1
|
Kim JR, Choi JH. CD9 expression in vascular aging and atherosclerosis. Histol Histopathol 2020; 35:1449-1454. [PMID: 33026096 DOI: 10.14670/hh-18-268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
CD9 is a transmembrane glycoprotein belonging to the tetraspanin family. CD9 expression has been reported to be associated with cellular signaling, cell adhesion, cell migration, and tumor related processes. The aim of this study was to examine the immunohistochemical expression of CD9 in vascular senescence and atherosclerosis. One hundred and twenty samples of normal young arteries (obtained from individuals aged 0-60 years), 40 samples of normal old arteries (obtained from individuals aged 61-80 years), and 67 samples of atherosclerotic arteries were obtained from surgically resected specimens. Tissue microarray blocks were prepared for immunohistochemical staining. Immunohistochemical staining detected CD9 expression in 10.8% (13 of 120 samples) of normal young arteries and 30.0% (12 of 40 samples) of normal old arteries. CD9 expression was absent or mildly present in the smooth muscle cells and endothelial cells of normal arteries. Normal old arteries showed significantly higher expression of CD9 than normal young arteries (P<0.01). Atherosclerotic arteries showed moderate or strong CD9 expression (65 of 67 samples, 97.0%), which was observed in the smooth muscle cells, endothelial cells, macrophages, and atheromatous plaques. CD9 was significantly expressed in the atherosclerotic arteries compared to normal young and old arteries (P<0.01). The results suggest that CD9 expression may play an important role in the vascular senescence and pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Jae-Ryong Kim
- Department of Biochemistry and Molecular Biology, Smart-aging Convergence Research Center, Yeungnam University College of Medicine, Daegu, Korea
| | - Joon Hyuk Choi
- Department of Pathology, Yeungnam University College of Medicine, Daegu, Korea.
| |
Collapse
|
2
|
Yan Y, Xu Y, Ni G, Wang S, Li X, Gao J, Zhang H. MicroRNA-221 promotes proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs) by targeting tissue inhibitor of metalloproteinases-3 (TIMP3). Cardiovasc Diagn Ther 2020; 10:646-657. [PMID: 32968621 PMCID: PMC7487395 DOI: 10.21037/cdt-20-328] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 07/09/2020] [Indexed: 01/15/2023]
Abstract
BACKGROUND Aberrant vascular smooth muscle cell (VSMC) proliferation and migration play an important role in the development of cardiovascular diseases including pulmonary arterial hypertension (PAH). MicroRNAs (miRNAs, miRs) have been considered to be implicated in the progression of PAH pathogenesis. In this study, we aim to clarify the role of miR-221 on proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs) and identify the target genes involved in this biological process. METHODS PASMCs were isolated from the pulmonary arteries of male Sprague-Dawley (SD) rats. Cell proliferation of PASMCs was detected by 5-ethynyl-2'-deoxyuridine (EdU) assay. Cell migration was determined by a scratch wound assay. Quantitative real-time PCR was used to determine the expression of miR-221 while western blot analysis was used to determine the expression of TIMP3. Luciferase assay was used to confirm that TIMP3 was a direct target gene of miR-221. Monocrotaline (MCT) induced-PAH rat model was established and miR-221 and TIMP3 levels were checked in lung tissue and PASMCs from PAH rats. RESULTS miR-221 was able to promote the proliferation and migration PASMCs. TIMP3 were negatively regulated by miR-221 at the protein level in PASMCs. In addition, TIMP3 was identified to be a direct target gene of miR-221 in PASMCs based on luciferase assays. TIMP3 knockdown abolished the inhibitory effect of miR-221 inhibitor on PASMCs proliferation and migration, suggesting TIMP3 mediated the effects of miR-221 in PASMCs. Finally, we found that miR-221 was increased while TIMP3 was down-regulated in PASMCs in MCT-treated rats. CONCLUSIONS In conclusion, miR-221 promotes PASMCs proliferation and migration by targeting TIMP3. MiR-221 and TIMP3 could be potential therapeutic targets for the treatment of PAH.
