1
|
Liu W, Liu X, Li L, Tai Z, Li G, Liu JX. EPC1/2 regulate hematopoietic stem and progenitor cell proliferation by modulating H3 acetylation and DLST. iScience 2024; 27:109263. [PMID: 38439957 PMCID: PMC10910311 DOI: 10.1016/j.isci.2024.109263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/21/2023] [Accepted: 02/14/2024] [Indexed: 03/06/2024] Open
Abstract
Enhancers of polycomb 1 (EPC1) and 2 (EPC2) are involved in multiple biological processes as components of histone acetyltransferases/deacetylase complexes and transcriptional cofactors, and their dysfunction was associated with developmental defects and diseases. However, it remains unknown how their dysfunction induces hematopoietic stem and progenitor cell (HSPC) defects. Here, we show that depletion of EPC1/2 significantly reduced the number of hematopoietic stem and progenitor cells (HSPCs) in the aorta-gonad mesonephros and caudal hematopoietic tissue regions by impairing HSPC proliferation, and consistently downregulated the expression of HSPC genes in K562 cells. This study demonstrates the functions of EPC1/2 in regulating histone H3 acetylation, and in regulating DLST (dihydrolipoamide S-succinyltransferase) via H3 acetylation and cooperating with transcription factors serum response factor and FOXR2 together, and in the subsequent HSPC emergence and proliferation. Our results demonstrate the essential roles of EPC1/2 in regulating H3 acetylation, and DLST as a linkage between EPC1 and EPC2 with mitochondria metabolism, in HSPC emergence and proliferation.
Collapse
Affiliation(s)
- WenYe Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Xi Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - LingYa Li
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - ZhiPeng Tai
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - GuoLiang Li
- College of Informatics, Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing-Xia Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
2
|
Ji Z, Liu H, Fang L, Yu Y, Zhou Z. Use of immunoproteomics to identify immunogenic proteins in a rat model of acute respiratory distress syndrome. Mol Med Rep 2017; 16:7625-7632. [PMID: 28944852 DOI: 10.3892/mmr.2017.7557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/17/2017] [Indexed: 11/06/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a common and life‑threatening clinical syndrome, and seeking biomarkers of ARDS has been an area of continuing research. The present study hypothesized that alterations to certain immunogenic substances occur in injured lungs and are able to specifically bind with corresponding proteins in the blood, and that these proteins may be readily detected. To investigate this hypothesis, a rat model of ARDS was established by cecal ligation and puncture surgery, and an immunoproteomics approach, using serum as the primary antibody in a western blot analysis, was used with the aim of identifying immunogenic proteins in the injured lungs. Ingenuity Pathway Analysis (IPA) was used for bioinformatics analysis, and mass spectrometric analysis was used to identify a total of 38 differentially expressed immunogenic proteins. Bioinformatics analysis revealed that the top canonical pathways in which the identified proteins may be involved were gluconeogenesis I, glycolysis I, choline degradation I, NADH repair and heme degradation. IPA Biomarker Filter analysis with the terms 'acute respiratory distress syndrome/acute lung injury' was used to screen 13 proteins as candidate biomarkers. These proteins were described as antigens, and suggested that paired antibodies may be detected in the plasma of patients at high risk of ARDS. Analysis of these identified proteins may provide novel insights into the potential pathological mechanisms of ARDS.
Collapse
Affiliation(s)
- Zongshu Ji
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Haiyan Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Linsen Fang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Youxin Yu
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Zheng Zhou
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
3
|
Searle NE, Pillus L. Critical genomic regulation mediated by Enhancer of Polycomb. Curr Genet 2017; 64:147-154. [PMID: 28884217 DOI: 10.1007/s00294-017-0742-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 01/28/2023]
Abstract
Enhancer of Polycomb (EPC) was first identified for its contributions to development in Drosophila and was soon-thereafter purified as a subunit of the NuA4/TIP60 acetyltransferase complex. Since then, EPC has often been left in the shadows as an essential, yet non-catalytic subunit of NuA4/TIP60; however, its deep conservation and disease association make clear that it warrants additional attention. In fact, recent studies in yeast demonstrated that its Enhancer of Polycomb, Epl1, was just as important for gene expression and acetylation as is the catalytic subunit of NuA4. Despite its conservation, studies of EPC have often remained siloed between organisms. Here, our goal is to provide a cohesive view of the current state of the EPC literature as it stands among the major model organisms in which it has been studied. EPC is involved in multiple processes, beginning with its cardinal role in regulating global and targeted histone acetylation. EPC also frequently serves as an important interaction partner in these basic cellular functions, as well as in multicellular development, such as in hematopoiesis and skeletal muscle differentiation, and in human disease. Taken together, a unifying theme from these studies highlights EPC as a critical genomic regulator.
