1
|
Islam MS, Al Farid F, Shamrat FMJM, Islam MN, Rashid M, Bari BS, Abdullah J, Nazrul Islam M, Akhtaruzzaman M, Nomani Kabir M, Mansor S, Abdul Karim H. Challenges issues and future recommendations of deep learning techniques for SARS-CoV-2 detection utilising X-ray and CT images: a comprehensive review. PeerJ Comput Sci 2024; 10:e2517. [PMID: 39896401 PMCID: PMC11784792 DOI: 10.7717/peerj-cs.2517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 10/24/2024] [Indexed: 02/04/2025]
Abstract
The global spread of SARS-CoV-2 has prompted a crucial need for accurate medical diagnosis, particularly in the respiratory system. Current diagnostic methods heavily rely on imaging techniques like CT scans and X-rays, but identifying SARS-CoV-2 in these images proves to be challenging and time-consuming. In this context, artificial intelligence (AI) models, specifically deep learning (DL) networks, emerge as a promising solution in medical image analysis. This article provides a meticulous and comprehensive review of imaging-based SARS-CoV-2 diagnosis using deep learning techniques up to May 2024. This article starts with an overview of imaging-based SARS-CoV-2 diagnosis, covering the basic steps of deep learning-based SARS-CoV-2 diagnosis, SARS-CoV-2 data sources, data pre-processing methods, the taxonomy of deep learning techniques, findings, research gaps and performance evaluation. We also focus on addressing current privacy issues, limitations, and challenges in the realm of SARS-CoV-2 diagnosis. According to the taxonomy, each deep learning model is discussed, encompassing its core functionality and a critical assessment of its suitability for imaging-based SARS-CoV-2 detection. A comparative analysis is included by summarizing all relevant studies to provide an overall visualization. Considering the challenges of identifying the best deep-learning model for imaging-based SARS-CoV-2 detection, the article conducts an experiment with twelve contemporary deep-learning techniques. The experimental result shows that the MobileNetV3 model outperforms other deep learning models with an accuracy of 98.11%. Finally, the article elaborates on the current challenges in deep learning-based SARS-CoV-2 diagnosis and explores potential future directions and methodological recommendations for research and advancement.
Collapse
Affiliation(s)
- Md Shofiqul Islam
- Computer Science and Engineering (CSE), Military Institute of Science and Technology (MIST), Dhaka, Bangladesh
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Warun Ponds, Victoria, Australia
| | - Fahmid Al Farid
- Faculty of Engineering, Multimedia University, Cyeberjaya, Selangor, Malaysia
| | | | - Md Nahidul Islam
- Faculty of Electrical and Electronics Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), Pekan, Pahang, Malaysia
| | - Mamunur Rashid
- Faculty of Electrical and Electronics Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), Pekan, Pahang, Malaysia
- Electrical and Computer Engineering, Tennessee Tech University, Cookeville, TN, United States
| | - Bifta Sama Bari
- Faculty of Electrical and Electronics Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), Pekan, Pahang, Malaysia
- Electrical and Computer Engineering, Tennessee Tech University, Cookeville, TN, United States
| | - Junaidi Abdullah
- Faculty of Computing and Informatics, Multimedia University, Cyberjaya, Selangor, Malaysia
| | - Muhammad Nazrul Islam
- Computer Science and Engineering (CSE), Military Institute of Science and Technology (MIST), Dhaka, Bangladesh
| | - Md Akhtaruzzaman
- Computer Science and Engineering (CSE), Military Institute of Science and Technology (MIST), Dhaka, Bangladesh
| | - Muhammad Nomani Kabir
- Department of Computer Science & Engineering, United International University (UIU), Dhaka, Bangladesh
| | - Sarina Mansor
- Faculty of Engineering, Multimedia University, Cyeberjaya, Selangor, Malaysia
| | - Hezerul Abdul Karim
- Faculty of Engineering, Multimedia University, Cyeberjaya, Selangor, Malaysia
| |
Collapse
|
2
|
Lella KK, Jagadeesh MS, Alphonse PJA. Artificial intelligence-based framework to identify the abnormalities in the COVID-19 disease and other common respiratory diseases from digital stethoscope data using deep CNN. Health Inf Sci Syst 2024; 12:22. [PMID: 38469455 PMCID: PMC10924857 DOI: 10.1007/s13755-024-00283-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 02/21/2024] [Indexed: 03/13/2024] Open
Abstract
The utilization of lung sounds to diagnose lung diseases using respiratory sound features has significantly increased in the past few years. The Digital Stethoscope data has been examined extensively by medical researchers and technical scientists to diagnose the symptoms of respiratory diseases. Artificial intelligence-based approaches are applied in the real universe to distinguish respiratory disease signs from human pulmonary auscultation sounds. The Deep CNN model is implemented with combined multi-feature channels (Modified MFCC, Log Mel, and Soft Mel) to obtain the sound parameters from lung-based Digital Stethoscope data. The model analysis is observed with max-pooling and without max-pool operations using multi-feature channels on respiratory digital stethoscope data. In addition, COVID-19 sound data and enriched data, which are recently acquired data to enhance model performance using a combination of L2 regularization to overcome the risk of overfitting because of less respiratory sound data, are included in the work. The suggested DCNN with Max-Pooling on the improved dataset demonstrates cutting-edge performance employing a multi-feature channels spectrogram. The model has been developed with different convolutional filter sizes (1 × 12 , 1 × 24 , 1 × 36 , 1 × 48 , and 1 × 60 ) that helped to test the proposed neural network. According to the experimental findings, the suggested DCNN architecture with a max-pooling function performs better to identify respiratory disease symptoms than DCNN without max-pooling. In order to demonstrate the model's effectiveness in categorization, it is trained and tested with the DCNN model that extract several modalities of respiratory sound data.