Collapse
Affiliation(s)
- Yan Yan
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ying Xu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Gehui Ni
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Siqi Wang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Xinli Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Juan Gao
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Haifeng Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Zhang Y, Wang J, Ding Y, Zhang J, Xu Y, Xu J, Zheng S, Yang H. Migrasome and Tetraspanins in Vascular Homeostasis: Concept, Present, and Future. Front Cell Dev Biol 2020; 8:438. [PMID: 32612990 PMCID: PMC7308473 DOI: 10.3389/fcell.2020.00438] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/11/2020] [Indexed: 12/18/2022] Open
Abstract
Cell migration plays a critical role in vascular homeostasis. Under noxious stimuli, endothelial cells (ECs) migration always contributes to vascular repair, while enhanced migration of vascular smooth muscle cells (VSMCs) will lead to pathological vascular remodeling. Moreover, vascular activities are involved in communication between ECs and VSMCs, between ECs and immune cells, et al. Recently, Ma et al. (2015) discovered a novel migration-dependent organelle “migrasome,” which mediated release of cytoplasmic contents, and this process was defined as “migracytosis.” The formation of migrasome is precisely regulated by tetraspanins (TSPANs), cholesterol and integrins. Migrasomes can be taken up by neighboring cells, and migrasomes are distributed in many kinds of cells and tissues, such as in blood vessel, human serum, and in ischemic brain of human and mouse. In addition, the migrasome elements TSPANs are wildly expressed in cardiovascular system. Therefore, TSPANs, migrasomes and migracytosis might play essential roles in regulating vascular homeostasis. In this review, we will discuss the discoveries of migration-dependent migrasome and migracytosis, migrasome formation, the basic differences between migrasomes and exosomes, the distributions and functions of migrasome, the functions of migrasome elements TSPANs in vascular biology, and discuss the possible roles of migrasomes and migracytosis in vascular homeostasis.
Collapse
Affiliation(s)
- Yaxing Zhang
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing Wang
- Department of Ophthalmology, Qingdao Fubai Eye Hospital, Qingdao, China
| | - Yungang Ding
- Department of Ophthalmology, Qingdao Ludong Eye Hospital, Qingdao, China
| | - Jiongshan Zhang
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan Xu
- Department of Gastrointestinal Endoscopy, Guangzhou Cadre Health Management Center/Guangzhou Eleventh People's Hospital, Guangzhou, China
| | - Jingting Xu
- Biofeedback Laboratory, Xinhua College of Sun Yat-sen University, Guangzhou, China
| | - Shuhui Zheng
- Research Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hongzhi Yang
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
CD9 induces cellular senescence and aggravates atherosclerotic plaque formation. Cell Death Differ 2020; 27:2681-2696. [PMID: 32346137 DOI: 10.1038/s41418-020-0537-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/26/2022] Open
Abstract
CD9, a 24 kDa tetraspanin membrane protein, is known to regulate cell adhesion and migration, cancer progression and metastasis, immune and allergic responses, and viral infection. CD9 is upregulated in senescent endothelial cells, neointima hyperplasia, and atherosclerotic plaques. However, its role in cellular senescence and atherosclerosis remains undefined. We investigated the potential mechanism for CD9-mediated cellular senescence and its role in atherosclerotic plaque formation. CD9 knockdown in senescent human umbilical vein endothelial cells significantly rescued senescence phenotypes, while CD9 upregulation in young cells accelerated senescence. CD9 regulated cellular senescence through a phosphatidylinositide 3 kinase-AKT-mTOR-p53 signal pathway. CD9 expression increased in arterial tissues from humans and rats with age, and in atherosclerotic plaques in humans and mice. Anti-mouse CD9 antibody noticeably prevented the formation of atherosclerotic lesions in ApoE-/- mice and Ldlr-/- mice. Furthermore, CD9 ablation in ApoE-/- mice decreased atherosclerotic lesions in aorta and aortic sinus. These results suggest that CD9 plays critical roles in endothelial cell senescence and consequently the pathogenesis of atherosclerosis, implying that CD9 is a novel target for prevention and treatment of vascular aging and atherosclerosis.