Collapse
Affiliation(s)
- Naomi E Searle
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, UC San Diego Moores Cancer Center, 9500 Gilman Drive, La Jolla, CA, 92093-0347, USA.,UC San Diego Biomedical Sciences, La Jolla, CA, 92093-0685, USA
| | - Lorraine Pillus
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, UC San Diego Moores Cancer Center, 9500 Gilman Drive, La Jolla, CA, 92093-0347, USA.
| |
Collapse
|
4
|
STARS knockout attenuates hypoxia-induced pulmonary arterial hypertension by suppressing pulmonary arterial smooth muscle cell proliferation. Biomed Pharmacother 2017; 87:397-404. [DOI: 10.1016/j.biopha.2016.12.126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 12/13/2016] [Accepted: 12/28/2016] [Indexed: 11/24/2022] Open
|
5
|
Nie CJ, Li YH, Zhang XH, Wang ZP, Jiang W, Zhang Y, Yin WN, Zhang Y, Shi HJ, Liu Y, Zheng CY, Zhang J, Zhang GL, Zheng B, Wen JK. SUMOylation of KLF4 acts as a switch in transcriptional programs that control VSMC proliferation. Exp Cell Res 2016; 342:20-31. [PMID: 26945917 DOI: 10.1016/j.yexcr.2016.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 02/25/2016] [Accepted: 03/01/2016] [Indexed: 02/06/2023]
Abstract
The regulation of vascular smooth muscle cell (VSMC) proliferation is an important issue due to its major implications for the prevention of pathological vascular conditions. The objective of this work was to assess the function of small ubiquitin-like modifier (SUMO)ylated Krϋppel-like transcription factor 4 (KLF4) in the regulation of VSMC proliferation in cultured cells and in animal models with balloon injury. We found that under basal conditions, binding of non-SUMOylated KLF4 to p300 activated p21 (p21(WAF1/CIP1))transcription, leading to VSMC growth arrest. PDGF-BB promoted the interaction between Ubc9 and KLF4 and the SUMOylation of KLF4, which in turn recruited transcriptional corepressors to the p21 promoter. The reduction in p21 enhanced VSMC proliferation. Additionally, the SUMOylated KLF4 did not affect the expression of KLF4, thereby forming a positive feedback loop enhancing cell proliferation. These results demonstrated that SUMOylated KLF4 plays an important role in cell proliferation by reversing the transactivation action of KLF4 on p21 induced with PDGF-BB.
Collapse
Affiliation(s)
- Chan-Juan Nie
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Zhongshan East Road, Shijiazhuang 050017, China
| | - Yong Hui Li
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Zhongshan East Road, Shijiazhuang 050017, China; Hebei Center for Disease Control and Prevention, Shijiazhuang 050000, China
| | - Xin-Hua Zhang
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Zhongshan East Road, Shijiazhuang 050017, China
| | - Zhi-Peng Wang
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Zhongshan East Road, Shijiazhuang 050017, China
| | - Wen Jiang
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Zhongshan East Road, Shijiazhuang 050017, China
| | - Yu Zhang
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Zhongshan East Road, Shijiazhuang 050017, China
| | - Wei-Na Yin
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Zhongshan East Road, Shijiazhuang 050017, China
| | - Yong Zhang
- Department of Urinary Surgery, Second Hospital of Hebei Medical University, Pingan Road, Shijiazhuang 050000, China
| | - Hui-Jing Shi
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Zhongshan East Road, Shijiazhuang 050017, China
| | - Yan Liu
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Zhongshan East Road, Shijiazhuang 050017, China
| | - Cui-Ying Zheng
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Zhongshan East Road, Shijiazhuang 050017, China
| | - Jing Zhang
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Zhongshan East Road, Shijiazhuang 050017, China
| | | | - Bin Zheng
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Zhongshan East Road, Shijiazhuang 050017, China.
| | - Jin-Kun Wen
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Zhongshan East Road, Shijiazhuang 050017, China.
