Wolf Optimizer and Genetic Algorithm for hyperspectral image. Sci Rep 2025; 15:1968. [PMID: 39809866 PMCID: PMC11733227 DOI: 10.1038/s41598-024-84934-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/30/2024] [Indexed: 01/16/2025] Open
Abstract
Feature selection (FS) is a critical step in hyperspectral image (HSI) classification, essential for reducing data dimensionality while preserving classification accuracy. However, FS for HSIs remains an NP-hard challenge, as existing swarm intelligence and evolutionary algorithms (SIEAs) often suffer from limited exploration capabilities or susceptibility to local optima, particularly in high-dimensional scenarios. To address these challenges, we propose GWOGA, a novel hybrid algorithm that combines Grey Wolf Optimizer (GWO) and Genetic Algorithm (GA), aiming to achieve an effective balance between exploration and exploitation. The innovation of GWOGA lies in three core strategies: (1) chaotic map and Opposition-Based Learning (OBL) for uniformly distributed population initialization, enhancing diversity and mitigating premature convergence; (2) elite learning strategy to prioritize high-ranking solutions, strengthening the search hierarchy and efficiency; and (3) a hybrid optimization mechanism where GWO ensures rapid early-stage convergence, while GA refines global search in later stages to escape local optima. Experiments on three benchmark HSIs (i.e., Indian Pines, KSC, and Botswana) demonstrate that GWOGA outperforms state-of-the-art algorithms, achieving higher classification accuracy with fewer selected bands. The results highlight GWOGA's robustness, generalizability, and potential for real-world applications in HSI FS.
Collapse
Affiliation(s)
- Yiqun Shang
- School of Information Engineering, China University of Geosciences, Beijing, 100083, China
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Minrui Zheng
- School of Public Administration and Policy, Renmin University of China, Beijing, 100872, China
| | - Jiayang Li
- Chengdu Institute of Survey and Investigation, Chengdu, 610023, China
| | - Xinqi Zheng
- School of Information Engineering, China University of Geosciences, Beijing, 100083, China.
| |
Collapse
|
2
|
Zhang C, Zhang Z, Yu D, Cheng Q, Shan S, Li M, Mou L, Yang X, Ma X. Unsupervised band selection of medical hyperspectral images guided by data gravitation and weak correlation. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 240:107721. [PMID: 37506601 DOI: 10.1016/j.cmpb.2023.107721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND AND OBJECTIVE Medical hyperspectral images (MHSIs) are used for a contact-free examination of patients without harmful radiation. However, high-dimensionality images contain large amounts of data that are sparsely distributed in a high-dimensional space, which leads to the "curse of dimensionality" (called Hughes' phenomenon) and increases the complexity and cost of data processing and storage. Hence, there is a need for spectral dimensionality reduction before the clinical application of MHSIs. Some dimensionality-reducing strategies have been proposed; however, they distort the data within MHSIs. METHODS To compress dimensionality without destroying the original data structure, we propose a method that involves data gravitation and weak correlation-based ranking (DGWCR) for removing bands of noise from MHSIs while clustering signal-containing bands. Band clustering is done by using the connection centre evolution (CCE) algorithm and selecting the most representative bands in each cluster based on the composite force. The bands within the clusters are ranked using the new entropy-containing matrix, and a global ranking of bands is obtained by applying an S-shaped strategy. The source code is available at https://www.github.com/zhangchenglong1116/DGWCR. RESULTS Upon feeding the reduced-dimensional images into various classifiers, the experimental results demonstrated that the small number of bands selected by the proposed DGWCR consistently achieved higher classification accuracy than the original data. Unlike other reference methods (e.g. the latest deep-learning-based strategies), DGWCR chooses the spectral bands with the least redundancy and greatest discrimination. CONCLUSION In this study, we present a method for efficient band selection for MHSIs that alleviates the "curse of dimensionality". Experiments were validated with three MHSIs in the human brain, and they outperformed several other band selection methods, demonstrating the clinical potential of DGWCR.
