1
|
Benitez S, Puig N, Camps-Renom P, Sánchez-Quesada JL. Atherogenic circulating lipoproteins in ischemic stroke. Front Cardiovasc Med 2024; 11:1470364. [PMID: 39713216 PMCID: PMC11659270 DOI: 10.3389/fcvm.2024.1470364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/22/2024] [Indexed: 12/24/2024] Open
Abstract
The fundamental role of qualitative alterations of lipoproteins in the early development of atherosclerosis has been widely demonstrated. Modified low-density lipoproteins (LDL), such as oxidized LDL (oxLDL), small dense LDL (sdLDL), and electronegative LDL [LDL(-)], are capable of triggering the atherogenic process, favoring the subendothelial accumulation of cholesterol and promoting inflammatory, proliferative, and apoptotic processes characteristic of atherosclerotic lesions. In contrast, high-density lipoprotein (HDL) prevents and/or reverses these atherogenic effects. However, LDL's atherogenic and HDL's anti-atherogenic actions may result altered in certain pathological conditions. The molecular mechanisms underlying the impaired effects of altered lipoproteins have been studied in numerous in vitro and in vivo studies, and have been extensively analyzed in coronary atherosclerosis, especially in the context of pathologies such as dyslipidemia, diabetes, obesity, and metabolic syndrome. However, the corresponding studies are scarcer in the field of ischemic stroke, despite carotid arteriosclerosis progression underlies at least 20% of ischemic strokes. The present review relates qualitative alterations of LDL and HDL with the development of carotid arteriosclerosis and the occurrence of ischemic stroke.
Collapse
Affiliation(s)
- Sonia Benitez
- Cardiovascular Biochemistry Group, Institut de Recerca Hospital de Sant Pau (IR Sant Pau), Barcelona, Spain
- CIBER-Diabetes and Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - Núria Puig
- Cardiovascular Biochemistry Group, Institut de Recerca Hospital de Sant Pau (IR Sant Pau), Barcelona, Spain
| | - Pol Camps-Renom
- Stroke Unit, Department of Neurology, Hospital de La Santa Creu I Sant Pau, IR Sant Pau, Barcelona, Spain
| | - José Luis Sánchez-Quesada
- Cardiovascular Biochemistry Group, Institut de Recerca Hospital de Sant Pau (IR Sant Pau), Barcelona, Spain
- CIBER-Diabetes and Metabolic Diseases (CIBERDEM), Madrid, Spain
| |
Collapse
|
2
|
Liu Y, Han B. Efficacy evaluation of PCSK9 monoclonal antibody (Evolocumab) in combination with Rosuvastatin and Ezetimibe on cholesterol levels in patients with coronary heart disease (CHD): A retrospective analysis from a single center in China. Transpl Immunol 2021; 71:101444. [PMID: 34375677 DOI: 10.1016/j.trim.2021.101444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND AND PURPOSE Proprotein convertase subtilisin-kexin type 9(PCSK9) monoclonal antibody (Mab; Evolocumab) has been reported to inhibit low-density lipoprotein cholesterol (LDL-C) and Lipoprotein(a) [LP(a)] in coronary heart diseases (CHD) patients in America, Europe and Japan. However, little is known about the effect of Evolocumab in Chinese population. This retrospective study in Chinese CHD patients compared the efficacy without or with Evolocumab therapy added to the conventional treatment with a statin (Rosuvastatin) and a gut cholesterol absorption inhibitor (Ezetimibe). METHODS CHD patients from our hospital were divided into three therapeutic groups, A) the statin monotherapy group (10 mg Rosuvastatin every night); B) the statin/cholesterol absorption inhibitor group (10 mg Rosuvastatin and 10 mg Ezetimibe daily); and C) the triple therapy with PCSK9 Mab group (10 mg Rosuvastatin daily, 10 mg Ezetimibe daily, and 140 mg Evolocumab once 2 weeks). The plasma lipid data were collected at 0, 4, 12, and 24 Week(s). The Graphpad Prism 7 program was used to perform all the statistical analysis. RESULTS Out of 103 patients 91 were eligible for further evaluation with 31 in group A, 31 in group B, and 29 in group C. The plasma LDL-C levels were reduced only by 33.82% in the Rosuvastatin monotherapy group, 52.13% in the Rosuvastatin/Ezetimibe group, and 73.59% in the Evolocumab/Rosuvastatin/Ezetimibe group (P < 0.0001) at 24 weeks compared to the prior therapy levels. Neither the statin therapy alone (5.95%; P = 0.6), nor the double therapy (5.27%; P = 0.7) affected LP(a) levels. In contrast, addition of Evolocumab to the double therapy significantly decreased LP(a) level by 37.2% (P < 0.0001). CONCLUSION Addition of Evolocumab to the standard double therapy in Chinese CHD patients improved the efficacy in LDL-C reduction when compared to Rosuvastatin alone or in Rosuvastatin/Ezetimibe double therapy. Furthermore, the addition of Evolocumab lowered LP(a) level in Chinese CHD patients.