Collapse
|
5
|
A Five-Gene Expression Signature Predicts Clinical Outcome of Ovarian Serous Cystadenocarcinoma. BIOMED RESEARCH INTERNATIONAL 2016; 2016:6945304. [PMID: 27478834 PMCID: PMC4949334 DOI: 10.1155/2016/6945304] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 05/25/2016] [Indexed: 12/28/2022]
Abstract
Ovarian serous cystadenocarcinoma is a common malignant tumor of female genital organs. Treatment is generally less effective as patients are usually diagnosed in the late stage. Therefore, a well-designed prognostic marker provides valuable data for optimizing therapy. In this study, we analyzed 303 samples of ovarian serous cystadenocarcinoma and the corresponding RNA-seq data. We observed the correlation between gene expression and patients' survival and eventually established a risk assessment model of five factors using Cox proportional hazards regression analysis. We found that the survival time in high-risk patients was significantly shorter than in low-risk patients in both training and testing sets after Kaplan-Meier analysis. The AUROC value was 0.67 when predicting the survival time in testing set, which indicates a relatively high specificity and sensitivity. The results suggest diagnostic and therapeutic applications of our five-gene model for ovarian serous cystadenocarcinoma.
Collapse
|
6
|
Feng M, Fang Y, Han B, Xu X, Fan P, Hao Y, Qi Y, Hu H, Huo X, Meng L, Wu B, Li J. In-Depth N-Glycosylation Reveals Species-Specific Modifications and Functions of the Royal Jelly Protein from Western (Apis mellifera) and Eastern Honeybees (Apis cerana). J Proteome Res 2015; 14:5327-40. [PMID: 26496797 DOI: 10.1021/acs.jproteome.5b00829] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Royal jelly (RJ), secreted by honeybee workers, plays diverse roles as nutrients and defense agents for honeybee biology and human health. Despite being reported to be glycoproteins, the glycosylation characterization and functionality of RJ proteins in different honeybee species are largely unknown. An in-depth N-glycoproteome analysis and functional assay of RJ produced by Apis mellifera lingustica (Aml) and Apis cerana cerana (Acc) were conducted. RJ produced by Aml yielded 80 nonredundant N-glycoproteins carrying 190 glycosites, of which 23 novel proteins harboring 35 glycosites were identified. For Acc, all 43 proteins glycosylated at 138 glycosites were reported for the first time. Proteins with distinct N-glycoproteomic characteristics in terms of glycoprotein species, number of N-glycosylated sites, glycosylation motif, abundance level of glycoproteins, and N-glycosites were observed in this two RJ samples. The fact that the low inhibitory efficiency of N-glycosylated major royal jelly protein 2 (MRJP2) against Paenibacillus larvae (P. larvae) and the absence of antibacterial related glycosylated apidaecin, hymenoptaecin, and peritrophic matrix in the Aml RJ compared to Acc reveal the mechanism for why the Aml larvae are susceptible to P. larvae, the causative agent of a fatal brood disease (American foulbrood, AFB). The observed antihypertension activity of N-glycosylated MRJP1 in two RJ samples and a stronger activity found in Acc than in Aml reveal that specific RJ protein and modification are potentially useful for the treatment of hypertensive disease for humans. Our data gain novel understanding that the western and eastern bees have evolved species-specific strategies of glycosylation to fine-tune protein activity for optimizing molecular function as nutrients and immune agents for the good of honeybee and influence on the health promoting activity for human as well. This serves as a valuable resource for the targeted probing of the biological functions of RJ proteins for honeybee and medical communities.