Collapse
Affiliation(s)
- Chenglong Zhang
- School of Control Science and Engineering, Shandong University, Jinan 250061, China
| | - Zhimin Zhang
- School of Control Science and Engineering, Shandong University, Jinan 250061, China
| | - Dexin Yu
- Radiology Department, Qilu Hospital of Shandong University, Jinan 250000, China
| | - Qiyuan Cheng
- Medical Engineering Department, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan 250021, China
| | - Shihao Shan
- School of Control Science and Engineering, Shandong University, Jinan 250061, China
| | - Mengjiao Li
- School of Control Science and Engineering, Shandong University, Jinan 250061, China
| | - Lichao Mou
- Chair of Data Science in Earth Observation, Technical University of Munich (TUM), Munich, 80333, Germany
| | - Xiaoli Yang
- School of Control Science and Engineering, Shandong University, Jinan 250061, China; Weifang Xinli Superconducting Magnet Technology Co., Ltd, Weifang 261005, China.
| | - Xiaopeng Ma
- School of Control Science and Engineering, Shandong University, Jinan 250061, China.
| |
Collapse
|
3
|
Ou X, Wu M, Tu B, Zhang G, Li W. Multi-Objective Unsupervised Band Selection Method for Hyperspectral Images Classification. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2023; 32:1952-1965. [PMID: 37030738 DOI: 10.1109/tip.2023.3258739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
With the increasing spectral dimension of hyperspectral images (HSI), how correctly choose bands based on band correlation and information has become more significant, but also complicated. Band selection is a combinatorial optimization problem, and intelligent optimization algorithms have been shown to be crucial in solving combinatorial optimization problems. However, major of them only use a single objective as the selection index, while neglecting the overall features of hyperspectral images, which may lead to inaccuracy in object detection. To tackle this, we propose a band selection method based on a multi-objective cuckoo search algorithm (MOCS) when constructing a multi-objective unsupervised band selection model based on the amount of information and correlation of the bands (MOCS-BS). Specifically, an adaptive strategy based on population crowding degree is first proposed to assist Lévy flight in overcoming the influence of the parameter constancy. Then, an information-sharing strategy based on grouping and crossover is designed to balance the search ability between global exploration and local exploitation, which can overcome the shortcomings caused by the lack of information interaction between individuals. Finally, the HSI classification experiments are performed by Random Forest and KNN classifiers based on the subset of bands selected by the proposed MOCS-BS method. The proposed method is compared with state-of-the-art algorithms including neighborhood grouping normalized matched filter (NGNMF) and multi-objective artificial bee colony with band selection (MABC-BS) on four HSI datasets. The experimental results demonstrate that MOCS-BS is more effective and robust than other methods.
Collapse
|
4
|
Wei Y, Hu H, Xu H, Mao X. Unsupervised Hyperspectral Band Selection via Multimodal Evolutionary Algorithm and Subspace Decomposition. SENSORS (BASEL, SWITZERLAND) 2023; 23:2129. [PMID: 36850727 PMCID: PMC9960512 DOI: 10.3390/s23042129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Unsupervised band selection is an essential task to search for representative bands in hyperspectral dimension reduction. Most of existing studies utilize the inherent attribute of hyperspectral image (HSI) and acquire single optimal band subset while ignoring the diversity of subsets. Moreover, the ordered property in HSI is expected to be focused in order to avoid choosing redundant bands. In this paper, we proposed an unsupervised band selection method based on the multimodal evolutionary algorithm and subspace decomposition to alleviate the problems. To explore the diversity of band subsets, the multimodal evolutionary algorithm is first employed in spectral subspace decomposition to seek out multiple global or local solutions. Meanwhile, in view of ordered property, we concentrate more on increasing the difference between neighbor band subspaces. Furthermore, to utilize the obtained multiple diverse band subsets, an integrated utilization strategy is adopted to improve the predicted performance. Experimental results on three popular hyperspectral remote sensing datasets and one collected composition prediction dataset show the effectiveness of the proposed method, and the superiority over state-of-the-art methods on predicted accuracy.
