1
|
Wei S, Yang W, Wang E, Wang S, Li Y. A 3D decoupling Alzheimer's disease prediction network based on structural MRI. Health Inf Sci Syst 2025; 13:17. [PMID: 39846055 PMCID: PMC11748674 DOI: 10.1007/s13755-024-00333-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 12/23/2024] [Indexed: 01/24/2025] Open
Abstract
Purpose This paper aims to develop a three-dimensional (3D) Alzheimer's disease (AD) prediction method, thereby bettering current predictive methods, which struggle to fully harness the potential of structural magnetic resonance imaging (sMRI) data. Methods Traditional convolutional neural networks encounter pressing difficulties in accurately focusing on the AD lesion structure. To address this issue, a 3D decoupling, self-attention network for AD prediction is proposed. Firstly, a multi-scale decoupling block is designed to enhance the network's ability to extract fine-grained features by segregating convolutional channels. Subsequently, a self-attention block is constructed to extract and adaptively fuse features from three directions (sagittal, coronal and axial), so that more attention is geared towards brain lesion areas. Finally, a clustering loss function is introduced and combined with the cross-entropy loss to form a joint loss function for enhancing the network's ability to discriminate between different sample types. Results The accuracy of our model is 0.985 for the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset and 0.963 for the Australian Imaging, Biomarker & Lifestyle (AIBL) dataset, both of which are higher than the classification accuracy of similar tasks in this category. This demonstrates that our model can accurately distinguish between normal control (NC) and Alzheimer's Disease (AD), as well as between stable mild cognitive impairment (sMCI) and progressive mild cognitive impairment (pMCI). Conclusion The proposed AD prediction network exhibits competitive performance when compared with state-of-the-art methods. The proposed model successfully addresses the challenges of dealing with 3D sMRI image data and the limitations stemming from inadequate information in 2D sections, advancing the utility of predictive methods for AD diagnosis and treatment.
Collapse
Affiliation(s)
- Shicheng Wei
- School of Mathematics and Computing, University of Southern Queensland, 487-535 West Street, Toowoomba, QLD 4350 Australia
| | - Wencheng Yang
- School of Mathematics and Computing, University of Southern Queensland, 487-535 West Street, Toowoomba, QLD 4350 Australia
| | - Eugene Wang
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC Australia
| | - Song Wang
- Department of Engineering, La Trobe University, Bundoora, VIC 3086 Australia
| | - Yan Li
- School of Mathematics and Computing, University of Southern Queensland, 487-535 West Street, Toowoomba, QLD 4350 Australia
| |
Collapse
|
2
|
Liu J, Xu Y, Liu Y, Luo H, Huang W, Yao L. Attention-Guided 3D CNN With Lesion Feature Selection for Early Alzheimer's Disease Prediction Using Longitudinal sMRI. IEEE J Biomed Health Inform 2025; 29:324-332. [PMID: 39412975 DOI: 10.1109/jbhi.2024.3482001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Predicting the progression from mild cognitive impairment (MCI) to Alzheimer's disease (AD) is critical for early intervention. Towards this end, various deep learning models have been applied in this domain, typically relying on structural magnetic resonance imaging (sMRI) data from a single time point whereas neglecting the dynamic changes in brain structure over time. Current longitudinal studies inadequately explore disease evolution dynamics and are burdened by high computational complexity. This paper introduces a novel lightweight 3D convolutional neural network specifically designed to capture the evolution of brain diseases for modeling the progression of MCI. First, a longitudinal lesion feature selection strategy is proposed to extract core features from temporal data, facilitating the detection of subtle differences in brain structure between two time points. Next, to refine the model for a more concentrated emphasis on lesion features, a disease trend attention mechanism is introduced to learn the dependencies between overall disease trends and local variation features. Finally, disease prediction visualization techniques are employed to improve the interpretability of the final predictions. Extensive experiments demonstrate that the proposed model achieves state-of-the-art performance in terms of area under the curve (AUC), accuracy, specificity, precision, and F1 score. This study confirms the efficacy of our early diagnostic method, utilizing only two follow-up sMRI scans to predict the disease status of MCI patients 24 months later with an AUC of 79.03%.