Collapse
Affiliation(s)
- Yi Liu
- MM, Cardiac Diagnosis and Treatment Center, Xuzhou Central Hospital, Xuzhou City, Jiangsu Province, China
| | - Bing Han
- MM, Cardiac Diagnosis and Treatment Center, Xuzhou Central Hospital, Xuzhou City, Jiangsu Province, China.
| |
Collapse
|
3
|
Ke LY, Law SH, Mishra VK, Parveen F, Chan HC, Lu YH, Chu CS. Molecular and Cellular Mechanisms of Electronegative Lipoproteins in Cardiovascular Diseases. Biomedicines 2020; 8:biomedicines8120550. [PMID: 33260304 PMCID: PMC7760527 DOI: 10.3390/biomedicines8120550] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023] Open
Abstract
Dysregulation of glucose and lipid metabolism increases plasma levels of lipoproteins and triglycerides, resulting in vascular endothelial damage. Remarkably, the oxidation of lipid and lipoprotein particles generates electronegative lipoproteins that mediate cellular deterioration of atherosclerosis. In this review, we examined the core of atherosclerotic plaque, which is enriched by byproducts of lipid metabolism and lipoproteins, such as oxidized low-density lipoproteins (oxLDL) and electronegative subfraction of LDL (LDL(−)). We also summarized the chemical properties, receptors, and molecular mechanisms of LDL(−). In combination with other well-known markers of inflammation, namely metabolic diseases, we concluded that LDL(−) can be used as a novel prognostic tool for these lipid disorders. In addition, through understanding the underlying pathophysiological molecular routes for endothelial dysfunction and inflammation, we may reassess current therapeutics and might gain a new direction to treat atherosclerotic cardiovascular diseases, mainly targeting LDL(−) clearance.
Collapse
Affiliation(s)
- Liang-Yin Ke
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (L.-Y.K.); (S.H.L.); (V.K.M.); (F.P.)
- Graduate Institute of Medicine, College of Medicine and Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan; (H.-C.C.); (Y.-H.L.)
| | - Shi Hui Law
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (L.-Y.K.); (S.H.L.); (V.K.M.); (F.P.)
| | - Vineet Kumar Mishra
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (L.-Y.K.); (S.H.L.); (V.K.M.); (F.P.)
| | - Farzana Parveen
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (L.-Y.K.); (S.H.L.); (V.K.M.); (F.P.)
| | - Hua-Chen Chan
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan; (H.-C.C.); (Y.-H.L.)
| | - Ye-Hsu Lu
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan; (H.-C.C.); (Y.-H.L.)
- Division of Cardiology, Department of International Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan
| | - Chih-Sheng Chu
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan; (H.-C.C.); (Y.-H.L.)
