1
|
Hellal D, El-Khalik SRA, Arakeep HM, Radwan DA, Abo Safia HS, Farrag EAE. Activation of sirtuin 3 and maintenance of mitochondrial homeostasis by artemisinin protect against diclofenac-induced kidney injury in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:5593-5609. [PMID: 39579210 PMCID: PMC11985565 DOI: 10.1007/s00210-024-03620-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 11/07/2024] [Indexed: 11/25/2024]
Abstract
Nonsteroidal anti-inflammatory drug (NSAID)-induced kidney injury is one of the most common causes of renal failure. The exact pathogenesis of NSAID induced kidney injury is not fully known and the treatment is still challenging. Artemisinin (ART) gains more attention by its potent biological activities in addition to its antimalarial effect. In our research, we evaluated the preventive and therapeutic effects of ART in Diclofenac (DIC) induced kidney injury through its effect on mitochondria and regulation of sirtuin 3 (SIRT3). Thirty adult male Sprague Dawley rats were divided into five groups: control, ART, DIC, DIC + ART prophylactic, and DIC followed + ART therapeutic groups. At the end of the study, animals were scarified and the following parameters were evaluated: serum urea and creatinine, renal malondialdehyde (MDA), superoxide dismutase (SOD) and nitrate. SIRT3 was detected by western blotting and real-time PCR. Mitochondrial related markers (PGC-1α, Drp1, and mitochondrial ATP) were detected by immunoassay. Caspase-3 and LC3 II expression in kidney tissues were demonstrated by immune-histochemical staining. The kidney specimens were stained for H&E and PAS special stain. Electron microscopy was done to detect mitochondrial morphology. ART improved renal function test, oxidative stress, SIRT3 level, mitochondrial function, LC3 II expression and decrease caspase-3. Histopathological examination confirmed ART alleviation as determined by light or electron microscopy. ART can modulate biochemical and pathological changes in DIC-induced kidney injury and can be considered a new possible therapeutic approach for DIC-induced kidney injury through its effect on SIR3 and maintenance of mitochondrial homeostasis.
Collapse
Affiliation(s)
- Doaa Hellal
- Clinical Pharmacology Department, Faculty of Medicine, Mansoura University, Mansoura, 31516, Egypt.
| | - Sarah Ragab Abd El-Khalik
- Medical Biochemistry & Molecular Biology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Heba M Arakeep
- Anatomy and Embryology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
- Anatomy and Embryology, Public Health Department, College of Applied Medical Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Doaa A Radwan
- Anatomy and Embryology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Hend S Abo Safia
- Pathology Department, Faculty of Medicine, Ibn Sina Medical University, Amman, Jordan
- Pathology Department, Faculty of Medicine, Tanta, Egypt
| | - Eman A E Farrag
- Clinical Pharmacology Department, Faculty of Medicine, Mansoura University, Mansoura, 31516, Egypt
| |
Collapse
|
2
|
Chatturong U, Chootip K, Martin H, Tournier-Nappey M, Ingkaninan K, Temkitthawon P, Sermsenaphorn S, Somarin T, Konsue A, Gleeson MP, Totoson P, Demougeot C. The new quinazoline derivative (N 2-methyl-N 4-[(thiophen-2-yl)methyl]quinazoline-2,4-diamine) vasodilates isolated mesenteric arteries through endothelium-independent mechanisms and has acute hypotensive effects in Wistar rats. Eur J Pharmacol 2023; 953:175829. [PMID: 37307938 DOI: 10.1016/j.ejphar.2023.175829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/06/2023] [Accepted: 05/31/2023] [Indexed: 06/14/2023]
Abstract
During the screening of new N2,N4-disubstituted quinazoline 2,4-diamines as phosphodiesterase-5 inhibitors and pulmonary artery vasodilators, one N2-methyl-N4-[(thiophen-2-yl)methyl]quinazoline-2,4-diamine (compound 8) presented a greater selectivity for systemic than pulmonary vasculature. The present study aimed to characterize its vasorelaxant and hypotensive effects in Wistar rats. Vasorelaxant effects of compound 8 and underlying mechanisms were evaluated on isolated mesenteric arteries. Acute hypotensive effect was evaluated in anesthetized rats. Additionally, cell viability and cytochrome P450 (CYP) activities were studied in rat isolated hepatocytes. Nifedipine was used as a comparator. Compound 8 induced a strong vasorelaxant effect, similar to nifedipine. This was unaffected by endothelium removal but was decreased by inhibitors of guanylate cyclase (ODQ) and KCa channel (iberiotoxin). Compound 8 enhanced sodium nitroprusside-induced relaxation, but inhibited vasoconstriction evoked by α1-adrenergic receptor activation and extracellular Ca2+ influx via receptor-operated Ca2+ channels. Acute intravenous infusion of compound 8 (0.05 and 0.1 mg/kg) produced hypotension. It showed similar potency to nifedipine for lowering diastolic and mean arterial blood pressure, but less so for the effect on systolic blood pressure. Compound 8 had no effect on hepatocyte viability and CYP activities except at high concentration (10 μM) at which a weak inhibitory effect on CYP1A and 3A was observed. In conclusion, this study identified a N2-methyl-N4-[(thiophen-2-yl)methyl]quinazoline-2,4-diamine with a potent vasodilator effect on resistance vessels, leading to an acute hypotensive effect and a low risk of liver toxicity or drug-drug interactions. These vascular effects were mediated mainly through sGC/cGMP pathway, opening of KCa channels, and inhibition of calcium entry.