Collapse
|
3
|
Mohan R, Arunachalam R, Verma N, Mali S. ViTBayesianNet: An adaptive deep bayesian network-aided alzheimer disease detection framework with vision transformer-based residual densenet for feature extraction using MRI images. NETWORK (BRISTOL, ENGLAND) 2024:1-41. [PMID: 39663578 DOI: 10.1080/0954898x.2024.2435491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 10/09/2024] [Accepted: 11/23/2024] [Indexed: 12/13/2024]
Abstract
One of the most familiar types of disease is Alzheimer's disease (AD) and it mainly impacts people over the age limit of 60. AD causes irreversible brain damage in humans. It is difficult to recognize the various stages of AD, hence advanced deep learning methods are suggested for recognizing AD in its initial stages. In this experiment, an effective deep model-based AD detection approach is introduced to provide effective treatment to the patient. Initially, an essential MRI is collected from the benchmark resources. After that, the gathered MRIs are provided as input to the feature extraction phase. Also, the important features in the input image are extracted by Vision Transformer-based Residual DenseNet (ViT-ResDenseNet). Later, the retrieved features are applied to the Alzheimer's detection stage. In this phase, AD is detected using an Adaptive Deep Bayesian Network (Ada-DBN). Additionally, the attributes of Ada-DBN are optimized with the help of Enhanced Golf Optimization Algorithm (EGOA). So, the implemented Alzheimer's detection model accomplishes relatively higher reliability than existing techniques. The numerical results of the suggested framework obtained an accuracy value of 96.35 which is greater than the 91.08, 91.95, and 93.95 attained by the EfficientNet-B2, TF- CNN, and ViT-GRU, respectively.
Collapse
Affiliation(s)
- Revathi Mohan
- Department of Computer Science and Engineering, Paavai Engineering College (Autonomous), Namakkal, Tamilnadu, India
| | - Rajesh Arunachalam
- Department of Electronics and Communication Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Neha Verma
- Department of Information Technology, Vivekananda Institute of Professional Studies, Ranikhet, India
| | - Shital Mali
- Department of Electronics and Telecommunication Engineering, Ramrao Adik Institute of Technology, D.Y. Patil Deemed University Nerul, Navi Mumbai, Maharashtra, India
| |
Collapse
|
4
|
Seerangan K, Nandagopal M, Nair RR, Periyasamy S, Jhaveri RH, Balusamy B, Selvarajan S. ERABiLNet: enhanced residual attention with bidirectional long short-term memory. Sci Rep 2024; 14:20622. [PMID: 39232053 PMCID: PMC11374906 DOI: 10.1038/s41598-024-71299-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024] Open
Abstract
Alzheimer's Disease (AD) causes slow death in brain cells due to shrinkage of brain cells which is more prevalent in older people. In most cases, the symptoms of AD are mistaken as age-related stresses. The most widely utilized method to detect AD is Magnetic Resonance Imaging (MRI). Along with Artificial Intelligence (AI) techniques, the efficacy of identifying diseases related to the brain has become easier. But, the identical phenotype makes it challenging to identify the disease from the neuro-images. Hence, a deep learning method to detect AD at the beginning stage is suggested in this work. The newly implemented "Enhanced Residual Attention with Bi-directional Long Short-Term Memory (Bi-LSTM) (ERABi-LNet)" is used in the detection phase to identify the AD from the MRI images. This model is used for enhancing the performance of the Alzheimer's detection in scale of 2-5%, minimizing the error rates, increasing the balance of the model, so that the multi-class problems are supported. At first, MRI images are given to "Residual Attention Network (RAN)", which is specially developed with three convolutional layers, namely atrous, dilated and Depth-Wise Separable (DWS), to obtain the relevant attributes. The most appropriate attributes are determined by these layers, and subjected to target-based fusion. Then the fused attributes are fed into the "Attention-based Bi-LSTM". The final outcome is obtained from this unit. The detection efficiency based on median is 26.37% and accuracy is 97.367% obtained by tuning the parameters in the ERABi-LNet with the help of Modified Search and Rescue Operations (MCDMR-SRO). The obtained results are compared with ROA-ERABi-LNet, EOO-ERABi-LNet, GTBO-ERABi-LNet and SRO-ERABi-LNet respectively. The ERABi_LNet thus provides enhanced accuracy and other performance metrics compared to such deep learning models. The proposed method has the better sensitivity, specificity, F1-Score and False Positive Rate compared with all the above mentioned competing models with values such as 97.49%.97.84%,97.74% and 2.616 respective;y. This ensures that the model has better learning capabilities and provides lesser false positives with balanced prediction.