Collapse
|
5
|
Manocha A, Afaq Y, Bhatia M. Mapping of water bodies from sentinel-2 images using deep learning-based feature fusion approach. Neural Comput Appl 2022. [DOI: 10.1007/s00521-022-08177-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Liu D, Zhang L, Lai X, Liu H. Image feature selection embedded distribution differences between classes for convolutional neural network. Appl Soft Comput 2022. [DOI: 10.1016/j.asoc.2022.109715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
A Comparative Analysis of Swarm Intelligence and Evolutionary Algorithms for Feature Selection in SVM-Based Hyperspectral Image Classification. REMOTE SENSING 2022. [DOI: 10.3390/rs14133019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Feature selection (FS) is vital in hyperspectral image (HSI) classification, it is an NP-hard problem, and Swarm Intelligence and Evolutionary Algorithms (SIEAs) have been proved effective in solving it. However, the high dimensionality of HSIs still leads to the inefficient operation of SIEAs. In addition, many SIEAs exist, but few studies have conducted a comparative analysis of them for HSI FS. Thus, our study has two goals: (1) to propose a new filter–wrapper (F–W) framework that can improve the SIEAs’ performance; and (2) to apply ten SIEAs under the F–W framework (F–W–SIEAs) to optimize the support vector machine (SVM) and compare their performance concerning five aspects, namely the accuracy, the number of selected bands, the convergence rate, and the relative runtime. Based on three HSIs (i.e., Indian Pines, Salinas, and Kennedy Space Center (KSC)), we demonstrate how the proposed framework helps improve these SIEAs’ performances. The five aspects of the ten algorithms are different, but some have similar optimization capacities. On average, the F–W–Genetic Algorithm (F–W–GA) and F–W–Grey Wolf Optimizer (F–W–GWO) have the strongest optimization abilities, while the F–W–GWO requires the least runtime among the ten. The F–W–Marine Predators Algorithm (F–W–MPA) is second only to the two and slightly better than F–W–Differential Evolution (F–W–DE). The F–W–Ant Lion Optimizer (F–W–ALO), F–W–I-Ching Divination Evolutionary Algorithm (F–W–IDEA), and F–W–Whale Optimization Algorithm (F–W–WOA) have the middle optimization abilities, and F–W–IDEA takes the most runtime. Moreover, the F–W–SIEAs outperform other commonly used FS techniques in accuracy overall, especially in complex scenes.
Collapse
|
8
|
A Band Selection Approach for Hyperspectral Image Based on a Modified Hybrid Rice Optimization Algorithm. Symmetry (Basel) 2022. [DOI: 10.3390/sym14071293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hyperspectral image (HSI) analysis has become one of the most active topics in the field of remote sensing, which could provide powerful assistance for sensing a larger-scale environment. Nevertheless, a large number of high-correlation and redundancy bands in HSI data provide a massive challenge for image recognition and classification. Hybrid Rice Optimization (HRO) is a novel meta-heuristic, and its population is approximately divided into three groups with an equal number of individuals according to self-equilibrium and symmetry, which has been successfully applied in band selection. However, there are some limitations of primary HRO with respect to the local search for better solutions and this may result in overlooking a promising solution. Therefore, a modified HRO (MHRO) based on an opposition-based-learning (OBL) strategy and differential evolution (DE) operators is proposed for band selection in this paper. Firstly, OBL is adopted in the initialization phase of MHRO to increase the diversity of the population. Then, the exploitation ability is enhanced by embedding DE operators into the search process at each iteration. Experimental results verify that the proposed method shows superiority in both the classification accuracy and selected number of bands compared to other algorithms involved in the paper.