- Division of Cardiology, Department of International Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
- Correspondence: ; Tel.: +886-73121101 (ext. 2297); Fax: +886-73111996
| |
Collapse
|
4
|
Chu CS, Law SH, Lenzen D, Tan YH, Weng SF, Ito E, Wu JC, Chen CH, Chan HC, Ke LY. Clinical Significance of Electronegative Low-Density Lipoprotein Cholesterol in Atherothrombosis. Biomedicines 2020; 8:biomedicines8080254. [PMID: 32751498 PMCID: PMC7460408 DOI: 10.3390/biomedicines8080254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023] Open
Abstract
Despite the numerous risk factors for atherosclerotic cardiovascular diseases (ASCVD), cumulative evidence shows that electronegative low-density lipoprotein (L5 LDL) cholesterol is a promising biomarker. Its toxicity may contribute to atherothrombotic events. Notably, plasma L5 LDL levels positively correlate with the increasing severity of cardiovascular diseases. In contrast, traditional markers such as LDL-cholesterol and triglyceride are the therapeutic goals in secondary prevention for ASCVD, but that is controversial in primary prevention for patients with low risk. In this review, we point out the clinical significance and pathophysiological mechanisms of L5 LDL, and the clinical applications of L5 LDL levels in ASCVD can be confidently addressed. Based on the previously defined cut-off value by receiver operating characteristic curve, the acceptable physiological range of L5 concentration is proposed to be below 1.7 mg/dL. When L5 LDL level surpass this threshold, clinically relevant ASCVD might be present, and further exams such as carotid intima-media thickness, pulse wave velocity, exercise stress test, or multidetector computed tomography are required. Notably, the ultimate goal of L5 LDL concentration is lower than 1.7 mg/dL. Instead, with L5 LDL greater than 1.7 mg/dL, lipid-lowering treatment may be required, including statin, ezetimibe or PCSK9 inhibitor, regardless of the low-density lipoprotein cholesterol (LDL-C) level. Since L5 LDL could be a promising biomarker, we propose that a high throughput, clinically feasible methodology is urgently required not only for conducting a prospective, large population study but for developing therapeutics strategies to decrease L5 LDL in the blood.
Collapse
Affiliation(s)
- Chih-Sheng Chu
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan;
- Division of Cardiology, Department of International Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
| | - Shi Hui Law
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (S.H.L.); (D.L.); (Y.-H.T.); (E.I.)
| | - David Lenzen
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (S.H.L.); (D.L.); (Y.-H.T.); (E.I.)
| | - Yong-Hong Tan
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (S.H.L.); (D.L.); (Y.-H.T.); (E.I.)
| | - Shih-Feng Weng
- Department of Healthcare Administration and Medical Informatics, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan;
| | - Etsuro Ito
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (S.H.L.); (D.L.); (Y.-H.T.); (E.I.)
- Department of Biology, Waseda University, Tokyo 162-8480, Japan
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo 162-8480, Japan
| | - Jung-Chou Wu
- Division of Cardiology, Department of Internal Medicine, Pingtung Christian Hospital, Pingtung 90059, Taiwan;
| | - Chu-Huang Chen
- Vascular and Medicinal Research, Texas Heart Institute, Houston, TX 77030, USA;
| | - Hua-Chen Chan
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan;
- Correspondence: (H.-C.C.); (L.-Y.K.); Tel.: +886-73121101 (ext. 2296); Fax: +886-73111996 (L.-Y.K.)
| | - Liang-Yin Ke
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (S.H.L.); (D.L.); (Y.-H.T.); (E.I.)