Collapse
Affiliation(s)
- Kranthi Kumar Lella
- School of Computer Science and Engineering, VIT-AP University, Vijayawada, Guntur, Andhra Pradesh 522237 India
| | - M. S. Jagadeesh
- School of Computer Science and Engineering, VIT-AP University, Vijayawada, Guntur, Andhra Pradesh 522237 India
| | - P. J. A. Alphonse
- Department of Computer Applications, NIT Tiruchirappalli, Tiruchirappalli, Guntur, Tamil Nadu 620015 India
| |
Collapse
|
3
|
Wang J, Peng H, Chen S, Ren S. Ensemble learning for retinal disease recognition under limited resources. Med Biol Eng Comput 2024; 62:2839-2852. [PMID: 38698189 DOI: 10.1007/s11517-024-03101-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/17/2024] [Indexed: 05/05/2024]
Abstract
Retinal optical coherence tomography (OCT) images provide crucial insights into the health of the posterior ocular segment. Therefore, the advancement of automated image analysis methods is imperative to equip clinicians and researchers with quantitative data, thereby facilitating informed decision-making. The application of deep learning (DL)-based approaches has gained extensive traction for executing these analysis tasks, demonstrating remarkable performance compared to labor-intensive manual analyses. However, the acquisition of retinal OCT images often presents challenges stemming from privacy concerns and the resource-intensive labeling procedures, which contradicts the prevailing notion that DL models necessitate substantial data volumes for achieving superior performance. Moreover, limitations in available computational resources constrain the progress of high-performance medical artificial intelligence, particularly in less developed regions and countries. This paper introduces a novel ensemble learning mechanism designed for recognizing retinal diseases under limited resources (e.g., data, computation). The mechanism leverages insights from multiple pre-trained models, facilitating the transfer and adaptation of their knowledge to retinal OCT images. This approach establishes a robust model even when confronted with limited labeled data, eliminating the need for an extensive array of parameters, as required in learning from scratch. Comprehensive experimentation on real-world datasets demonstrates that the ensemble models constructed by the proposed ensemble method show superior performance over the baseline models under sparse labeled data, especially the triple ensemble model, which achieves the accuracy of 92.06%, which is 8.27%, 7.99%, and 11.14% better than the three baseline models, respectively. In addition, compared with the three baseline models learned from scratch, the triple ensemble model has fewer trainable parameters, only 3.677M, which is lower than the three baseline models of 8.013M, 4.302M, and 20.158M, respectively.
Collapse
Affiliation(s)
- Jiahao Wang
- School of Information and Communication Engineering, Hainan University, Haikou, 570228, China
| | - Hong Peng
- School of Information and Communication Engineering, Hainan University, Haikou, 570228, China
| | - Shengchao Chen
- Australian AI Institute, School of Computer Science, FEIT, University of Technology Sydney, Sydney, 2008, NSW, Australia.
| | - Sufen Ren
- School of Information and Communication Engineering, Hainan University, Haikou, 570228, China.
| |
Collapse
|
4
|
Malla S, Kumar LK, Alphonse PJA. Novel fuzzy deep learning approach for automated detection of useful COVID-19 tweets. Artif Intell Med 2023; 143:102627. [PMID: 37673585 DOI: 10.1016/j.artmed.2023.102627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 09/08/2023]
Abstract
Coronavirus (COVID-19) is a newly discovered viral disease from the SARS-CoV-2 family. This has caused a moral panic resulting in the spread of informative and uninformative information about COVID-19 and its effects. Twitter is a popular social media platform used extensively during the current outbreak. This paper aims to predict informative tweets related to COVID-19 on Twitter using a novel set of fuzzy rules involving deep learning techniques. This study focuses on identifying informative tweets during the pandemic to provide the public with trustworthy information and forecast how quickly diseases could spread. In this case, we have implemented RoBERTa and CT-BERT models using the fuzzy methodology to identify COVID-19 patient tweets. The proposed architecture combines deep learning transformer models RoBERTa and CT-BERT with the fuzzy technique to categorize posts as INFORMATIVE or UNINFORMATIVE. We performed a comparative analysis of our method with machine learning models and deep learning approaches. The results show that our proposed model can classify informative and uninformative tweets with an accuracy of 91.40% and an F1-score of 91.94% using the COVID-19 English tweet dataset. The proposed model is accurate and ready for real-world application.
Collapse
Affiliation(s)
- SreeJagadeesh Malla
- School of Computer Science and Engineering, VIT-AP University, Amaravati, Andhra Pradesh, India.
| | - Lella Kranthi Kumar
- School of Computer Science and Engineering, VIT-AP University, Amaravati, Andhra Pradesh, India.
| | - P J A Alphonse
- Department of Computer Applications, National Institute of Technology, Tiruchirappalli, Tamil Nadu, India.