Collapse
|
9
|
Dutta T, Dey S, Bhattacharyya S, Mukhopadhyay S. Quantum fractional order Darwinian particle swarm optimization for hyperspectral multi-level image thresholding. Appl Soft Comput 2021. [DOI: 10.1016/j.asoc.2021.107976] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Wang M, Liu W, Chen M, Huang X, Han W. A band selection approach based on a modified gray wolf optimizer and weight updating of bands for hyperspectral image. Appl Soft Comput 2021. [DOI: 10.1016/j.asoc.2021.107805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
|
12
|
Nandhini K, Porkodi R. A new fusion of mutual information and Otsu multilevel thresholding technique for hyperspectral band selection. EGYPTIAN INFORMATICS JOURNAL 2021. [DOI: 10.1016/j.eij.2020.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Pham NV, Pham LT, Pedrycz W, Ngo LT. Feature-reduction fuzzy co-clustering approach for hyper-spectral image analysis. Knowl Based Syst 2021. [DOI: 10.1016/j.knosys.2020.106549] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
A novel dependency definition exploiting boundary samples in rough set theory for hyperspectral band selection. Appl Soft Comput 2021. [DOI: 10.1016/j.asoc.2020.106944] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Öztürk Ş, Ahmad R, Akhtar N. Variants of Artificial Bee Colony algorithm and its applications in medical image processing. Appl Soft Comput 2020. [DOI: 10.1016/j.asoc.2020.106799] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
A Pseudo-Label Guided Artificial Bee Colony Algorithm for Hyperspectral Band Selection. REMOTE SENSING 2020. [DOI: 10.3390/rs12203456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hyperspectral remote sensing images have characteristics such as high dimensionality and high redundancy. This paper proposes a pseudo-label guided artificial bee colony band selection algorithm with hypergraph clustering (HC-ABC) to remove redundant and noise bands. Firstly, replacing traditional pixel points by super-pixel centers, a hypergraph evolutionary clustering method with low computational cost is developed to generate high-quality pseudo-labels; Then, on the basis of these pseudo-labels, taking classification accuracy as the optimized objective, a supervised band selection algorithm based on artificial bee colony is proposed. Moreover, a noise filtering mechanism based on grid division is designed to ensure the accuracy of pseudo-labels. Finally, the proposed algorithm is applied in 3 real datasets and compared with 6 classical band selection algorithms. Experimental results show that the proposed algorithm can obtain a band subset with high classification accuracy for all the three classifiers, KNN, Random Forest, and SVM.
Collapse
|
17
|
|
18
|
Novel Semi-Supervised Hyperspectral Image Classification Based on a Superpixel Graph and Discrete Potential Method. REMOTE SENSING 2020. [DOI: 10.3390/rs12091528] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hyperspectral image (HSI) classification plays an important role in the automatic interpretation of the remotely sensed data. However, it is a non-trivial task to classify HSI accurately and rapidly due to its characteristics of having a large amount of data and massive noise points. To address this problem, in this work, a novel, semi-supervised, superpixel-level classification method for an HSI was proposed based on a graph and discrete potential (SSC-GDP). The key idea of the proposed scheme is the construction of the weighted connectivity graph and the division of the weighted graph. Based on the superpixel segmentation, a weighted connectivity graph is constructed usingthe weighted connection between a superpixel and its spatial neighbors. The generated graph is then divided into different communities/sub-graphs by using a discrete potential and the improved semi-supervised Wu–Huberman (ISWH) algorithm. Each community in the weighted connectivity graph represents a class in the HSI. The local connection strategy, together with the linear complexity of the ISWH algorithm, ensures the fast implementation of the suggested SSC-GDP method. To prove the effectiveness of the proposed spectral–spatial method, two public benchmarks, Indian Pines and Salinas, were utilized to test the performance of our proposal. The comparative test results confirmed that the proposed method was superior to several other state-of-the-art methods.