- Graduate Institute of Medicine, College of Medicine, & Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Correspondence: (H.-C.C.); (L.-Y.K.); Tel.: +886-73121101 (ext. 2296); Fax: +886-73111996 (L.-Y.K.)
| |
Collapse
|
5
|
Electronegative LDL from Rabbits Fed with Atherogenic Diet Is Highly Proinflammatory. Mediators Inflamm 2019; 2019:6163130. [PMID: 31534437 PMCID: PMC6724430 DOI: 10.1155/2019/6163130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/23/2019] [Accepted: 07/03/2019] [Indexed: 12/11/2022] Open
Abstract
Electronegative low-density lipoprotein (LDL(-)) has been found in the plasma of familial hypercholesterolemia and acute myocardial infarction and has been implicated in atherosclerosis and cardiovascular disease. However, less is known about the involvement of LDL(-) in atherosclerosis-related inflammation. This study aims at investigating the inducibility of LDL(-) by atherogenic diet in rabbits and at exploring the proinflammatory potential of the diet-induced LDL(-) in macrophages. Rabbits were fed with an atherogenic diet; LDL was isolated from plasma by NaBr density gradient ultracentrifugation and was then resolved into nLDL and LDL(-) by anion-exchange chromatography. Isolated nLDL and LDL(-) were directly used or incubated with 10 μM CuSO4 for 24 h to produce copper- (Cu-) ox-nLDL and Cu-ox-LDL(-). The effects of these LDLs on inflammation were evaluated in THP-1-derived macrophages. Macrophages were treated with nLDL, LDL(-), and extensively oxidized LDL (ox-LDL), then the levels of interleukin- (IL-) 1β, IL-6, and tumor necrosis factor- (TNF-) α in a culture medium were determined by ELISA, and the levels of total and phosphorylated IκB, p65, p38, JNK, and ERK in cell lysates were determined by Western blotting. The LDL(-) induced significantly higher levels of IL-1β, IL-6, and TNF-α in the medium. The levels of phosphorylated/total IκB, p65, p38, JNK, and ERK were also upregulated by LDL(-). In contrast, nLDL, Cu-ox-nLDL, and Cu-ox-LDL(-) exhibited much less effect. Knockdown of lectin-type oxidized LDL receptor- (LOX-) 1 resulted in significant reduction in LDL(-)-induced IL-1β, IL-6, and TNF-α. In addition, these LDL(-) effects were also markedly attenuated by inhibition of NF-κB and ERK1/2. The data suggested that LDL(-) induced inflammation through LOX-1-, NF-κB-, and ERK1/2-dependent pathways. Taken together, our results show that rabbits fed with atherogenic diet produce a highly proinflammatory LDL(-) that is more potent in inducing inflammation than nLDL and extensively oxidize LDL in macrophages. The results thus provide a novel link between diet-induced hypercholesterolemia and inflammation.
Collapse
|
6
|
Association between discordance of LDL-C and non-HDL-C and clinical outcomes in patients with stent implantation: from the FU-Registry. Heart Vessels 2017; 33:102-112. [PMID: 28815384 DOI: 10.1007/s00380-017-1036-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/09/2017] [Indexed: 12/12/2022]
Abstract
It is not yet clear whether the discordance of low-density lipoprotein cholesterol (LDL-C) and non-high-density lipoprotein cholesterol (non-HDL-C) predicts the follow-up clinical outcome (major adverse cardiovascular events: MACEs) in patients with coronary stent implantation. Among 2015 patients with coronary stent implantation (Fukuoka University [FU]-Registry), excluding those with acute coronary syndrome or hemodialysis, we selected 801 patients who had undergone successful stent implantation with a follow-up until 18 months, and classified them into 3 groups according to baseline LDL-C and non-HDL-C levels [percentile(P)non-HDL-C more than (P)LDL-C, (P)non-HDL-C equal to (P)LDL-C, and (P)non-HDL-C less than (P) LDL-C]. We found that the discordance of (P)LDL-C and (P)non-HDL-C was not a significant predictor of MACEs. Higher LDL-C level was consistently and independently associated with higher incidences of MACEs after controlling for conventional risk factors and the type of stent used by multivariate Cox regression analyses. In conclusion, LDL-C levels are more important than non-HDL-C levels and the discordance of LDL-C and non-HDL-C levels as predictors of MACEs in patients with stable angina after stent implantation.