Collapse
Affiliation(s)
| | - Malarvizhi Nandagopal
- Department of Computer Science and Engineering, School of Computing, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai, Tamil Nadu, 600062, India
| | - Resmi R Nair
- Department of Electronics and Communication Engineering, Saveetha Engineering College (Autonomous), Chennai, Tamil Nadu, 602105, India
| | - Sakthivel Periyasamy
- Department of Electronics and Communication Engineering, Anna University, Chennai, Tamil Nadu, 600025, India
| | - Rutvij H Jhaveri
- Department of Computer Science and Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Balamurugan Balusamy
- Shiv Nadar (Institution of Eminence Deemed to Be University), Noida, Uttar Pradesh, 201314, India
| | - Shitharth Selvarajan
- Department of Computer Science, Kebri Dehar University, 250, Kebri Dehar, Ethiopia.
- School of Built Environment, Engineering and Computing, Leeds Beckett University, Leeds, LS6 3QS, United Kingdom.
| |
Collapse
|
5
|
Dhaygude AD, Ameta GK, Khan IR, Singh PP, Maaliw RR, Lakshmaiya N, Shabaz M, Khan MA, Hussein HS, Alshazly H. Knowledge‐based deep learning system for classifying Alzheimer's disease for multi‐task learning. CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY 2024; 9:805-820. [DOI: 10.1049/cit2.12291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/21/2023] [Indexed: 08/25/2024] Open
Abstract
AbstractDeep learning has recently become a viable approach for classifying Alzheimer's disease (AD) in medical imaging. However, existing models struggle to efficiently extract features from medical images and may squander additional information resources for illness classification. To address these issues, a deep three‐dimensional convolutional neural network incorporating multi‐task learning and attention mechanisms is proposed. An upgraded primary C3D network is utilised to create rougher low‐level feature maps. It introduces a new convolution block that focuses on the structural aspects of the magnetic resonance imaging image and another block that extracts attention weights unique to certain pixel positions in the feature map and multiplies them with the feature map output. Then, several fully connected layers are used to achieve multi‐task learning, generating three outputs, including the primary classification task. The other two outputs employ backpropagation during training to improve the primary classification job. Experimental findings show that the authors’ proposed method outperforms current approaches for classifying AD, achieving enhanced classification accuracy and other indicators on the Alzheimer's disease Neuroimaging Initiative dataset. The authors demonstrate promise for future disease classification studies.