Collapse
Affiliation(s)
- Mao Feng
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences , Beijing 100093, China
| | - Yu Fang
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences , Beijing 100093, China
| | - Bin Han
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences , Beijing 100093, China
| | - Xiang Xu
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences , Beijing 100093, China
| | - Pei Fan
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences , Beijing 100093, China.,College of Bioengineering, Henan University of Technology , Zhengzhou 450001, China
| | - Yue Hao
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences , Beijing 100093, China
| | - Yuping Qi
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences , Beijing 100093, China
| | - Han Hu
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences , Beijing 100093, China
| | - Xinmei Huo
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences , Beijing 100093, China
| | - Lifeng Meng
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences , Beijing 100093, China
| | - Bin Wu
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences , Beijing 100093, China
| | - Jianke Li
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences , Beijing 100093, China
| |
Collapse
|
7
|
An Endocrine Genetic Signal Between Blood Cells and Vascular Smooth Muscle Cells: Role of MicroRNA-223 in Smooth Muscle Function and Atherogenesis. J Am Coll Cardiol 2015; 65:2526-37. [PMID: 26065992 DOI: 10.1016/j.jacc.2015.03.570] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 03/25/2015] [Accepted: 03/31/2015] [Indexed: 11/24/2022]
Abstract
BACKGROUND MicroRNA-223 (miR-223) is a hematopoietic lineage cell-specific microRNA. However, a significant amount of miR-223 has been identified in vascular smooth muscle cells (VSMCs) and vascular walls that should not have endogenous miR-223. OBJECTIVES This study sought to determine the sources of miR-223 in normal and atherosclerotic arteries and the role of miR-223 in atherogenesis. METHODS The levels and sources of miR-223 in blood cells (leukocytes and platelets), serum, blood microparticles, VSMCs, and vascular walls were determined. Both in vivo and in vitro studies were conducted to evaluate miR-223 secretion by blood cells and the ability of miR-223 to enter VSMCs and vascular walls. Subsequent changes in and the effects of miR-223 levels on serum and arteries in atherosclerotic animals and patients were investigated. RESULTS Blood cells were able to secrete miR-223 into serum. MicroRNA-223 from blood cells was the most abundant cell-free miRNA in blood. Blood cell-secreted miR-223 could enter VSMCs and vascular walls, which produced strong biological effects via its target genes. In both atherosclerotic apolipoprotein-E knockout mice and patients with atherosclerosis, miR-223 levels were significantly increased in serum and atherosclerotic vascular walls. The atherosclerotic lesions in apolipoprotein-E knockout mice were exacerbated by miR-223 knockdown. The effect of miR-223 on atherogenesis was verified using miR-223 knockout mice. CONCLUSIONS Blood cell-secreted miR-223 enters vascular cells and walls, and appears to play important roles in VSMC function and atherogenesis. As a novel endocrine genetic signal between blood cells and vascular cells, miR-223 may provide a novel mechanism and new therapeutic target for atherosclerosis.
Collapse
|
8
|
Tetraspanin CD9 regulates cell contraction and actin arrangement via RhoA in human vascular smooth muscle cells. PLoS One 2014; 9:e106999. [PMID: 25184334 PMCID: PMC4153684 DOI: 10.1371/journal.pone.0106999] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 08/07/2014] [Indexed: 02/07/2023] Open
Abstract
The most prevalent cardiovascular diseases arise from alterations in vascular smooth muscle cell (VSMC) morphology and function. Tetraspanin CD9 has been previously implicated in regulating vascular pathologies; however, insight into how CD9 may regulate adverse VSMC phenotypes has not been provided. We utilized a human model of aortic smooth muscle cells to understand the consequences of CD9 deficiency on VSMC phenotypes. Upon knocking down CD9, the cells developed an abnormally small and rounded morphology. We determined that this morphological change was due to a lack of typical parallel actin arrangement. We also found similar total RhoA but decreased GTP-bound (active) RhoA levels in CD9 deficient cells. As a result, cells lacking a full complement of CD9 were less contractile than their control treated counterparts. Upon restoration of RhoA activity in the CD9 deficient cells, the phenotype was reversed and cell contraction was restored. Conversely, inhibition of RhoA activity in the control cells mimicked the CD9-deficient cell phenotype. Thus, alteration in CD9 expression was sufficient to profoundly disrupt cellular actin arrangement and endogenous cell contraction by interfering with RhoA signaling. This study provides insight into how CD9 may regulate previously described vascular smooth muscle cell pathophysiology.