Collapse
|
19
|
An Effective Classification Scheme for Hyperspectral Image Based on Superpixel and Discontinuity Preserving Relaxation. REMOTE SENSING 2019. [DOI: 10.3390/rs11101149] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hyperspectral image (HSI) classification is one of the most active topics in remote sensing. However, it is still a nontrivial task to classify the hyperspectral data accurately, since HSI always suffers from a large number of noise pixels, the complexity of the spatial structure of objects and the spectral similarity between different objects. In this study, an effective classification scheme for hyperspectral image based on superpixel and discontinuity preserving relaxation (DPR) is proposed to discriminate land covers of interest. A novel technique for measuring the similarity of a pair of pixels in HSI is suggested to improve the simple linear iterative clustering (SLIC) algorithm. Unlike the existing application of SLIC technique to HSI, the improved SLIC algorithm can be directly used to segment HSI into superpixels without using principal component analysis in advance, and is free of parameters. Furthermore, the proposed three-step classification scheme explores how to effectively use the global spectral information and local spatial structure of hyperspectral data for HSI classification. Compared with the existing two-step classification framework, the use of DPR technology in preprocessing significantly improves the classification accuracy. The effectiveness of the proposed method is verified on three public real hyperspectral datasets. The comparison results of several competitive methods show the superiority of this scheme.
Collapse
|
20
|
Early Detection of Tomato Spotted Wilt Virus by Hyperspectral Imaging and Outlier Removal Auxiliary Classifier Generative Adversarial Nets (OR-AC-GAN). Sci Rep 2019; 9:4377. [PMID: 30867450 PMCID: PMC6416251 DOI: 10.1038/s41598-019-40066-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/04/2019] [Indexed: 11/30/2022] Open
Abstract
Tomato spotted wilt virus is a wide-spread plant disease in the world. It can threaten thousands of plants with a persistent and propagative manner. Early disease detection is expected to be able to control the disease spread, to facilitate management practice, and further to guarantee accompanying economic benefits. Hyperspectral imaging, a powerful remote sensing tool, has been widely applied in different science fields, especially in plant science domain. Rich spectral information makes disease detection possible before visible disease symptoms showing up. In the paper, a new hyperspectral analysis proximal sensing method based on generative adversarial nets (GAN) is proposed, named as outlier removal auxiliary classifier generative adversarial nets (OR-AC-GAN). It is an all-in-one method, which integrates the tasks of plant segmentation, spectrum classification and image classification. The model focuses on image pixels, which can effectively visualize potential plant disease positions, and keep experts’ attention on these diseased pixels. Meanwhile, this new model can improve the performances of classic spectrum band selection methods, including the maximum variance principle component analysis (MVPCA), fast density-peak-based clustering, and similarity-based unsupervised band selection. Selecting spectrum wavebands reasonably is an important preprocessing step in spectroscopy/hyperspectral analysis applications, which can reduce the computation time for potential in-field applications, affect the prediction results and make the hyperspectral analysis results explainable. In the experiment, the hyperspectral reflectance imaging system covers the spectral range from 395 nm to 1005 nm. The proprosed model makes use of 83 bands to do the analysis. The plant level classification accuracy gets 96.25% before visible symptoms shows up. The pixel prediction false positive rate in healthy plants gets as low as 1.47%. Combining the OR-AC-GAN with three existing band selection algorithms, the performance of these band selection models can be significantly improved. Among them, MVPCA can leverage only 8 spectrum bands to get the same plant level classification accuracy as OR-AC-GAN, and the pixel prediction false positive rate in healthy plants is 1.57%, which is also comparable to OR-AC-GAN. This new model can be potentially transferred to other plant diseases detection applications. Its property to boost the performance of existing band selection methods can also accelerate the in-field applications of hyperspectral imaging technology.
Collapse
|