| |
Collapse
|
5
|
Cui S, Han Y, Duan Y, Li Y, Zhu S, Song C. A Two-Stage Voting-Boosting Technique for Ensemble Learning in Social Network Sentiment Classification. ENTROPY (BASEL, SWITZERLAND) 2023; 25:555. [PMID: 37190343 PMCID: PMC10137704 DOI: 10.3390/e25040555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 05/17/2023]
Abstract
In recent years, social network sentiment classification has been extensively researched and applied in various fields, such as opinion monitoring, market analysis, and commodity feedback. The ensemble approach has achieved remarkable results in sentiment classification tasks due to its superior performance. The primary reason behind the success of ensemble methods is the enhanced diversity of the base classifiers. The boosting method employs a sequential ensemble structure to construct diverse data while also utilizing erroneous data by assigning higher weights to misclassified samples in the next training round. However, this method tends to use a sequential ensemble structure, resulting in a long computation time. Conversely, the voting method employs a concurrent ensemble structure to reduce computation time but neglects the utilization of erroneous data. To address this issue, this study combines the advantages of voting and boosting methods and proposes a new two-stage voting boosting (2SVB) concurrent ensemble learning method for social network sentiment classification. This novel method not only establishes a concurrent ensemble framework to decrease computation time but also optimizes the utilization of erroneous data and enhances ensemble performance. To optimize the utilization of erroneous data, a two-stage training approach is implemented. Stage-1 training is performed on the datasets by employing a 3-fold cross-segmentation approach. Stage-2 training is carried out on datasets that have been augmented with the erroneous data predicted by stage 1. To augment the diversity of base classifiers, the training stage employs five pre-trained deep learning (PDL) models with heterogeneous pre-training frameworks as base classifiers. To reduce the computation time, a two-stage concurrent ensemble framework was established. The experimental results demonstrate that the proposed method achieves an F1 score of 0.8942 on the coronavirus tweet sentiment dataset, surpassing other comparable ensemble methods.
Collapse
Affiliation(s)
- Su Cui
- Department of Electronic Information, Engineering University of Chinese People’s Armed Police Force, Xi’an 710086, China; (S.C.)
| | - Yiliang Han
- Department of Electronic Information, Engineering University of Chinese People’s Armed Police Force, Xi’an 710086, China; (S.C.)
| | - Yifei Duan
- Department of Computer and Information Technology, University of Pennsylvania, Philadelphia, PA 19019, USA
| | - Yu Li
- Department of Electronic Information, Engineering University of Chinese People’s Armed Police Force, Xi’an 710086, China; (S.C.)
| | - Shuaishuai Zhu
- Department of Electronic Information, Engineering University of Chinese People’s Armed Police Force, Xi’an 710086, China; (S.C.)
| | - Chaoyue Song
- Department of Electronic Information, Engineering University of Chinese People’s Armed Police Force, Xi’an 710086, China; (S.C.)
| |
Collapse
|
6
|
Asudani DS, Nagwani NK, Singh P. Impact of word embedding models on text analytics in deep learning environment: a review. Artif Intell Rev 2023; 56:1-81. [PMID: 36844886 PMCID: PMC9944441 DOI: 10.1007/s10462-023-10419-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2023] [Indexed: 02/25/2023]
Abstract
The selection of word embedding and deep learning models for better outcomes is vital. Word embeddings are an n-dimensional distributed representation of a text that attempts to capture the meanings of the words. Deep learning models utilize multiple computing layers to learn hierarchical representations of data. The word embedding technique represented by deep learning has received much attention. It is used in various natural language processing (NLP) applications, such as text classification, sentiment analysis, named entity recognition, topic modeling, etc. This paper reviews the representative methods of the most prominent word embedding and deep learning models. It presents an overview of recent research trends in NLP and a detailed understanding of how to use these models to achieve efficient results on text analytics tasks. The review summarizes, contrasts, and compares numerous word embedding and deep learning models and includes a list of prominent datasets, tools, APIs, and popular publications. A reference for selecting a suitable word embedding and deep learning approach is presented based on a comparative analysis of different techniques to perform text analytics tasks. This paper can serve as a quick reference for learning the basics, benefits, and challenges of various word representation approaches and deep learning models, with their application to text analytics and a future outlook on research. It can be concluded from the findings of this study that domain-specific word embedding and the long short term memory model can be employed to improve overall text analytics task performance.
Collapse
Affiliation(s)
- Deepak Suresh Asudani
- Department of Computer Science and Engineering, National Institute of Technology, Raipur, Chhattisgarh India
| | - Naresh Kumar Nagwani
- Department of Computer Science and Engineering, National Institute of Technology, Raipur, Chhattisgarh India
| | - Pradeep Singh
- Department of Computer Science and Engineering, National Institute of Technology, Raipur, Chhattisgarh India
| |
Collapse
|
7
|
Kothuru S, Santhanavijayan A. Identifying COVID-19 english informative tweets using limited labelled data. SOCIAL NETWORK ANALYSIS AND MINING 2023; 13:25. [PMID: 36686376 PMCID: PMC9844936 DOI: 10.1007/s13278-023-01025-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/28/2022] [Accepted: 01/07/2023] [Indexed: 01/19/2023]
Abstract
Identifying COVID-19 informative tweets is very useful in building monitoring systems to track the latest updates. Existing approaches to identify informative tweets rely on a large number of labelled tweets to achieve good performances. As labelling is an expensive and laborious process, there is a need to develop approaches that can identify COVID-19 informative tweets using limited labelled data. In this paper, we propose a simple yet novel labelled data-efficient approach that achieves the state-of-the-art (SOTA) F1-score of 91.23 on the WNUT COVID-19 dataset using just 1000 tweets (14.3% of the full training set). Our labelled data-efficient approach starts with limited labelled data, augment it using data augmentation methods and then fine-tune the model using augmented data set. It is the first work to approach the task of identifying COVID-19 English informative tweets using limited labelled data yet achieve the new SOTA performance.