Collapse
|
9
|
Herr MJ, Longhurst CM, Baker B, Homayouni R, Speich HE, Kotha J, Jennings LK. Tetraspanin CD9 modulates human lymphoma cellular proliferation via histone deacetylase activity. Biochem Biophys Res Commun 2014; 447:616-20. [PMID: 24747564 DOI: 10.1016/j.bbrc.2014.04.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 04/09/2014] [Indexed: 11/26/2022]
Abstract
Non-Hodgkin Lymphoma (NHL) is a type of hematological malignancy that affects two percent of the overall population in the United States. Tetraspanin CD9 is a cell surface protein that has been thoroughly demonstrated to be a molecular facilitator of cellular phenotype. CD9 expression varies in two human lymphoma cell lines, Raji and BJAB. In this report, we investigated the functional relationship between CD9 and cell proliferation regulated by histone deacetylase (HDAC) activity in these two cell lines. Introduction of CD9 expression in Raji cells resulted in significantly increased cell proliferation and HDAC activity compared to Mock transfected Raji cells. The increase in CD9-Raji cell proliferation was significantly inhibited by HDAC inhibitor (HDACi) treatment. Pretreatment of BJAB cells with HDAC inhibitors resulted in a significant decrease in endogenous CD9 mRNA and cell surface expression. BJAB cells also displayed decreased cell proliferation after HDACi treatment. These results suggest a significant relationship between CD9 expression and cell proliferation in human lymphoma cells that may be modulated by HDAC activity.
Collapse
Affiliation(s)
- Michael J Herr
- Vascular Biology Center of Excellence, The University of Tennessee Health Science Center, Memphis, TN 38163, United States; Department of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, United States; Department of Molecular Sciences, The University of Tennessee Health Science Center, Memphis, TN 38163, United States; Department of Surgery, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Celia M Longhurst
- Vascular Biology Center of Excellence, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Benjamin Baker
- Vascular Biology Center of Excellence, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Ramin Homayouni
- Department of Biology, Bioinformatics Program, University of Memphis, Memphis, TN 38152, United States
| | - Henry E Speich
- Vascular Biology Center of Excellence, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Jayaprakash Kotha
- Vascular Biology Center of Excellence, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Lisa K Jennings
- Vascular Biology Center of Excellence, The University of Tennessee Health Science Center, Memphis, TN 38163, United States; Department of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, United States; Department of Molecular Sciences, The University of Tennessee Health Science Center, Memphis, TN 38163, United States; Department of Surgery, The University of Tennessee Health Science Center, Memphis, TN 38163, United States; Department of Biology, Bioinformatics Program, University of Memphis, Memphis, TN 38152, United States.
| |
Collapse
|
10
|
Herr MJ, Mabry SE, Jameson JF, Jennings LK. Pro-MMP-9 upregulation in HT1080 cells expressing CD9 is regulated by epidermal growth factor receptor. Biochem Biophys Res Commun 2013; 442:99-104. [PMID: 24246676 DOI: 10.1016/j.bbrc.2013.11.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 11/04/2013] [Indexed: 11/26/2022]
Abstract
Degradation of the surrounding extracellular matrix (ECM) by matrix metalloproteinases (MMPs) drives invasion and metastasis of cancer cells. We previously demonstrated that tetraspanin CD9 expression upregulates pro-MMP-9 expression and release and promotes cellular invasion in a human fibrosarcoma cell line (HT1080). These events were dependent upon the highly functional second extracellular loop of CD9. We report here that the epidermal growth factor receptor (EGFR) tyrosine kinase expression and activity are involved in the CD9-mediated increase in pro-MMP-9 release and cellular invasion. Pro-MMP-9 expression was significantly decreased in a dose-dependent manner using first a broad spectrum receptor tyrosine kinase inhibitor and multiple specific EGFR inhibitors in CD9-HT1080 cells. Furthermore, gefitinib treatment of CD9-HT1080 cells reduced invasion through matrigel. EGFR knockdown using short interfering RNA resulted in decreased pro-MMP-9 expression and release into the media and subsequent cellular invasion without affecting CD9 expression or localization. Conclusively, this study points to EGFR as a key mediator between CD9-mediated pro-MMP-9 release and cellular invasion of HT1080 cells.