| |
Collapse
|
6
|
Serum Response Factor Protects Retinal Ganglion Cells Against High-Glucose Damage. J Mol Neurosci 2016; 59:232-40. [PMID: 26803311 DOI: 10.1007/s12031-015-0708-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/23/2015] [Indexed: 12/22/2022]
Abstract
Serum response factor (SRF), which encodes the MADS-box family of related proteins, is a common transcription factor related to the expression of genes associated with cell survival. However, SRF's role in retinal ganglion cells (RGCs) after high-glucose injury remains unclear. In this study, we investigate the protective role of SRF after high-glucose injury and its underlying mechanism. The in vitro RGC model subjected to high glucose was established by employing a 50 mmol/L glucose culture environment. As detected by real-time quantitative PCR and Western blot, SRF was significantly upregulated in RGCs treated with high glucose. Overexpression of SRF significantly promoted survival among RGCs exposed to high glucose and inhibited RGC apoptosis. Knockdown of SRF exerted an inverse effect. Moreover, SRF upregulation enhanced expression of an antioxidant protein, nuclear factor erythroid 2-related factor (Nrf2), via control of the Fos-related antigen 1 (Fra-1). SRF upregulation also affected RGC survival after high-glucose treatment. Our findings showed that overexpression of SRF promoted survival of RGCs after high-glucose injury by regulating Fra-1 and Nrf2.
Collapse
|
7
|
Wang Y, Alla V, Goody D, Gupta SK, Spitschak A, Wolkenhauer O, Pützer BM, Engelmann D. Epigenetic factor EPC1 is a master regulator of DNA damage response by interacting with E2F1 to silence death and activate metastasis-related gene signatures. Nucleic Acids Res 2015; 44:117-33. [PMID: 26350215 PMCID: PMC4705687 DOI: 10.1093/nar/gkv885] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 08/24/2015] [Indexed: 12/31/2022] Open
Abstract
Transcription factor E2F1 is a key regulator of cell proliferation and apoptosis. Recently, it has been shown that aberrant E2F1 expression often detectable in advanced cancers contributes essentially to cancer cell propagation and characterizes the aggressive potential of a tumor. Conceptually, this requires a subset of malignant cells capable of evading apoptotic death through anticancer drugs. The molecular mechanism by which the pro-apoptotic activity of E2F1 is antagonized is widely unclear. Here we report a novel function for EPC1 (enhancer of polycomb homolog 1) in DNA damage protection. Depletion of EPC1 potentiates E2F1-mediated apoptosis in response to genotoxic treatment and abolishes tumor cell motility. We found that E2F1 directly binds to the EPC1 promoter and EPC1 vice versa physically interacts with bifunctional E2F1 to modulate its transcriptional activity in a target gene-specific manner. Remarkably, nuclear-colocalized EPC1 activates E2F1 to upregulate the expression of anti-apoptotic survival genes such as BCL-2 or Survivin/BIRC5 and inhibits death-inducing targets. The uncovered cooperativity between EPC1 and E2F1 triggers a metastasis-related gene signature in advanced cancers that predicts poor patient survival. These findings unveil a novel oncogenic function of EPC1 for inducing the switch into tumor progression-relevant gene expression that may help to set novel therapies.
Collapse
Affiliation(s)
- Yajie Wang
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - Vijay Alla
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - Deborah Goody
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - Shailendra K Gupta
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany
| | - Alf Spitschak
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - Olaf Wolkenhauer
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany
| | - Brigitte M Pützer
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - David Engelmann
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
8
|
Abstract
Myocardin (MYOCD) is a potent transcriptional coactivator that functions primarily in cardiac muscle and smooth muscle through direct contacts with serum response factor (SRF) over cis elements known as CArG boxes found near a number of genes encoding for contractile, ion channel, cytoskeletal, and calcium handling proteins. Since its discovery more than 10 years ago, new insights have been obtained regarding the diverse isoforms of MYOCD expressed in cells as well as the regulation of MYOCD expression and activity through transcriptional, post-transcriptional, and post-translational processes. Curiously, there are a number of functions associated with MYOCD that appear to be independent of contractile gene expression and the CArG-SRF nucleoprotein complex. Further, perturbations in MYOCD gene expression are associated with an increasing number of diseases including heart failure, cancer, acute vessel disease, and diabetes. This review summarizes the various biological and pathological processes associated with MYOCD and offers perspectives to several challenges and future directions for further study of this formidable transcriptional coactivator.