Collapse
Affiliation(s)
- Srinivasulu Kothuru
- Department of Computer Science and Engineering, National Institute of Technology, Thuvakudi, Tiruchirappalli, Tamil Nadu 620015 India
| | - A. Santhanavijayan
- Department of Computer Science and Engineering, National Institute of Technology, Thuvakudi, Tiruchirappalli, Tamil Nadu 620015 India
| |
Collapse
|
8
|
Swapnarekha H, Nayak J, Behera HS, Dash PB, Pelusi D. An optimistic firefly algorithm-based deep learning approach for sentiment analysis of COVID-19 tweets. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:2382-2407. [PMID: 36899539 DOI: 10.3934/mbe.2023112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The unprecedented rise in the number of COVID-19 cases has drawn global attention, as it has caused an adverse impact on the lives of people all over the world. As of December 31, 2021, more than 2, 86, 901, 222 people have been infected with COVID-19. The rise in the number of COVID-19 cases and deaths across the world has caused fear, anxiety and depression among individuals. Social media is the most dominant tool that disturbed human life during this pandemic. Among the social media platforms, Twitter is one of the most prominent and trusted social media platforms. To control and monitor the COVID-19 infection, it is necessary to analyze the sentiments of people expressed on their social media platforms. In this study, we proposed a deep learning approach known as a long short-term memory (LSTM) model for the analysis of tweets related to COVID-19 as positive or negative sentiments. In addition, the proposed approach makes use of the firefly algorithm to enhance the overall performance of the model. Further, the performance of the proposed model, along with other state-of-the-art ensemble and machine learning models, has been evaluated by using performance metrics such as accuracy, precision, recall, the AUC-ROC and the F1-score. The experimental results reveal that the proposed LSTM + Firefly approach obtained a better accuracy of 99.59% when compared with the other state-of-the-art models.
Collapse
Affiliation(s)
- H Swapnarekha
- Department of Information Technology, Aditya Institute of Technology and Management (AITAM), Tekkali, Andhra Pradesh 532201, India
- Department of Information Technology, Veer Surendra Sai University of Technology, Burla 768018, India
| | - Janmenjoy Nayak
- Department of Computer Science, Maharaja Sriram Chandra Bhanja Deo University, Baripada, Odisha 757003, India
| | - H S Behera
- Department of Information Technology, Veer Surendra Sai University of Technology, Burla 768018, India
| | - Pandit Byomakesha Dash
- Department of Information Technology, Aditya Institute of Technology and Management (AITAM), Tekkali, Andhra Pradesh 532201, India
| | - Danilo Pelusi
- Communication Sciences, University of Teramo, Coste Sant'agostino Campus, Teramo 64100, Italy
| |
Collapse
|
9
|
Nahofti Kohneh J, Amirdadi M, Teimoury E. An optimization framework for COVID-19 vaccine allocation and inventory management: A case study. Appl Soft Comput 2023; 132:109801. [PMID: 36407088 PMCID: PMC9651993 DOI: 10.1016/j.asoc.2022.109801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 09/04/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
As the novel coronavirus pandemic wreaked havoc globally, governments have implemented massive vaccination programs to tackle it. However, since the pandemic's emergence moves beyond the second year, some issues have stymied vaccination programs, including vaccine hesitancy, vaccine distribution inequality, new strains of the virus, and a possibility that the virus enters a stage of a requirement for cyclical vaccination. These challenges highlight the need for an appropriate mass COVID-19 vaccination program. Therefore, we attempt to address this problem by developing a bi-objective integrated vaccine allocation and inventory management framework. The goal is to minimize the system costs while maximizing the vaccination service level. Several important factors, such as multiple types of vaccines, the vaccines' perishability concept, demand uncertainty, and motivational strategy, have been addressed using dynamic planning. Besides that, the model development mechanism is carried out to be compatible and applicable to the current general vaccination program policies, forcing few strategic changes. Then, a case study concerning the vaccination program of the city of Mashhad in Iran is applied to the model. The results demonstrated significant advantages in total cost, vaccine shortage, and wastage compared to the current policy. Finally, the Lagrangian relaxation method is implemented on the model to strengthen further its capacity to handle larger-scale problems.
Collapse
Affiliation(s)
- Jamal Nahofti Kohneh
- Glenn Department of Civil Engineering, Clemson University, 135 Lowry Hall, Clemson, SC 29634, United States
| | - Masoud Amirdadi
- Department of Civil Engineering, Lassonde School of Engineering, York University, Toronto, Ontario, Canada
| | - Ebrahim Teimoury
- School of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran
| |
Collapse
|
10
|
Malhotra A, Jindal R. Deep learning techniques for suicide and depression detection from online social media: A scoping review. Appl Soft Comput 2022. [DOI: 10.1016/j.asoc.2022.109713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Jayachandran S, Dumala A. Recurrent neural network based sentiment analysis of social media data during corona pandemic under national lockdown. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2022. [DOI: 10.3233/jifs-221883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The Corona virus pandemic has affected the normal course of life. People all over the world take the social media to express their opinions and general emotions regarding this phenomenon. In a relatively short period of time, tweets about the new Corona virus increased by an amount never before seen on the social networking site Twitter. In this research work, Sentiment Analysis of Social Media Data to Identify the Feelings of Indians during Corona Pandemic under National Lockdown using recurrent neural network is proposed. The proposed method is analyzed using four steps: that is Data collection, data preparation, Building sentiment analysis model and Visualization of the results. For Data collection, the twitter dataset are collected from social networking platform twitter by application programming interface. For Data preparation, the input data set are pre-processed for removing URL links, removing unnecessary spaces, removing punctuations and numbers. After data cleaning or preprocessing entire particular characters and non-US characters from Standard Code for Information Interchange, apart from hash tag, are extracted as refined tweet text. In addition, entire behaviors less than three alphabets are not assumed at analysis of tweets, lastly, tokenization and derivation was carried out by Porter Stemmer to perform opinion mining. To authenticate the method, categorized the tweets linked to COVID-19 national lockdown. For categorization, recurrent neural method is used. RNN classify the sentiment classification as positive, negative and neutral sentiment scores. The efficiency of the proposed RNN based Sentimental analysis classification of COVID-19 is assessed various performances by evaluation metrics, like sensitivity, precision, recall, f-measure, specificity and accuracy. The proposed method attains 24.51%, 25.35%, 31.45% and 24.53% high accuracy, 43.51%, 52.35%, 21.45% and 28.53% high sensitivity than the existing methods.