Collapse
Affiliation(s)
| | - Gaurav Kumar Ameta
- Department of Computer Science & Engineering Parul Institute of Technology Parul University Vadodara Gujarat India
| | | | | | - Renato R. Maaliw
- College of Engineering Southern Luzon State University Lucban Quezon Philippines
| | - Natrayan Lakshmaiya
- Department of Mechanical Engineering Saveetha School of Engineering SIMATS Chennai Tamil Nadu India
| | - Mohammad Shabaz
- Model Institute of Engineering and Technology Jammu J&K India
| | - Muhammad Attique Khan
- Department of Computer Science HITEC University Taxila Pakistan
- Department of Computer Science and Mathematics Lebanese American University Beirut Lebanon
| | - Hany S. Hussein
- Electrical Engineering Department College of Engineering King Khalid University Abha Saudi Arabia
- Electrical Engineering Department Aswan University Aswan Egypt
| | - Hammam Alshazly
- Faculty of Computers and Information South Valley University Qena Egypt
| |
Collapse
|
6
|
Wang X, Cheng L, Zhang D, Liu Z, Jiang L. Broad learning solution for rapid diagnosis of COVID-19. Biomed Signal Process Control 2023; 83:104724. [PMID: 36811035 PMCID: PMC9935280 DOI: 10.1016/j.bspc.2023.104724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/27/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
COVID-19 has put all of humanity in a health dilemma as it spreads rapidly. For many infectious diseases, the delay of detection results leads to the spread of infection and an increase in healthcare costs. COVID-19 diagnostic methods rely on a large number of redundant labeled data and time-consuming data training processes to obtain satisfactory results. However, as a new epidemic, obtaining large clinical datasets is still challenging, which will inhibit the training of deep models. And a model that can really rapidly diagnose COVID-19 at all stages of the model has still not been proposed. To address these limitations, we combine feature attention and broad learning to propose a diagnostic system (FA-BLS) for COVID-19 pulmonary infection, which introduces a broad learning structure to address the slow diagnosis speed of existing deep learning methods. In our network, transfer learning is performed with ResNet50 convolutional modules with fixed weights to extract image features, and the attention mechanism is used to enhance feature representation. After that, feature nodes and enhancement nodes are generated by broad learning with random weights to adaptly select features for diagnosis. Finally, three publicly accessible datasets were used to evaluate our optimization model. It was determined that the FA-BLS model had a 26-130 times faster training speed than deep learning with a similar level of accuracy, which can achieve a fast and accurate diagnosis, achieve effective isolation from COVID-19 and the proposed method also opens up a new method for other types of chest CT image recognition problems.
Collapse
Affiliation(s)
- Xiaowei Wang
- School of Physical Science and Technology, Shenyang Normal University, Shenyang, 110034, China
| | - Liying Cheng
- School of Physical Science and Technology, Shenyang Normal University, Shenyang, 110034, China
| | - Dan Zhang
- Navigation College, Dalian Maritime University, Dalian, 116026, China
| | - Zuchen Liu
- School of Physical Science and Technology, Shenyang Normal University, Shenyang, 110034, China
| | - Longtao Jiang
- School of Physical Science and Technology, Shenyang Normal University, Shenyang, 110034, China
| |
Collapse
|
7
|
Zhong S, Tu C, Dong X, Feng Q, Chen W, Zhang Y. MsGoF: Breast lesion classification on ultrasound images by multi-scale gradational-order fusion framework. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 230:107346. [PMID: 36716637 DOI: 10.1016/j.cmpb.2023.107346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 12/05/2022] [Accepted: 01/08/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND AND OBJECTIVE Predicting the malignant potential of breast lesions based on breast ultrasound (BUS) images is a crucial component of computer-aided diagnosis system for breast cancers. However, since breast lesions in BUS images generally have various shapes with relatively low contrast and present complex textures, it still remains challenging to accurately identify the malignant potential of breast lesions. METHODS In this paper, we propose a multi-scale gradational-order fusion framework to make full advantages of multi-scale representations incorporating with gradational-order characteristics of BUS images for breast lesions classification. Specifically, we first construct a spatial context aggregation module to generate multi-scale context representations from the original BUS images. Subsequently, multi-scale representations are efficiently fused in feature fusion block that is armed with special fusion strategies to comprehensively capture morphological characteristics of breast lesions. To better characterize complex textures and enhance non-linear modeling capability, we further propose isotropous gradational-order feature module in the feature fusion block to learn and combine multi-order representations. Finally, these multi-scale gradational-order representations are utilized to perform prediction for the malignant potential of breast lesions. RESULTS The proposed model was evaluated on three open datasets by using 5-fold cross-validation. The experimental results (Accuracy: 85.32%, Sensitivity: 85.24%, Specificity: 88.57%, AUC: 90.63% on dataset A; Accuracy: 76.48%, Sensitivity: 72.45%, Specificity: 80.42%, AUC: 78.98% on dataset B) demonstrate that the proposed method achieves the promising performance when compared with other deep learning-based methods in BUS classification task. CONCLUSIONS The proposed method has demonstrated a promising potential to predict malignant potential of breast lesion using ultrasound image in an end-to-end manner.
