1
|
Ganaie MA, Tanveer M. Ensemble Deep Random Vector Functional Link Network Using Privileged Information for Alzheimer's Disease Diagnosis. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:534-545. [PMID: 35486562 DOI: 10.1109/tcbb.2022.3170351] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Alzheimer's disease (AD) is a progressive brain disorder. Machine learning models have been proposed for the diagnosis of AD at early stage. Recently, deep learning architectures have received quite a lot attention. Most of the deep learning architectures suffer from the issues of local minima, slow convergence and sensitivity to learning rate. To overcome these issues, non-iterative learning based deep randomized models especially random vector functional link network (RVFL) with direct links have proven to be successful. However, deep RVFL and its ensemble models are trained only on normal samples. In this paper, deep RVFL and its ensembles are enabled to incorporate privileged information, as the standard RVFL model and its deep models are unable to use privileged information. To fill this gap, we have incorporated learning using privileged information (LUPI) in deep RVFL model, and propose deep RVFL with LUPI framework (dRVFL+). Privileged information is available while training the models. As RVFL is an unstable classifier, we propose ensemble deep RVFL+ with LUPI framework (edRVFL+) which exploits the LUPI as well as the diversity among the base leaners for better classification. Unlike traditional ensemble approach wherein multiple base learners are trained, the proposed edRVFL+ model optimises a single network and generates an ensemble via optimization at different levels of random projections of the data. Both dRVFL+ and edRVFL+ efficiently utilise the privileged information which results in better generalization performance. In LUPI framework, half of the available features are used as normal features and rest as the privileged features. However, we propose a novel approach for generating the privileged information. We utilise different activation functions while processing the normal and privileged information in the proposed deep architectures. To the best of our knowledge, this is first time that a separate privileged information is generated. The proposed dRVFL+ and edRVFL+ models are employed for the diagnosis of Alzheimer's disease. Experimental results demonstrate the superiority of the proposed dRVFL+ and edRVFL+ models over baseline models. Thus, the proposed edRVFL+ model can be utilised in clinical setting for the diagnosis of AD.
Collapse
|
2
|
Malik AK, Tanveer M. Graph Embedded Ensemble Deep Randomized Network for Diagnosis of Alzheimer's Disease. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:546-558. [PMID: 36112566 DOI: 10.1109/tcbb.2022.3202707] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Randomized shallow/deep neural networks with closed form solution avoid the shortcomings that exist in the back propagation (BP) based trained neural networks. Ensemble deep random vector functional link (edRVFL) network utilize the strength of two growing fields, i.e., deep learning and ensemble learning. However, edRVFL model doesn't consider the geometrical relationship of the data while calculating the final output parameters corresponding to each layer considered as base model. In the literature, graph embedded frameworks have been successfully used to describe the geometrical relationship within data. In this paper, we propose an extended graph embedded RVFL (EGERVFL) model that, unlike standard RVFL, employs both intrinsic and penalty subspace learning (SL) criteria under the graph embedded framework in its optimization process to calculate the model's output parameters. The proposed shallow EGERVFL model has only single hidden layer and hence, has less representation learning. Therefore, we further develop an ensemble deep EGERVFL (edEGERVFL) model that can be considered a variant of edRVFL model. Unlike edRVFL, the proposed edEGERVFL model solves graph embedded based optimization problem in each layer and hence, has better generalization performance than edRVFL model. We evaluated the proposed approaches for the diagnosis of Alzheimer's disease and furthermore on UCI datasets. The experimental results demonstrate that the proposed models perform better than baseline models. The source code of the proposed models is available at https://github.com/mtanveer1/.