Collapse
Affiliation(s)
- Shana Jayachandran
- Department of Computer Applications, Coimbatore Institute of Technology, Coimbatore, Tamilnadu, India
| | - Anveshini Dumala
- Department of Information Technology, Vignan’s Nirula Institute of Technology and Science for Women, Guntur, India
| |
Collapse
|
12
|
Sayarshad HR. An optimal control policy in fighting COVID-19 and infectious diseases. Appl Soft Comput 2022; 126:109289. [PMID: 35846948 PMCID: PMC9270838 DOI: 10.1016/j.asoc.2022.109289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/12/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022]
Abstract
When an outbreak starts spreading, policymakers have to make decisions that affect the health of their citizens and the economy. Some might induce harsh measures, such as a lockdown. Following a long, harsh lockdown, the recession forces policymakers to rethink reopening. To provide an effective strategy, here we propose a control strategy model. Our model assesses the trade-off between social performance and limited medical resources by determining individuals' propensities. The proposed strategy also helps decision-makers to find optimal lockdown and exit strategies for each region. Moreover, the financial loss is minimized. We use the public sentiment information during the pandemic to determine the percentage of individuals with high-risk behavior and the percentage of individuals with low-risk behavior. Hence, we propose an online platform using fear-sentiment information to estimate the personal protective equipment (PPE) burn rate overtime for the entire population. In addition, a study of a COVID-19 dataset for Los Angeles County is performed to validate our model and its results. The total social cost reduces by 18% compared with a control strategy where susceptible individuals are assumed to be homogeneous. We also reduce the total social costs by 26% and 22% compared to other strategies that consider the health-care cost or the social performance cost, respectively.
Collapse
Affiliation(s)
- Hamid R Sayarshad
- School of Civil Engineering, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
13
|
Kranthi Kumar L, Alphonse PJA. COVID-19: respiratory disease diagnosis with regularized deep convolutional neural network using human respiratory sounds. THE EUROPEAN PHYSICAL JOURNAL. SPECIAL TOPICS 2022; 231:3673-3696. [PMID: 35966369 PMCID: PMC9363874 DOI: 10.1140/epjs/s11734-022-00649-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Human respiratory sound auscultation (HRSA) parameters have been the real choice for detecting human respiratory diseases in the last few years. It is a challenging task to extract the respiratory sound features from the breath, voice, and cough sounds. The existing methods failed to extract the sound features to diagnose respiratory diseases. We proposed and evaluated a new regularized deep convolutional neural network (RDCNN) architecture to accept COVID-19 sound data and essential sound features. The proposed architecture is trained with the COVID-19 sound data sets and gives a better learning curve than any other state-of-the-art model. We examine the performance of RDCNN with Max-Pooling (Model-1) and without Max-Pooling (Model-2) functions. In this work, we observed that RDCNN model performance with three sound feature extraction methods [Soft-Mel frequency channel, Log-Mel frequency spectrum, and Modified Mel-frequency Cepstral Coefficient (MMFCC) spectrum] for COVID-19 sound data sets (KDD-data, ComParE2021-CCS-CSS-Data, and NeurlPs2021-data). To amplify the models' performance, we applied the augmentation technique along with regularization. We have also carried out this work to estimate the mutation of SARS-CoV-2 in the five waves using prognostic models (fractal-based). The proposed model achieves state-of-the-art performance on the COVID-19 sound data set to identify COVID-19 disease symptoms. The model's learnable parameter gradients have vanished in the intermediate layers while optimizing the prediction error which is addressed with our proposed RDCNN model. Our experiments suggested that 3 × 3 kernel size for regularized deep CNN (without max-pooling) shows 2-3% better classification accuracy compared to RDCNN with max-pooling. The experimental results suggest that this new approach may achieve the finest results on respiratory diseases.
Collapse
Affiliation(s)
- Lella Kranthi Kumar
- Department of Computer Applications, NIT Tiruchirappalli, Tiruchirappalli, Tamil Nadu 620015 India
| | - P. J. A. Alphonse
- Department of Computer Applications, NIT Tiruchirappalli, Tiruchirappalli, Tamil Nadu 620015 India
| |
Collapse
|
14
|
Chen MY, Lai YW. Using Fuzzy Clustering with Deep Learning Models for Detection of COVID-19 Disinformation. ACM T ASIAN LOW-RESO 2022. [DOI: 10.1145/3548458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Since the beginning of 2020, the COVID-19 pandemic has killed millions of people around the world, leading to a worldwide panic that has fueled the rapid and widespread dissemination of COVID-19-related disinformation on social media. The phenomenon, described by the World Health Organization (WHO) as an "indodemic" presents a serious challenge to governments and public health authorities, but the spread of misinformation has made human detection less efficient than the rate of spread. While there have been many studies developing automated detection techniques for COVID-19 fake news, the results often refer to high accuracy but rarely to model detection time. This research uses fuzzy theory to extract features and uses multiple deep learning model frameworks to detect Chinese and English COVID-19 misinformation. With the reduction of text features, the detection time of the model is significantly reduced, and the model accuracy does not drop excessively. This study designs two different feature extraction methods based on fuzzy classification and compares the results with different deep learning models. BiLSTM was found to provide the best detection results for COVID-19 misinformation by directly using deep learning models, with 99% accuracy in English and 86% accuracy in Chinese. Applying fuzzy clustering to English COVID-19 fake news data features maintains 99% accuracy while reducing detection time by 10%. For Chinese misinformation, detection time is reduced by 15% at the cost of an 8% drop in accuracy.