Collapse
Affiliation(s)
- Joseph M Miano
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
9
|
Forte A, Rinaldi B, Berrino L, Rossi F, Galderisi U, Cipollaro M. Novel potential targets for prevention of arterial restenosis: insights from the pre-clinical research. Clin Sci (Lond) 2014; 127:615-634. [PMID: 25072327 DOI: 10.1042/cs20140131] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Restenosis is the pathophysiological process occurring in 10-15% of patients submitted to revascularization procedures of coronary, carotid and peripheral arteries. It can be considered as an excessive healing reaction of the vascular wall subjected to arterial/venous bypass graft interposition, endarterectomy or angioplasty. The advent of bare metal stents, drug-eluting stents and of the more recent drug-eluting balloons, have significantly reduced, but not eliminated, the incidence of restenosis, which remains a clinically relevant problem. Biomedical research in pre-clinical animal models of (re)stenosis, despite its limitations, has contributed enormously to the identification of processes involved in restenosis progression, going well beyond the initial dogma of a primarily proliferative disease. Although the main molecular and cellular mechanisms underlying restenosis have been well described, new signalling molecules and cell types controlling the progress of restenosis are continuously being discovered. In particular, microRNAs and vascular progenitor cells have recently been shown to play a key role in this pathophysiological process. In addition, the advanced highly sensitive high-throughput analyses of molecular alterations at the transcriptome, proteome and metabolome levels occurring in injured vessels in animal models of disease and in human specimens serve as a basis to identify novel potential therapeutic targets for restenosis. Molecular analyses are also contributing to the identification of reliable circulating biomarkers predictive of post-interventional restenosis in patients, which could be potentially helpful in the establishment of an early diagnosis and therapy. The present review summarizes the most recent and promising therapeutic strategies identified in experimental models of (re)stenosis and potentially translatable to patients subjected to revascularization procedures.
Collapse
Affiliation(s)
- Amalia Forte
- *Department of Experimental Medicine, Second University of Naples, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Barbara Rinaldi
- *Department of Experimental Medicine, Second University of Naples, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Liberato Berrino
- *Department of Experimental Medicine, Second University of Naples, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Francesco Rossi
- *Department of Experimental Medicine, Second University of Naples, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Umberto Galderisi
- *Department of Experimental Medicine, Second University of Naples, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Marilena Cipollaro
- *Department of Experimental Medicine, Second University of Naples, Via L. De Crecchio 7, 80138 Naples, Italy
| |
Collapse
|
10
|
Kee HJ, Park S, Kang W, Lim KS, Kim JH, Ahn Y, Jeong MH. Piceatannol attenuates cardiac hypertrophy in an animal model through regulation of the expression and binding of the transcription factor GATA binding factor 6. FEBS Lett 2014; 588:1529-36. [PMID: 24662306 DOI: 10.1016/j.febslet.2014.03.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 03/07/2014] [Indexed: 12/01/2022]
Abstract
Piceatannol is found in grapes, passion fruit, and Japanese knotweed. Piceatannol pretreatment suppresses cardiac hypertrophy induced by isoproterenol as assessed by heart weight/body weight ratio, cross-sectional area, and expression of hypertrophic markers. The anti-hypertrophic effect of piceatannol in rat neonatal cardiomyocytes is the same as that in vivo. Piceatannol inhibits lentiviral-GATA6-induced cardiomyocyte hypertrophy. Furthermore, piceatannol reduces the interaction between GATA4 and GATA6 as well as the DNA-binding activity of endogenous GATA6 in the ANP promoter. Our results suggest that piceatannol may be a novel therapeutic agent for the prevention of cardiac hypertrophy.
Collapse
Affiliation(s)
- Hae Jin Kee
- Heart Research Center of Chonnam National University Hospital, Gwangju 501-757, South Korea.
| | - Sangha Park
- Heart Research Center of Chonnam National University Hospital, Gwangju 501-757, South Korea
| | - Wanseok Kang
- Heart Research Center of Chonnam National University Hospital, Gwangju 501-757, South Korea
| | - Kyung Seob Lim
- Heart Research Center of Chonnam National University Hospital, Gwangju 501-757, South Korea
| | - Jung Ha Kim
- Heart Research Center of Chonnam National University Hospital, Gwangju 501-757, South Korea
| | - Youngkeun Ahn
- Heart Research Center of Chonnam National University Hospital, Gwangju 501-757, South Korea
| | - Myung Ho Jeong
- Heart Research Center of Chonnam National University Hospital, Gwangju 501-757, South Korea.
| |
Collapse
|