Collapse
|
7
|
Nagata I, Ike A, Nishikawa H, Zhang B, Sugihara M, Mori K, Iwata A, Kawamura A, Shirai K, Uehara Y, Ogawa M, Miura SI, Saku K. Associations between lipid profiles and MACE in hemodialysis patients with percutaneous coronary intervention: From the FU-Registry. J Cardiol 2015; 65:105-11. [DOI: 10.1016/j.jjcc.2014.03.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 03/07/2014] [Accepted: 03/13/2014] [Indexed: 10/25/2022]
|
8
|
Hafiane A, Genest J. High density lipoproteins: Measurement techniques and potential biomarkers of cardiovascular risk. BBA CLINICAL 2015; 3:175-88. [PMID: 26674734 PMCID: PMC4661556 DOI: 10.1016/j.bbacli.2015.01.005] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 01/16/2015] [Accepted: 01/26/2015] [Indexed: 12/31/2022]
Abstract
Plasma high density lipoprotein cholesterol (HDL) comprises a heterogeneous family of lipoprotein species, differing in surface charge, size and lipid and protein compositions. While HDL cholesterol (C) mass is a strong, graded and coherent biomarker of cardiovascular risk, genetic and clinical trial data suggest that the simple measurement of HDL-C may not be causal in preventing atherosclerosis nor reflect HDL functionality. Indeed, the measurement of HDL-C may be a biomarker of cardiovascular health. To assess the issue of HDL function as a potential therapeutic target, robust and simple analytical methods are required. The complex pleiotropic effects of HDL make the development of a single measurement challenging. Development of laboratory assays that accurately HDL function must be developed validated and brought to high-throughput for clinical purposes. This review discusses the limitations of current laboratory technologies for methods that separate and quantify HDL and potential application to predict CVD, with an emphasis on emergent approaches as potential biomarkers in clinical practice.
Collapse
Key Words
- 2D-PAGGE, two dimensional polyacrylamide gradient gel electrophoresis
- ApoA-I, apolipoprotein A-I
- Apolipoprotein A-I
- Atherosclerosis
- Biomarkers of cardiovascular risk
- CHD, coronary heart disease
- CVD, cardiovascular disease
- Cellular cholesterol efflux
- Coronary artery disease
- HDL, high density lipoprotein
- HPLC, High Performance Liquid Chromatography
- High density lipoproteins
- LCAT, lecithin–cholesterol acyltransferase
- LDL, low density lipoprotein
- MALDI, matrix-assisted laser desorption/ionization
- MOP, myeloperoxidase
- MS/MS, tandem-mass spectrometry
- ND-PAGGE, non-denaturant polyacrylamide gradient gel electrophoresis
- NMR, nuclear magnetic resonance
- PEG, polyethylene glycol
- PON1, paraoxonase 1
- SELDI, surface enhanced laser desorption/ionization
- TOF, time-of-flight
- UTC, ultracentrifugation
- Vascular endothelial function
Collapse
Affiliation(s)
- Anouar Hafiane
- McGill University Health Center, Royal Victoria Hospital, 687 Avenue des Pins West, Montreal, QC H3A 1A1, Canada
| | - Jacques Genest
- McGill University Health Center, Royal Victoria Hospital, 687 Avenue des Pins West, Montreal, QC H3A 1A1, Canada
| |
Collapse
|
9
|
Moreira FT, Ramos SC, Monteiro AM, Helfenstein T, Gidlund M, Damasceno NRT, Neto AMF, Izar MC, Fonseca FAH. Effects of two lipid lowering therapies on immune responses in hyperlipidemic subjects. Life Sci 2014; 98:83-7. [PMID: 24447629 DOI: 10.1016/j.lfs.2014.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 11/23/2013] [Accepted: 01/06/2014] [Indexed: 01/05/2023]
Abstract
AIMS To compare the effects of two of the most effective lipid-lowering therapies with similar LDL-cholesterol reduction capacity on the innate and adaptive immune responses through the evaluation of autoantibodies anti-oxidized LDL (anti-oxLDL Abs) and electronegative LDL [LDL(-)] levels. MAIN METHODS We performed a prospective, randomized, open label study, with parallel arms and blinded endpoints. One hundred and twelve subjects completed the study protocol and received rosuvastatin 40 mg or ezetimibe/simvastatin 10/40 mg for 12 weeks. Lipids, apolipoproteins, LDL(-), and anti-oxLDL Abs (IgG) were assayed at baseline and end of study. KEY FINDINGS Main clinical and laboratory characteristics were comparable at baseline. Lipid modifications were similar in both treatment arms, however, a significant raise in anti-oxLDL Abs levels was observed in subjects treated with rosuvastatin (p=0.026 vs. baseline), but not in those receiving simvastatin/ezetimibe. (p=0.233 vs. baseline), thus suggesting modulation of adaptive immunity by a potent statin. Titers of LDL(-) were not modified by the treatments. SIGNIFICANCE Considering atherosclerosis as an immune disease, this study adds new information, showing that under similar LDL-cholesterol reduction, the choice of lipid-lowering therapy can differently modulate adaptive immune responses.