Collapse
Affiliation(s)
- Mu-Yen Chen
- Department of Engineering Science, National Cheng Kung University
- Center for Innovative FinTech Business Models, National Cheng Kung University
| | - Yi-Wei Lai
- Department of Engineering Science, National Cheng Kung University
| |
Collapse
|
15
|
Malla S, Alphonse PJA. An improved machine learning technique for identify informative COVID-19 tweets. INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT 2022. [PMCID: PMC9261178 DOI: 10.1007/s13198-022-01707-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/28/2021] [Accepted: 06/04/2022] [Indexed: 05/31/2023]
Abstract
Twitter users are increasingly using the platform to share information, particularly in the case of disease outbreaks such as COVID-19. It's difficult to find informative tweets about coronavirus on Twitter. Recognizing tweets associated with disease evaluation in social media is a critical endeavour because it is a subset of associated data. Existing works rely solely on subject identification, vocabulary construction, idea extraction, polarity detection, descriptive Terms, and disease-related statistical characteristics, resulting in a lack of precision in detecting tweet content. To solve this problem, this study used parts of speech tags and high-resolution graphics. To address this issue, we proposed an IPSH (Informative POS statistical High Frequency) model for predicting COVID-19 tweet content that incorporates parts of speech tags and high-frequency words as features into the existing machine learning model. The model was found to be more efficient when compared to baseline machine learning models using the Twitter COVID-19 disease dataset.
Collapse
Affiliation(s)
- Sreejagadeesh Malla
- Department of Computer Applications, National Institute of Technology, Tiruchirapalli, Tamilnadu India
| | - P. J. A. Alphonse
- Department of Computer Applications, National Institute of Technology, Tiruchirapalli, Tamilnadu India
| |
Collapse
|
16
|
Demirkıran F, Çayır A, Ünal U, Dağ H. An Ensemble of Pre-trained Transformer Models For Imbalanced Multiclass Malware Classification. Comput Secur 2022. [DOI: 10.1016/j.cose.2022.102846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Sunitha D, Patra RK, Babu NV, Suresh A, Gupta SC. Twitter sentiment analysis using ensemble based deep learning model towards COVID-19 in India and European countries. Pattern Recognit Lett 2022; 158:164-170. [PMID: 35464347 PMCID: PMC9014659 DOI: 10.1016/j.patrec.2022.04.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/06/2022] [Accepted: 04/16/2022] [Indexed: 11/22/2022]
Abstract
As of November 2021, more than 24.80 crore people are diagnosed with the coronavirus in that around 50.20 lakhs people lost their lives, because of this infectious disease. By understanding the people's sentiment's expressed in their social media (Facebook, Twitter, Instagram etc.) helps their governments in controlling, monitoring, and eradicating the coronavirus. Compared to other social media's, the twitter data are indispensable in the extraction of useful awareness information related to any crisis. In this article, a sentiment analysis model is proposed to analyze the real time tweets, which are related to coronavirus. Initially, around 3100 Indian and European people's tweets are collected between the time period of 23.03.2020 to 01.11.2021. Next, the data pre-processing and exploratory investigation are accomplished for better understanding of the collected data. Further, the feature extraction is performed using Term Frequency-Inverse Document Frequency (TF-IDF), GloVe, pre-trained Word2Vec, and fast text embedding's. The obtained feature vectors are fed to the ensemble classifier (Gated Recurrent Unit (GRU) and Capsule Neural Network (CapsNet)) for classifying the user's sentiment's as anger, sad, joy, and fear. The obtained experimental outcomes showed that the proposed model achieved 97.28% and 95.20% of prediction accuracy in classifying the both Indian and European people's sentiments.
Collapse
Affiliation(s)
- D Sunitha
- Department of Computer Science & Engineering, Kamala Institute of Technology & Science, Singapur, Telangana 505468, India
| | | | - N V Babu
- Department of Electrical and Electronics Engineering, SJB Institute of Technology, Bangalore, India
| | - A Suresh
- Department of Computer Science and Engineering, Veltech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, India
| | - Suresh Chand Gupta
- Department of Computer Science & Engineering, Panipat Institute of Engineering and Technology, Panipat, Haryana, India
| |
Collapse
|
18
|
Fernandez-Basso C, Gutiérrez-Batista K, Morcillo-Jiménez R, Vila MA, Martin-Bautista MJ. A fuzzy-based medical system for pattern mining in a distributed environment: Application to diagnostic and co-morbidity. Appl Soft Comput 2022. [DOI: 10.1016/j.asoc.2022.108870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
19
|
Automatic diagnosis of COVID-19 disease using deep convolutional neural network with multi-feature channel from respiratory sound data: Cough, voice, and breath. ALEXANDRIA ENGINEERING JOURNAL 2022; 61:1319-1334. [PMCID: PMC8214159 DOI: 10.1016/j.aej.2021.06.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/25/2021] [Accepted: 06/15/2021] [Indexed: 06/01/2023]
Abstract
The problem of respiratory sound classification has received good attention from the clinical scientists and medical researcher’s community in the last year to the diagnosis of COVID-19 disease. The Artificial Intelligence (AI) based models deployed into the real-world to identify the COVID-19 disease from human-generated sounds such as voice/speech, dry cough, and breath. The CNN (Convolutional Neural Network) is used to solve many real-world problems with Artificial Intelligence (AI) based machines. We have proposed and implemented a multi-channeled Deep Convolutional Neural Network (DCNN) for automatic diagnosis of COVID-19 disease from human respiratory sounds like a voice, dry cough, and breath, and it will give better accuracy and performance than previous models. We have applied multi-feature channels such as the data De-noising Auto Encoder (DAE) technique, GFCC (Gamma-tone Frequency Cepstral Coefficients), and IMFCC (Improved Multi-frequency Cepstral Coefficients) methods on augmented data to extract the deep features for the input of the CNN. The proposed approach improves system performance to the diagnosis of COVID-19 disease and provides better results on the COVID-19 respiratory sound dataset.