Collapse
Affiliation(s)
- Michael J Herr
- The Vascular Biology Center of Excellence, Department of Internal Medicine, USA; Department of Microbiology, Immunology, and Biochemistry, USA
| | | | | | | |
Collapse
|
11
|
Bhargava M, Dey S, Becker T, Steinbach M, Wu B, Lee SM, Higgins L, Kumar V, Bitterman PB, Ingbar DH, Wendt CH. Protein expression profile of rat type two alveolar epithelial cells during hyperoxic stress and recovery. Am J Physiol Lung Cell Mol Physiol 2013; 305:L604-14. [PMID: 24014686 PMCID: PMC3840279 DOI: 10.1152/ajplung.00079.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 09/03/2013] [Indexed: 01/03/2023] Open
Abstract
In rodent model systems, the sequential changes in lung morphology resulting from hyperoxic injury are well characterized and are similar to changes in human acute respiratory distress syndrome. In the injured lung, alveolar type two (AT2) epithelial cells play a critical role in restoring the normal alveolar structure. Thus characterizing the changes in AT2 cells will provide insights into the mechanisms underpinning the recovery from lung injury. We applied an unbiased systems-level proteomics approach to elucidate molecular mechanisms contributing to lung repair in a rat hyperoxic lung injury model. AT2 cells were isolated from rat lungs at predetermined intervals during hyperoxic injury and recovery. Protein expression profiles were determined by using iTRAQ with tandem mass spectrometry. Of the 959 distinct proteins identified, 183 significantly changed in abundance during the injury-recovery cycle. Gene ontology enrichment analysis identified cell cycle, cell differentiation, cell metabolism, ion homeostasis, programmed cell death, ubiquitination, and cell migration to be significantly enriched by these proteins. Gene set enrichment analysis of data acquired during lung repair revealed differential expression of gene sets that control multicellular organismal development, systems development, organ development, and chemical homeostasis. More detailed analysis identified activity in two regulatory pathways, JNK and miR 374. A novel short time-series expression miner algorithm identified protein clusters with coherent changes during injury and repair. We concluded that coherent changes occur in the AT2 cell proteome in response to hyperoxic stress. These findings offer guidance regarding the specific molecular mechanisms governing repair of the injured lung.
Collapse
|
12
|
Tetraspanin CD9 promotes the invasive phenotype of human fibrosarcoma cells via upregulation of matrix metalloproteinase-9. PLoS One 2013; 8:e67766. [PMID: 23840773 PMCID: PMC3696041 DOI: 10.1371/journal.pone.0067766] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 05/22/2013] [Indexed: 12/30/2022] Open
Abstract
Tumor cell metastasis, a process which increases the morbidity and mortality of cancer patients, is highly dependent upon matrix metalloproteinase (MMP) production. Small molecule inhibitors of MMPs have proven unsuccessful at reducing tumor cell invasion in vivo. Therefore, finding an alternative approach to regulate MMP is an important endeavor. Tetraspanins, a family of cell surface organizers, play a major role in cell signaling events and have been implicated in regulating metastasis in numerous cancer cell lines. We stably expressed tetraspanin CD9 in an invasive and metastatic human fibrosarcoma cell line (CD9-HT1080) to investigate its role in regulating tumor cell invasiveness. CD9-HT1080 cells displayed a highly invasive phenotype as demonstrated by matrigel invasion assays. Statistically significant increases in MMP-9 production and activity were attributed to CD9 expression and were not due to any changes in other key tetraspanin complex members or MMP regulators. Increased invasion of CD9-HT1080 cells was reversed upon silencing of MMP-9 using a MMP-9 specific siRNA. Furthermore, we determined that the second extracellular loop of CD9 was responsible for the upregulation of MMP-9 production and subsequent cell invasion. We demonstrated for the first time that tetraspanin CD9 controls HT1080 cell invasion via upregulation of an integral member of the MMP family, MMP-9. Collectively, our studies provide mounting evidence that altered expression of CD9 may be a novel approach to regulate tumor cell progression.