Collapse
Affiliation(s)
| | | | - Andrea Moreira Monteiro
- Complex Fluids Laboratory, Institute of Physics, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Tatiana Helfenstein
- Department of Medicine, Federal University of São Paulo, Sao Paulo, SP, Brazil
| | - Magnus Gidlund
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | | | | | - Maria Cristina Izar
- Department of Medicine, Federal University of São Paulo, Sao Paulo, SP, Brazil
| | | |
Collapse
|
10
|
Zhang B, Kawachi E, Miura SI, Uehara Y, Matsunaga A, Kuroki M, Saku K. Therapeutic Approaches to the Regulation of Metabolism of High-Density Lipoprotein. Circ J 2013; 77:2651-63. [DOI: 10.1253/circj.cj-12-1584] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bo Zhang
- Department of Biochemistry, Fukuoka University School of Medicine
- The AIG Collaborative Research Institute of Cardiovascular Medicine, Fukuoka University School of Medicine
| | - Emi Kawachi
- Department of Cardiology, Fukuoka University School of Medicine
| | - Shin-ichiro Miura
- The AIG Collaborative Research Institute of Cardiovascular Medicine, Fukuoka University School of Medicine
- Department of Cardiology, Fukuoka University School of Medicine
- Department of Molecular Cardiovascular Therapeutics, Fukuoka University School of Medicine
| | - Yoshinari Uehara
- The AIG Collaborative Research Institute of Cardiovascular Medicine, Fukuoka University School of Medicine
- Department of Cardiology, Fukuoka University School of Medicine
- Department of Molecular Cardiovascular Therapeutics, Fukuoka University School of Medicine
| | - Akira Matsunaga
- The AIG Collaborative Research Institute of Cardiovascular Medicine, Fukuoka University School of Medicine
- Department of Laboratory Medicine, Fukuoka University School of Medicine
| | - Masahide Kuroki
- Department of Biochemistry, Fukuoka University School of Medicine
| | - Keijiro Saku
- The AIG Collaborative Research Institute of Cardiovascular Medicine, Fukuoka University School of Medicine
- Department of Cardiology, Fukuoka University School of Medicine
- Department of Molecular Cardiovascular Therapeutics, Fukuoka University School of Medicine
| |
Collapse
|
11
|
Sánchez-Quesada JL, Estruch M, Benítez S, Ordóñez-Llanos J. Electronegative LDL: a useful biomarker of cardiovascular risk? ACTA ACUST UNITED AC 2012. [DOI: 10.2217/clp.12.26] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Lobo JC, Mafra D, Farage NE, Faulin TDES, Abdalla DSP, de Nóbrega ACL, Torres JPM. Increased electronegative LDL and decreased antibodies against electronegative LDL levels correlate with inflammatory markers and adhesion molecules in hemodialysed patients. Clin Chim Acta 2011; 412:1788-92. [DOI: 10.1016/j.cca.2011.05.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 05/31/2011] [Accepted: 05/31/2011] [Indexed: 10/18/2022]
|
13
|
Florentin M, Liberopoulos EN, Moutzouri E, Rizos CV, Tselepis AD, Elisaf MS. The effect of simvastatin alone versus simvastatin plus ezetimibe on the concentration of small dense low-density lipoprotein cholesterol in subjects with primary hypercholesterolemia. Curr Med Res Opin 2011; 27:685-92. [PMID: 21271793 DOI: 10.1185/03007995.2010.546394] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To compare the effects of simvastatin alone versus simvastatin plus ezetimibe on small dense low-density lipoprotein cholesterol (sdLDL-C) concentration in subjects with primary hypercholesterolemia. RESEARCH DESIGN AND METHODS Patients with LDL-C levels above those