Collapse
|
20
|
Kranthi Kumar L, Alphonse P. COVID-19 disease diagnosis with light-weight CNN using modified MFCC and enhanced GFCC from human respiratory sounds. THE EUROPEAN PHYSICAL JOURNAL. SPECIAL TOPICS 2022; 231:3329-3346. [PMID: 35096278 PMCID: PMC8785156 DOI: 10.1140/epjs/s11734-022-00432-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/18/2021] [Indexed: 06/02/2023]
Abstract
In the last 2 years, medical researchers and clinical scientists have paid close attention to the problem of respiratory sound classification to classify COVID-19 disease symptoms. In the physical world, very few AI-based (Artificial Intelligence) techniques are often used to detect COVID-19/SARS-CoV-2 respiratory disease symptoms from the human respiratory system-generated acoustic sounds such as acoustic voice sound, breathing (inhale and exhale) sounds, and cough sound. We propose a light-weight Convolutional Neural Network (CNN) with Modified-Mel-frequency Cepstral Coefficient (M-MFCC) using different depths and kernel sizes to classify COVID-19 and other respiratory sound disease symptoms such as Asthma, Pertussis, and Bronchitis. The proposed network outperforms conventional feature extraction models and existing Deep Learning (DL) models for COVID-19/SARS-CoV-2 classification accuracy in the range of 4-10%. The model's performance is compared with the COVID-19 crowdsourced benchmark dataset and gives a competitive performance. We applied different receptive fields and depths in the proposed model to get different contextual information that should aid in classification. And our experiments suggested 1 × 12 receptive fields and a depth of 5-Layer for the light-weight CNN to extract and identify the features from respiratory sound data. The model is also trained and tested with different modalities of data to showcase its effectiveness in classification.
Collapse
Affiliation(s)
- Lella Kranthi Kumar
- Health Analytics Research Labs, Department of Computer Applications, NIT Tiruchirappalli, Tiruchirappalli, Tamil Nadu 620015 India
| | - P.J.A. Alphonse
- Health Analytics Research Labs, Department of Computer Applications, NIT Tiruchirappalli, Tiruchirappalli, Tamil Nadu 620015 India
| |
Collapse
|
21
|
Malla S, Alphonse PJA. Fake or real news about COVID-19? Pretrained transformer model to detect potential misleading news. THE EUROPEAN PHYSICAL JOURNAL. SPECIAL TOPICS 2022; 231:3347-3356. [PMID: 35039760 PMCID: PMC8756170 DOI: 10.1140/epjs/s11734-022-00436-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
The World Health Organization declared the novel coronavirus disease 2019 a pandemic on March 11, 2020. Along with the coronavirus pandemic, a new crisis has emerged, characterized by widespread fear and panic caused by a lack of information or, in some cases, outright fake messages. In these circumstances, Twitter is one of the most eminent and trusted social media platforms. Fake tweets, on the other hand, are challenging to detect and differentiate. The primary goal of this paper is to educate society about the importance of accurate information and prevent the spread of fake information. This paper has investigated COVID-19 fake data from various social media platforms such as Twitter, Facebook, and Instagram. The objective of this paper is to categorize given tweets as either fake or real news. The authors have tested various deep learning models on the COVID-19 fake dataset. Finally, the CT-BERT and RoBERTa deep learning models outperformed other deep learning models like BERT, BERTweet, AlBERT, and DistlBERT. The proposed ensemble deep learning architecture outperformed CT-BERT and RoBERTa on the COVID-19 fake news dataset using the multiplicative fusion technique. The proposed model's performance in this technique was determined by the multiplicative product of the final predictive values of CT-BERT and RoBERTa. This technique overcomes the disadvantage of these CT-BERT and RoBERTa models' incorrect predictive nature. The proposed architecture outperforms both well-known ML and DL models, with 98.88% accuracy and a 98.93% F1-score.
Collapse
Affiliation(s)
- SreeJagadeesh Malla
- Department of Computer Applications, National Institute of Technology, Thuvakudi, Tiruchirappalli, Tamil Nadu 620015 India
| | - P. J. A. Alphonse
- Department of Computer Applications, National Institute of Technology, Thuvakudi, Tiruchirappalli, Tamil Nadu 620015 India
| |
Collapse
|
22
|
Demir F, Demir K, Şengür A. DeepCov19Net: Automated COVID-19 Disease Detection with a Robust and Effective Technique Deep Learning Approach. NEW GENERATION COMPUTING 2022; 40:1053-1075. [PMID: 35035024 PMCID: PMC8753945 DOI: 10.1007/s00354-021-00152-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/26/2021] [Indexed: 05/17/2023]
Abstract
The new type of coronavirus disease, which has spread from Wuhan, China since the beginning of 2020 called COVID-19, has caused many deaths and cases in most countries and has reached a global pandemic scale. In addition to test kits, imaging techniques with X-rays used in lung patients have been frequently used in the detection of COVID-19 cases. In the proposed method, a novel approach based on a deep learning model named DeepCovNet was utilized to classify chest X-ray images containing COVID-19, normal (healthy), and pneumonia classes. The convolutional-autoencoder model, which had convolutional layers in encoder and decoder blocks, was trained by using the processed chest X-ray images from scratch for deep feature extraction. The distinctive features were selected with a novel and robust algorithm named SDAR from the deep feature set. In the classification stage, an SVM classifier with various kernel functions was used to evaluate the classification performance of the proposed method. Also, hyperparameters of the SVM classifier were optimized with the Bayesian algorithm for increasing classification accuracy. Specificity, sensitivity, precision, and F-score, were also used as performance metrics in addition to accuracy which was used as the main criterion. The proposed method with an accuracy of 99.75 outperformed the other approaches based on deep learning.