Collapse
|
3
|
Yuan Z, Li X, Hao Z, Tang Z, Yao X, Wu T. Intelligent prediction of Alzheimer's disease via improved multifeature squeeze-and-excitation-dilated residual network. Sci Rep 2024; 14:11994. [PMID: 38796518 PMCID: PMC11127948 DOI: 10.1038/s41598-024-62712-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/21/2024] [Indexed: 05/28/2024] Open
Abstract
This study aimed to address the issue of larger prediction errors existing in intelligent predictive tasks related to Alzheimer's disease (AD). A cohort of 487 enrolled participants was categorized into three groups: normal control (138 individuals), mild cognitive impairment (238 patients), and AD (111 patients) in this study. An improved multifeature squeeze-and-excitation-dilated residual network (MFSE-DRN) was proposed for two important AD predictions: clinical scores and conversion probability. The model was characterized as three modules: squeeze-and-excitation-dilated residual block (SE-DRB), multifusion pooling (MF-Pool), and multimodal feature fusion. To assess its performance, the proposed model was compared with two other novel models: ranking convolutional neural network (RCNN) and 3D vision geometrical group network (3D-VGGNet). Our method showed the best performance in the two AD predicted tasks. For the clinical scores prediction, the root-mean-square errors (RMSEs) and mean absolute errors (MAEs) of mini-mental state examination (MMSE) and AD assessment scale-cognitive 11-item (ADAS-11) were 1.97, 1.46 and 4.20, 3.19 within 6 months; 2.48, 1.69 and 4.81, 3.44 within 12 months; 2.67, 1.86 and 5.81, 3.83 within 24 months; 3.02, 2.03 and 5.09, 3.43 within 36 months, respectively. At the AD conversion probability prediction, the prediction accuracies within 12, 24, and 36 months reached to 88.0, 85.5, and 88.4%, respectively. The AD predication would play a great role in clinical applications.
Collapse
Affiliation(s)
- Zengbei Yuan
- College of Medical Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xinlin Li
- College of Medical Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Zezhou Hao
- College of Medical Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Zhixian Tang
- College of Medical Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Xufeng Yao
- College of Medical Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| | - Tao Wu
- College of Medical Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| |
Collapse
|
4
|
Sharma R, Goel T, Tanveer M, Suganthan PN, Razzak I, Murugan R. Conv-eRVFL: Convolutional Neural Network Based Ensemble RVFL Classifier for Alzheimer's Disease Diagnosis. IEEE J Biomed Health Inform 2023; 27:4995-5003. [PMID: 36260567 DOI: 10.1109/jbhi.2022.3215533] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
As per the latest statistics, Alzheimer's disease (AD) has become a global burden over the following decades. Identifying AD at the intermediate stage became challenging, with mild cognitive impairment (MCI) utilizing credible biomarkers and robust learning approaches. Neuroimaging techniques like magnetic resonance imaging (MRI) and positron emission tomography (PET) are practical research approaches that provide structural atrophies and metabolic variations. With the help of MRI and PET scans, metabolic and structural changes in AD patients can be visible even ten years before the disease's onset. This paper proposes a novel wavelet packet transform-based structural and metabolic image fusion approach using MRI and PET scans. An eight-layer trained CNN extracts features from multiple layers and these features are fed to an ensemble of non-iterative random vector functional link (RVFL) models. The RVFL network incorporates the s-membership fuzzy function as an activation function that helps overcome outliers. Lastly, outputs of all the customized RVFL classifiers are averaged and fed to the RVFL classifier to make the final decision. Experiments are performed over Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset, and classification is made over CN vs. AD vs. MCI. The model performance obtained is decent enough to prove the effectiveness of the fusion-based ensemble approach.