Collapse
Affiliation(s)
- Shengzhou Zhong
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou 510515, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou 510515, China.
| | - Chao Tu
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou 510515, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou 510515, China.
| | - Xiuyu Dong
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou 510515, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou 510515, China.
| | - Qianjin Feng
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou 510515, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou 510515, China.
| | - Wufan Chen
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou 510515, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou 510515, China.
| | - Yu Zhang
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou 510515, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
8
|
Xu X, Lin L, Sun S, Wu S. A review of the application of three-dimensional convolutional neural networks for the diagnosis of Alzheimer's disease using neuroimaging. Rev Neurosci 2023:revneuro-2022-0122. [PMID: 36729918 DOI: 10.1515/revneuro-2022-0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/02/2023] [Indexed: 02/03/2023]
Abstract
Alzheimer's disease (AD) is a degenerative disorder that leads to progressive, irreversible cognitive decline. To obtain an accurate and timely diagnosis and detect AD at an early stage, numerous approaches based on convolutional neural networks (CNNs) using neuroimaging data have been proposed. Because 3D CNNs can extract more spatial discrimination information than 2D CNNs, they have emerged as a promising research direction in the diagnosis of AD. The aim of this article is to present the current state of the art in the diagnosis of AD using 3D CNN models and neuroimaging modalities, focusing on the 3D CNN architectures and classification methods used, and to highlight potential future research topics. To give the reader a better overview of the content mentioned in this review, we briefly introduce the commonly used imaging datasets and the fundamentals of CNN architectures. Then we carefully analyzed the existing studies on AD diagnosis, which are divided into two levels according to their inputs: 3D subject-level CNNs and 3D patch-level CNNs, highlighting their contributions and significance in the field. In addition, this review discusses the key findings and challenges from the studies and highlights the lessons learned as a roadmap for future research. Finally, we summarize the paper by presenting some major findings, identifying open research challenges, and pointing out future research directions.
Collapse
Affiliation(s)
- Xinze Xu
- Intelligent Physiological Measurement and Clinical Translation, Beijing International Platform for Scientific and Technological Cooperation, Department of Biomedical Engineering, Faculty of Environment and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Lan Lin
- Intelligent Physiological Measurement and Clinical Translation, Beijing International Platform for Scientific and Technological Cooperation, Department of Biomedical Engineering, Faculty of Environment and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Shen Sun
- Intelligent Physiological Measurement and Clinical Translation, Beijing International Platform for Scientific and Technological Cooperation, Department of Biomedical Engineering, Faculty of Environment and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Shuicai Wu
- Intelligent Physiological Measurement and Clinical Translation, Beijing International Platform for Scientific and Technological Cooperation, Department of Biomedical Engineering, Faculty of Environment and Life Sciences, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
9
|
Arco JE, Ortiz A, Castillo-Barnes D, Górriz JM, Ramírez J. Ensembling shallow siamese architectures to assess functional asymmetry in Alzheimer’s disease progression. Appl Soft Comput 2023. [DOI: 10.1016/j.asoc.2023.109991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
10
|
Broad fuzzy cognitive map systems for time series classification. Appl Soft Comput 2022. [DOI: 10.1016/j.asoc.2022.109458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|