Collapse
Affiliation(s)
- Fatih Demir
- Biomedical Department, Vocational School of Technical Sciences, Firat University, Elazig, Turkey
| | - Kürşat Demir
- Mechatronics Engineering Department, Technology Faculty, Firat University, Elazig, Turkey
| | - Abdulkadir Şengür
- Electrical-Electronics Engineering Department, Technology Faculty, Firat University, Elazig, Turkey
| |
Collapse
|
23
|
Data-Driven Analytics Leveraging Artificial Intelligence in the Era of COVID-19: An Insightful Review of Recent Developments. Symmetry (Basel) 2021. [DOI: 10.3390/sym14010016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
This paper presents the role of artificial intelligence (AI) and other latest technologies that were employed to fight the recent pandemic (i.e., novel coronavirus disease-2019 (COVID-19)). These technologies assisted the early detection/diagnosis, trends analysis, intervention planning, healthcare burden forecasting, comorbidity analysis, and mitigation and control, to name a few. The key-enablers of these technologies was data that was obtained from heterogeneous sources (i.e., social networks (SN), internet of (medical) things (IoT/IoMT), cellular networks, transport usage, epidemiological investigations, and other digital/sensing platforms). To this end, we provide an insightful overview of the role of data-driven analytics leveraging AI in the era of COVID-19. Specifically, we discuss major services that AI can provide in the context of COVID-19 pandemic based on six grounds, (i) AI role in seven different epidemic containment strategies (a.k.a non-pharmaceutical interventions (NPIs)), (ii) AI role in data life cycle phases employed to control pandemic via digital solutions, (iii) AI role in performing analytics on heterogeneous types of data stemming from the COVID-19 pandemic, (iv) AI role in the healthcare sector in the context of COVID-19 pandemic, (v) general-purpose applications of AI in COVID-19 era, and (vi) AI role in drug design and repurposing (e.g., iteratively aligning protein spikes and applying three/four-fold symmetry to yield a low-resolution candidate template) against COVID-19. Further, we discuss the challenges involved in applying AI to the available data and privacy issues that can arise from personal data transitioning into cyberspace. We also provide a concise overview of other latest technologies that were increasingly applied to limit the spread of the ongoing pandemic. Finally, we discuss the avenues of future research in the respective area. This insightful review aims to highlight existing AI-based technological developments and future research dynamics in this area.
Collapse
|
24
|
Lopez CE, Gallemore C. An augmented multilingual Twitter dataset for studying the COVID-19 infodemic. SOCIAL NETWORK ANALYSIS AND MINING 2021; 11:102. [PMID: 34697560 PMCID: PMC8528187 DOI: 10.1007/s13278-021-00825-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 12/23/2022]
Abstract
This work presents an openly available dataset to facilitate researchers' exploration and hypothesis testing about the social discourse of the COVID-19 pandemic. The dataset currently consists of over 2.2 billions tweets (count as of September, 2021), from all over the world, in multiple languages. Tweets start from January 22, 2020, when the total cases of reported COVID-19 were below 600 worldwide. The dataset was collected using the Twitter API and by rehydrating tweets from other available datasets, data collection is ongoing as of the time of writing. To facilitate hypothesis testing and exploration of social discourse, the English and Spanish tweets have been augmented with state-of-the-art Twitter Sentiment and Named Entity Recognition algorithms. The dataset and the summary files provided allow researchers to avoid some computationally intensive analyses, facilitating more widespread use of social media data to gain insights on issues such as (mis)information diffusion, semantic networks, sentiments, and the evolution of COVID-19 discussions. In addition, the dataset provides an archive for researchers in the social sciences wishing to have access to a dataset covering the entire duration of the pandemic.
Collapse
Affiliation(s)
- Christian E. Lopez
- Department of Computer Science and Mechanical Engineering Department, Lafayette College, Easton, Pennsylvania USA
| | - Caleb Gallemore
- International Affairs Program, Lafayette College, Easton, PA USA
| |
Collapse
|
25
|
Applications of Machine Learning and High-Performance Computing in the Era of COVID-19. APPLIED SYSTEM INNOVATION 2021. [DOI: 10.3390/asi4030040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
During the ongoing pandemic of the novel coronavirus disease 2019 (COVID-19), latest technologies such as artificial intelligence (AI), blockchain, learning paradigms (machine, deep, smart, few short, extreme learning, etc.), high-performance computing (HPC), Internet of Medical Things (IoMT), and Industry 4.0 have played a vital role. These technologies helped to contain the disease’s spread by predicting contaminated people/places, as well as forecasting future trends. In this article, we provide insights into the applications of machine learning (ML) and high-performance computing (HPC) in the era of COVID-19. We discuss the person-specific data that are being collected to lower the COVID-19 spread and highlight the remarkable opportunities it provides for knowledge extraction leveraging low-cost ML and HPC techniques. We demonstrate the role of ML and HPC in the context of the COVID-19 era with the successful implementation or proposition in three contexts: (i) ML and HPC use in the data life cycle, (ii) ML and HPC use in analytics on COVID-19 data, and (iii) the general-purpose applications of both techniques in COVID-19’s arena. In addition, we discuss the privacy and security issues and architecture of the prototype system to demonstrate the proposed research. Finally, we discuss the challenges of the available data and highlight the issues that hinder the applicability of ML and HPC solutions on it.
Collapse
|