recommended by the National Cholesterol Education Program Adult Treatment Panel III were randomized to open-label simvastatin 40 mg (n = 50) or simvastatin/ezetimibe 10/10 mg as a fixed combination (n = 50) daily. LDL particle size (estimated by electrophoresis), sdLDL-C levels, and lipid profile were blindly assessed at baseline and 3 months. CLINICAL TRIAL REGISTRATION clinicaltrials.gov NCT00932620. RESULTS Both simvastatin 40 mg and simvastatin/ezetimibe 10/10 mg decreased total cholesterol (-31% and -36%, respectively), LDL-C (-43% and -49%, respectively), triglycerides (-17% and -19%, respectively), non-high-density lipoprotein cholesterol (non-HDL-C; -40% and -46%, respectively), large LDL-C (-40 and -44%, respectively) and sdLDL-C levels (-42% and -46%, respectively, all p < 0.000 vs baseline) and increased LDL particle size (+0.5% and +0.7%, respectively, both p < 0.05 vs baseline). The changes in total cholesterol, LDL-C and non-HDL-C were greater in the simvastatin/ezetimibe group (all p < 0.05). Changes in triglycerides, large LDL-C, sdLDL-C levels and LDL particle size were similar in the two groups. In multivariate analysis, baseline sdLDL-C and triglyceride levels, but not the choice of treatment, were significantly and independently correlated with the changes in sdLDL-C levels. CONCLUSION The combination of simvastatin 10 mg plus ezetimibe 10 mg is similarly effective to simvastatin 40 mg in improving sdLDL-C concentration and LDL particle size in subjects with primary hypercholesterolemia.
Collapse
Affiliation(s)
- Matilda Florentin
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina 45110, Greece
| | | | | | | | | | | |
Collapse
|
14
|
Faulin TDES, Cavalcante MF, Abdalla DSP. Role of electronegative LDL and its associated antibodies in the pathogenesis of atherosclerosis. ACTA ACUST UNITED AC 2010. [DOI: 10.2217/clp.10.52] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
15
|
Brunelli R, Balogh G, Costa G, De Spirito M, Greco G, Mei G, Nicolai E, Vigh L, Ursini F, Parasassi T. Estradiol Binding Prevents ApoB-100 Misfolding in Electronegative LDL(−). Biochemistry 2010; 49:7297-302. [DOI: 10.1021/bi100715f] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Roberto Brunelli
- Dipartimento di Ostetricia e Ginecologia, Università di Roma “Sapienza”, Roma, Italy
| | - Gabor Balogh
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - Graziella Costa
- Istituto di Neurobiologia e Medicina Molecolare, CNR, Roma, Italy
| | - Marco De Spirito
- Istituto di Fisica, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Giulia Greco
- Istituto di Neurobiologia e Medicina Molecolare, CNR, Roma, Italy
| | - Giampiero Mei
- Dipartimento di Medicina Sperimentale e Scienze Biochimiche, Università di Roma “Tor Vergata”, Roma, Italy
| | - Eleonora Nicolai
- Dipartimento di Medicina Sperimentale e Scienze Biochimiche, Università di Roma “Tor Vergata”, Roma, Italy
| | - Laszlo Vigh
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - Fulvio Ursini
- Dipartimento di Chimica Biologica, Università di Padova, Padova, Italy
| | | |
Collapse
|
16
|
Greco G, Balogh G, Brunelli R, Costa G, De Spirito M, Lenzi L, Mei G, Ursini F, Parasassi T. Generation in human plasma of misfolded, aggregation-prone electronegative low density lipoprotein. Biophys J 2009; 97:628-35. [PMID: 19619478 DOI: 10.1016/j.bpj.2009.05.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 04/14/2009] [Accepted: 05/04/2009] [Indexed: 11/15/2022] Open
Abstract