Collapse
|
13
|
Liu X, Cheng Y, Yang J, Xu L, Zhang C. Cell-specific effects of miR-221/222 in vessels: molecular mechanism and therapeutic application. J Mol Cell Cardiol 2012; 52:245-55. [PMID: 22138289 PMCID: PMC3664545 DOI: 10.1016/j.yjmcc.2011.11.008] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 11/01/2011] [Accepted: 11/10/2011] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are noncoding RNAs that impact almost every aspect of biology and disease. Until now, the cell-specific effects of miRNAs in cardiovascular system have not been established. In the current study, the cellular functions of miR-221 and miR-222 (miR-221/222) in vascular smooth muscle cells (VSMCs) and vascular endothelial cells (ECs) were compared. In cultured cells, we identified that the effects of miR-221/222 on proliferation, migration, and apoptosis are opposite between VSMCs and ECs. In VSMCs, miR-221/222 had effects of pro-proliferation, pro-migration, and anti-apoptosis. In contrast, miR-221/222 had effects of anti-proliferation, anti-migration, and pro-apoptosis in ECs. The different expression profiles of their target genes, p27(Kip1), p57(kip2), and c-kit between the two cell types might be related to the opposite effects. Finally, the opposite cellular effects of miR-221/222 were verified in vivo in balloon-injured rat carotid artery as demonstrated by different consequences in neointimal growth and re-endothelialization. The results suggest that the biological functions of miR-221/222 in vascular walls are cell-specific. The opposite cellular effects of miR-221/222 on VSMCs and ECs may have important therapeutic applications in many vascular diseases such as atherosclerosis and restenosis after angioplasty.
Collapse
Affiliation(s)
- Xiaojun Liu
- RNA and Cardiovascular Research Laboratory, Department of Anesthesiology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ 07101
| | - Yunhui Cheng
- RNA and Cardiovascular Research Laboratory, Department of Anesthesiology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ 07101
| | - Jian Yang
- RNA and Cardiovascular Research Laboratory, Department of Anesthesiology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ 07101
| | - Ling Xu
- RNA and Cardiovascular Research Laboratory, Department of Anesthesiology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ 07101
| | - Chunxiang Zhang
- RNA and Cardiovascular Research Laboratory, Department of Anesthesiology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ 07101
| |
Collapse
|
14
|
Rezvan A, Ni CW, Alberts-Grill N, Jo H. Animal, in vitro, and ex vivo models of flow-dependent atherosclerosis: role of oxidative stress. Antioxid Redox Signal 2011; 15:1433-48. [PMID: 20712399 PMCID: PMC3144429 DOI: 10.1089/ars.2010.3365] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Atherosclerosis is an inflammatory disease preferentially occurring in curved or branched arterial regions, whereas straight parts of the arteries are protected, suggesting a close relationship between flow and atherosclerosis. However, evidence directly linking disturbed flow to atherogenesis is just emerging, thanks to the recent development of suitable animal models. In this article, we review the status of various animal, in vitro, and ex vivo models that have been used to study flow-dependent vascular biology and atherosclerosis. For animal models, naturally flow-disturbed regions such as branched or curved arterial regions as well as surgically created models, including arterio-venous fistulas, vascular grafts, perivascular cuffs, and complete, incomplete, or partial ligation of arteries, are used. Although in vivo models provide the environment needed to mimic the complex pathophysiological processes, in vitro models provide simple conditions that allow the study of isolated factors. Typical in vitro models use cultured endothelial cells exposed to various flow conditions, using devices such as cone-and-plate and parallel-plate chambers. Ex vivo models using isolated vessels have been used to bridge the gap between complex in vivo models and simple in vitro systems. Here, we review these flow models in the context of the role of oxidative stress in flow-dependent inflammation, a critical proatherogenic step, and atherosclerosis.