Collapse
|
5
|
Alshamrani M. Recent Trends in Active and Passive Immunotherapies of Alzheimer's Disease. Antibodies (Basel) 2023; 12:41. [PMID: 37366656 DOI: 10.3390/antib12020041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
In the elderly, a debilitating condition known as dementia, which is a major health concern, is caused by Alzheimer's disease (AD). Despite promising advances by researchers, there is currently no way to completely cure this devastating disease. It is illustrated by the deposition of amyloid β-peptide (Aβ) plaques that are followed by neural dysfunction and cognitive decline. Responses against AD activate an immune system that contributes to and accelerates AD pathogenesis. Potential efforts in the field of pathogenesis have prompted researchers to explore novel therapies such as active and passive vaccines against Aβ proteins (Aβ immunotherapy), intravenous immunoglobulin, and tau immunotherapy, as well as targets that include microglia and several cytokines for the treatment of AD. Aims are now underway by experts to begin immunotherapies before the clinical manifestation, which is made possible by improving the sensitivity of biomarkers used for the diagnosis of AD to have better outcome measures. This review provides an overview of approved immunotherapeutic strategies for AD and those currently being investigated in clinical trials. We examine their mechanisms of action and discuss the potential perspectives and challenges associated with immunotherapies for AD.
Collapse
Affiliation(s)
- Meshal Alshamrani
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
6
|
Kaplan E, Baygin M, Barua PD, Dogan S, Tuncer T, Altunisik E, Palmer EE, Acharya UR. ExHiF: Alzheimer's disease detection using exemplar histogram-based features with CT and MR images. Med Eng Phys 2023; 115:103971. [PMID: 37120169 DOI: 10.1016/j.medengphy.2023.103971] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 05/01/2023]
Abstract
PURPOSE The classification of medical images is an important priority for clinical research and helps to improve the diagnosis of various disorders. This work aims to classify the neuroradiological features of patients with Alzheimer's disease (AD) using an automatic hand-modeled method with high accuracy. MATERIALS AND METHOD This work uses two (private and public) datasets. The private dataset consists of 3807 magnetic resonance imaging (MRI) and computer tomography (CT) images belonging to two (normal and AD) classes. The second public (Kaggle AD) dataset contains 6400 MR images. The presented classification model comprises three fundamental phases: feature extraction using an exemplar hybrid feature extractor, neighborhood component analysis-based feature selection, and classification utilizing eight different classifiers. The novelty of this model is feature extraction. Vision transformers inspire this phase, and hence 16 exemplars are generated. Histogram-oriented gradients (HOG), local binary pattern (LBP) and local phase quantization (LPQ) feature extraction functions have been applied to each exemplar/patch and raw brain image. Finally, the created features are merged, and the best features are selected using neighborhood component analysis (NCA). These features are fed to eight classifiers to obtain highest classification performance using our proposed method. The presented image classification model uses exemplar histogram-based features; hence, it is called ExHiF. RESULTS We have developed the ExHiF model with a ten-fold cross-validation strategy using two (private and public) datasets with shallow classifiers. We have obtained 100% classification accuracy using cubic support vector machine (CSVM) and fine k nearest neighbor (FkNN) classifiers for both datasets. CONCLUSIONS Our developed model is ready to be validated with more datasets and has the potential to be employed in mental hospitals to assist neurologists in confirming their manual screening of AD using MRI/CT images.
Collapse
Affiliation(s)
- Ela Kaplan
- Department of Radiology, Adiyaman Training and Research Hospital, Adiyaman, Turkey
| | - Mehmet Baygin
- Department of Computer Engineering, College of Engineering, Ardahan University, Ardahan, Turkey
| | - Prabal D Barua
- Cogninet Australia, Sydney, NSW, 2010, Australia; School of Business (Information System), University of Southern Queensland, Australia; Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, 2007, Australia; Australian International Institute of Higher Education, Sydney, NSW, 2000, Australia; School of Science & Technology, University of New England, Australia; School of Biosciences, Taylor's University, Malaysia; School of Computing, SRM Institute of Science and Technology, India; School of Science and Technology, Kumamoto University, Japan; Sydney School of Education and Social work, University of Sydney, Australia
| | - Sengul Dogan
- Department of Digital Forensics Engineering, College of Technology, Firat University, Elazig, Turkey.