Human plasma contains small amounts of a low density lipoprotein in which apoprotein is misfolded. Originally identified and isolated by means of anion-exchange chromatography, this component was subsequently described as electronegative low density lipoprotein (LDL)(-), with increased concentrations associated with elevated cardiovascular disease risk. It has been recognized recently as the trigger of LDL amyloidogenesis, which produces aggregates similar to subendothelial droplets observed in vivo in early atherogenesis. Although LDL(-) has been produced in vitro through various manipulations, the mechanisms involved in its generation in vivo remain obscure. By using a more physiological model, we demonstrate spontaneous, sustained and noticeable production of LDL(-) during incubation of unprocessed human plasma at 37 degrees C. In addition to a higher fraction of amyloidogenic LDL(-), LDL purified from incubated plasma contains an increased level of lysophospholipids and free fatty acids; analysis of LDL lipids packing shows their loosening. As a result, during plasma incubation, lipid destabilization and protein misfolding take place, and aggregation-prone particles are generated. All these phenomena can be prevented by inhibiting calcium-dependent secretory phospholipases A2. Our plasma incubation model, without removal of reaction products, effectively shows a lipid-protein interplay in LDL, where lipid destabilization after lipolysis threatens the apoprotein's structure, which misfolds and becomes aggregation-prone.
Collapse
Affiliation(s)
- Giulia Greco
- Istituto di Neurobiologia e Medicina Molecolare, CNR, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Zhang B, Matsunaga A, Rainwater DL, Miura SI, Noda K, Nishikawa H, Uehara Y, Shirai K, Ogawa M, Saku K. Effects of rosuvastatin on electronegative LDL as characterized by capillary isotachophoresis: the ROSARY Study. J Lipid Res 2008; 50:1832-41. [PMID: 19056704 DOI: 10.1194/jlr.m800523-jlr200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Electronegative LDL, a charge-modified LDL (cm-LDL) subfraction that is more negatively charged than normal LDL, has been shown to be inflammatory. We previously showed that pravastatin and simvastatin reduced the electronegative LDL subfraction, fast-migrating LDL (fLDL), as analyzed by capillary isotachophoresis (cITP). The present study examined the effects of rosuvastatin on the more electronegative LDL subfraction, very-fast-migrating LDL (vfLDL), and small, dense charge-modified LDL (sd-cm-LDL) subfractions. Patients with hypercholesterolemia or those who were being treated with statins (n = 81) were treated with or switched to 2.5 mg/d rosuvastatin for 3 months. Rosuvastatin treatment effectively reduced cITP cm-LDL subfractions of LDL (vfLDL and fLDL) or sdLDL (sd-vfLDL and sd-fLDL), which were closely related to each other but were different from the normal subfraction of LDL [slow-migrating LDL (sLDL)] or sdLDL (sd-sLDL) in their relation to the levels of remnant-like particle cholesterol (RLP-C), apolipoprotein (apo) C-II, and apoE. The percent changes in cm-LDL or sd-cm-LDL caused by rosuvastatin were correlated with those in the particle concentrations of LDL or sdLDL measured as LDL-apoB or sdLDL-apoB and the levels of HDL-C, RLP-C, apoC-II, and apoE. In conclusion, rosuvastatin effectively reduced both the vfLDL subfraction and sd-cm-LDL subfractions as analyzed by cITP.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Cardiology, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|