Collapse
Affiliation(s)
- Amir Rezvan
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
15
|
Kirby J, Ning K, Ferraiuolo L, Heath PR, Ismail A, Kuo SW, Valori CF, Cox L, Sharrack B, Wharton SB, Ince PG, Shaw PJ, Azzouz M. Phosphatase and tensin homologue/protein kinase B pathway linked to motor neuron survival in human superoxide dismutase 1-related amyotrophic lateral sclerosis. ACTA ACUST UNITED AC 2011; 134:506-17. [PMID: 21228060 PMCID: PMC3030763 DOI: 10.1093/brain/awq345] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gene expression profiling has been used previously with spinal cord homogenates and laser capture microdissected motor neurons to determine the mechanisms involved in neurodegeneration in amyotrophic lateral sclerosis. However, while cellular and animal model work has focused on superoxide dismutase 1-related amyotrophic lateral sclerosis, the transcriptional profile of human mutant superoxide dismutase 1 motor neurons has remained undiscovered. The aim of this study was to apply gene expression profiling to laser captured motor neurons from human superoxide dismutase 1-related amyotrophic lateral sclerosis and neurologically normal control cases, in order to determine those pathways dysregulated in human superoxide dismutase 1-related neurodegeneration and to establish potential pathways suitable for therapeutic intervention. Identified targets were then validated in cultured cell models using lentiviral vectors to manipulate the expression of key genes. Microarray analysis identified 1170 differentially expressed genes in spinal cord motor neurons from superoxide dismutase 1-related amyotrophic lateral sclerosis, compared with controls. These genes encoded for proteins in multiple functional categories, including those involved in cell survival and cell death. Further analysis determined that multiple genes involved in the phosphatidylinositol-3 kinase signalling cascade were differentially expressed in motor neurons that survived the disease process. Functional experiments in cultured cells and primary motor neurons demonstrate that manipulating this pathway by reducing the expression of a single upstream target, the negative phosphatidylinositol-3 kinase regulator phosphatase and tensin homology, promotes a marked pro-survival effect. Therefore, these data indicate that proteins in the phosphatidylinositol-3 kinase pathway could represent a target for therapeutic manipulation in motor neuron degeneration.
Collapse
Affiliation(s)
- Janine Kirby
- Academic Neurology Unit, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Tetraspanins are multiple membrane-spanning proteins that likely function as the organizers of membrane microdomains. Tetraspanins associate with other membrane-bound molecules such as cell-adhesion proteins, growth factor receptors, and Ig superfamily members and regulate key cellular processes such as adhesion, migration, and fusion. Tetraspanins are widely expressed in vascular and haematopoietic cells and are involved in both physiological and pathological processes related to angiogenesis, vascular injury, thrombosis, and haemostasis. A wide body of evidence suggests that tetraspanins directly regulate the development and functions of the vascular system and the pathogenesis of vascular diseases. This article reviews current understanding of the roles of tetraspanins in vascular functions.
Collapse
Affiliation(s)
- Feng Zhang
- Vascular Biology Center of Excellence, University of Tennessee Health Science Center, 956 Court Avenue, Memphis, TN 38163, USA
| | | | | | | |
Collapse
|
17
|
Chapter 9 Endothelial Adhesive Platforms Organize Receptors to Promote Leukocyte Extravasation. CURRENT TOPICS IN MEMBRANES 2009. [DOI: 10.1016/s1063-5823(09)64009-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|