| | - Turker Tuncer
- Department of Digital Forensics Engineering, College of Technology, Firat University, Elazig, Turkey
| | - Erman Altunisik
- Department of Neurology, Adiyaman University Medicine Faculty, Adiyaman, Turkey
| | - Elizabeth Emma Palmer
- Department of Medical Genetics, Sydney Children's Hospital, High Street, Randwick, NSW, Australia
| | - U Rajendra Acharya
- School of Mathematics, Physics and Computing, University of Southern Queensland, Springfield, Australia
| |
Collapse
|
7
|
Goel T, Varaprasad SA, Tanveer M, Pilli R. Investigating White Matter Abnormalities Associated with Schizophrenia Using Deep Learning Model and Voxel-Based Morphometry. Brain Sci 2023; 13:brainsci13020267. [PMID: 36831810 PMCID: PMC9954172 DOI: 10.3390/brainsci13020267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/27/2023] [Indexed: 02/09/2023] Open
Abstract
Schizophrenia (SCZ) is a devastating mental condition with significant negative consequences for patients, making correct and prompt diagnosis crucial. The purpose of this study is to use structural magnetic resonance image (MRI) to better classify individuals with SCZ from control normals (CN) and to locate a region of the brain that represents abnormalities associated with SCZ. Deep learning (DL), which is based on the nervous system, could be a very useful tool for doctors to accurately predict, diagnose, and treat SCZ. Gray Matter (GM), Cerebrospinal Fluid (CSF), and White Matter (WM) brain regions are extracted from 99 MRI images obtained from the open-source OpenNeuro database to demonstrate SCZ's regional relationship. In this paper, we use a pretrained ResNet-50 deep network to extract features from MRI images and an ensemble deep random vector functional link (edRVFL) network to classify those features. By examining the results obtained, the edRVFL deep model provides the highest classification accuracy of 96.5% with WM and is identified as the best-performing algorithm compared to the traditional algorithms. Furthermore, we examined the GM, WM, and CSF tissue volumes in CN subjects and SCZ patients using voxel-based morphometry (VBM), and the results show 1363 significant voxels, 6.90 T-value, and 6.21 Z-value in the WM region of SCZ patients. In SCZ patients, WM is most closely linked to structural alterations, as evidenced by VBM analysis and the DL model.
Collapse
Affiliation(s)
- Tripti Goel
- Biomedical Imaging Lab, Department of Electronics and Communication Engineering, National Institute of Technology Silchar, Silchar 788010, Assam, India
- Correspondence: (T.G.); (M.T.)
| | - Sirigineedi A. Varaprasad
- Biomedical Imaging Lab, Department of Electronics and Communication Engineering, National Institute of Technology Silchar, Silchar 788010, Assam, India
| | - M. Tanveer
- Department of Mathematics, Indian Institute of Technology Indore, Simrol 453552, Madhya Pradesh, India
- Correspondence: (T.G.); (M.T.)
| | - Raveendra Pilli
- Biomedical Imaging Lab, Department of Electronics and Communication Engineering, National Institute of Technology Silchar, Silchar 788010, Assam, India
| |
Collapse
|
8
|
Arco JE, Ortiz A, Castillo-Barnes D, Górriz JM, Ramírez J. Ensembling shallow siamese architectures to assess functional asymmetry in Alzheimer’s disease progression. Appl Soft Comput 2023. [DOI: 10.1016/j.asoc.2023.109991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
9
|
A T, Saju R, John A, C UA. DMSENet: Deep multi-modal squeeze and excitation network for the diagnosis of Alzheimer's disease. INTERNATIONAL JOURNAL OF HEALTHCARE MANAGEMENT 2022. [DOI: 10.1080/20479700.2022.2130631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Affiliation(s)
- Thushara A
- Department of Computer Science and Engineering, TKM College of Engineering Kollam, APJ Abdul Kalam Technological University, Thiruvananthapuram, India
| | - Reshma Saju
- Department of Computer Science and Engineering, TKM College of Engineering Kollam, APJ Abdul Kalam Technological University, Thiruvananthapuram, India
| | - Ansamma John
- Department of Computer Science and Engineering, TKM College of Engineering Kollam, APJ Abdul Kalam Technological University, Thiruvananthapuram, India
| | - UshaDevi Amma C
- Department of Electronics and Communications Engineering, Amrita Vishwa Vidyapeetham Amritapuri CampusAmrita University, Kollam, India
| |
Collapse
|
10
|
Khagi B, Kwon GR. A novel scaled-gamma-tanh (SGT) activation function in 3D CNN applied for MRI classification. Sci Rep 2022; 12:14978. [PMID: 36056069 PMCID: PMC9440075 DOI: 10.1038/s41598-022-19020-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 08/23/2022] [Indexed: 11/24/2022] Open
Abstract
Activation functions in the neural network are responsible for 'firing' the nodes in it. In a deep neural network they 'activate' the features to reduce feature redundancy and learn the complex pattern by adding non-linearity in the network to learn task-specific goals. In this paper, we propose a simple and interesting activation function based on the combination of scaled gamma correction and hyperbolic tangent function, which we call Scaled Gamma Tanh (SGT) activation. The proposed activation function is applied in two steps, first is the calculation of gamma version as y = f(x) = axα for x < 0 and y = f(x) = bxβ for x ≥ 0, second is obtaining the squashed value as z = tanh(y). The variables a and b are user-defined constant values whereas [Formula: see text] and [Formula: see text] are channel-based learnable parameters. We analyzed the behavior of the proposed SGT activation function against other popular activation functions like ReLU, Leaky-ReLU, and tanh along with their role to confront vanishing/exploding gradient problems. For this, we implemented the SGT activation functions in a 3D Convolutional neural network (CNN) for the classification of magnetic resonance imaging (MRIs). More importantly to support our proposed idea we have presented a thorough analysis via histogram of inputs and outputs in activation layers along with weights/bias plot and t-SNE (t-Distributed Stochastic Neighbor Embedding) projection of fully connected layer for the trained CNN models. Our results in MRI classification show SGT outperforms standard ReLU and tanh activation in all cases i.e., final validation accuracy, final validation loss, test accuracy, Cohen's kappa score, and Precision.
Collapse
Affiliation(s)
- Bijen Khagi
- Information and Communication Engineering, Chosun University, Gwangju, 61452, South Korea
| | - Goo-Rak Kwon
- Information and Communication Engineering, Chosun University, Gwangju, 61452, South Korea.
- Gwangju Alzheimer's Disease and Related Dementia Cohort Research Center, Gwangju, South Korea.
| |
Collapse
|
11
|
Lu J, Zeng W, Zhang L, Shi Y. A Novel Key Features Screening Method Based on Extreme Learning Machine for Alzheimer's Disease Study. Front Aging Neurosci 2022; 14:888575. [PMID: 35693342 PMCID: PMC9177228 DOI: 10.3389/fnagi.2022.888575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/25/2022] [Indexed: 12/31/2022] Open
Abstract
The Extreme Learning Machine (ELM) is a simple and efficient Single Hidden Layer Feedforward Neural Network(SLFN) algorithm. In recent years, it has been gradually used in the study of Alzheimer's disease (AD). When using ELM to diagnose AD based on high-dimensional features, there are often some features that have no positive impact on the diagnosis, while others have a significant impact on the diagnosis. In this paper, a novel Key Features Screening Method based on Extreme Learning Machine (KFS-ELM) is proposed. It can screen for key features that are relevant to the classification (diagnosis). It can also assign weights to key features based on their importance. We designed an experiment to screen for key features of AD. A total of 920 key functional connections screened from 4005 functional connections. Their weights were also obtained. The results of the experiment showed that: (1) Using all (4,005) features to diagnose AD, the accuracy is 95.33%. Using 920 key features to diagnose AD, the accuracy is 99.20%. The 3,085 (4,005 - 920) features that were screened out had a negative effect on the diagnosis of AD. This indicates the KFS-ELM is effective in screening key features. (2) The higher the weight of the key features and the smaller their number, the greater their impact on AD diagnosis. This indicates that the KFS-ELM is rational in assigning weights to the key features for their importance. Therefore, KFS-ELM can be used as a tool for studying features and also for improving classification accuracy.
Collapse
Affiliation(s)
- Jia Lu
- Laboratory of Digital Image and Intelligent Computation, Shanghai Maritime University, Shanghai, China
| | - Weiming Zeng
- Laboratory of Digital Image and Intelligent Computation, Shanghai Maritime University, Shanghai, China
| | - Lu Zhang
- Basic Experiment and Training Center, Shanghai Maritime University, Shanghai, China
| | - Yuhu Shi
- College of Information Engineering Shanghai Maritime University, Shanghai, China
| |
Collapse
|
12
|
Sharma R, Goel T, Tanveer M, Murugan R. FDN-ADNet: Fuzzy LS-TWSVM based deep learning network for prognosis of the Alzheimer’s disease using the sagittal plane of MRI scans. Appl Soft Comput 2022. [DOI: 10.1016/j.asoc.2021.108099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
13
|
Sheng J, Wang B, Zhang Q, Yu M. Connectivity and variability of related cognitive subregions lead to different stages of progression toward Alzheimer's disease. Heliyon 2022; 8:e08827. [PMID: 35128111 PMCID: PMC8803587 DOI: 10.1016/j.heliyon.2022.e08827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 04/29/2021] [Accepted: 01/19/2022] [Indexed: 12/04/2022] Open
Abstract
Single modality MRI data is not enough to depict and discern the cause of the underlying brain pathology of Alzheimer's disease (AD). Most existing studies do not perform well with multi-group classification. To reveal the structural, functional connectivity and functional topological relationships among different stages of mild cognitive impairment (MCI) and AD, a novel method was proposed in this paper for the analysis of regional importance with an improved deep learning model. Obvious drift of related cognitive regions can be observed in the prefrontal lobe and surrounding the cingulate area in the right hemisphere when comparing AD and healthy controls (HC) based on absolute weights in the classification mode. Alterations of these regions being responsible for cognitive impairment have been previously reported. Different parcellation atlases of the human cerebral cortex were compared, and the fine-grained multimodal parcellation HCPMMP performed the best with 180 cortical areas per hemisphere. In multi-group classification, the highest accuracy achieved was 96.86% with the utilization of structural and functional topological modalities as input to the training model. Weights in the trained model with perfect discriminating ability quantify the importance of each cortical region. This is the first time such a phenomenon is discovered and weights in cortical areas are precisely described in AD and its prodromal stages to the best of our knowledge. Our findings can establish other study models to differentiate the patterns in various diseases with cognitive impairments and help to identify the underlying pathology.
Collapse
Affiliation(s)
- Jinhua Sheng
- School of Computer Science, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, China
- Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang, 310018, China
| | - Bocheng Wang
- School of Computer Science, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, China
- Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang, 310018, China
- Communication University of Zhejiang, Hangzhou, Zhejiang, 310018, China
| | - Qiao Zhang
- Beijing Hospital, Beijing, 100730, China
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Margaret Yu
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| |
Collapse
|
14
|
Tanveer M, Rashid AH, Ganaie MA, Reza M, Razzak I, Hua KL. Classification of Alzheimer's disease using ensemble of deep neural networks trained through transfer learning. IEEE J Biomed Health Inform 2021; 26:1453-1463. [PMID: 34033550 DOI: 10.1109/jbhi.2021.3083274] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Deep learning; transfer learning; ensemble learning; Alzheimer's disease.
Collapse
|