Collapse
Affiliation(s)
- Usana Chatturong
- Department of Physiology, Faculty of Medical Science and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, 65000, Thailand; Université de Franche-Comté, PEPITE, Besançon, 25030, France
| | - Krongkarn Chootip
- Department of Physiology, Faculty of Medical Science and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, 65000, Thailand.
| | - Hélène Martin
- Université de Franche-Comté, PEPITE, Besançon, 25030, France
| | | | - Kornkanok Ingkaninan
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, 65000, Thailand
| | - Prapapan Temkitthawon
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, 65000, Thailand
| | - Saharat Sermsenaphorn
- Department of Biomedical Engineering, Faculty of Engineering, King Mongkut's Institute of Technology, Ladkrabang, Bangkok, 10520, Thailand
| | - Thanachon Somarin
- Department of Biomedical Engineering, Faculty of Engineering, King Mongkut's Institute of Technology, Ladkrabang, Bangkok, 10520, Thailand
| | - Adchatawut Konsue
- Department of Biomedical Engineering, Faculty of Engineering, King Mongkut's Institute of Technology, Ladkrabang, Bangkok, 10520, Thailand
| | - M Paul Gleeson
- Department of Biomedical Engineering, Faculty of Engineering, King Mongkut's Institute of Technology, Ladkrabang, Bangkok, 10520, Thailand
| | - Perle Totoson
- Université de Franche-Comté, PEPITE, Besançon, 25030, France
| | | |
Collapse
|
3
|
Mabrouk AA, El-Mezayen NS, Tadros MI, El-Gazayerly ON, El-Refaie WM. Novel mucoadhesive celecoxib-loaded cubosomal sponges: Anticancer potential and regulation of myeloid-derived suppressor cells in oral squamous cell carcinoma. Eur J Pharm Biopharm 2023; 182:62-80. [PMID: 36513316 DOI: 10.1016/j.ejpb.2022.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Oral squamous-cell carcinoma (OSCC) is a widespread health problem. Myeloid-derived suppressor cells (MDSCs) are major tumor microenvironment (TME) population that govern many carcinogenesis aspects by establishing immunosuppressive milieu favoring tumor aggressiveness and treatment resistance. Cyclooxygenase-2 (COX-2) regulates MDSCs activity, hence, COX-2-selective inhibition by celecoxib (CXB) showed good anticancer effect at relatively high doses with possible subsequent cardiovascular complications. Therefore, targeted CXB delivery to MDSCs may represent a promising OSCC treatment strategy. Novel mucoadhesive-cubosomal buccal sponges were prepared for MDSCs targeting and were evaluated for their in-vitro quality attributes, ex-vivo mucoadhesion using buccal chicken-mucosa. Optimally-selected formulation showed considerable uptake by CD33+/11b+MDSCs in human OSCC cell-line (SCC-4) when quantitatively analyzed by flow-cytometry and examined using confocal-laser microscope. Optimum formulations loaded with low CXB doses (12 mg) were promoted to in-vivo studies via local application, using 4-nitroquinoline-1-oxide-induced OSCC in rats, and compared to their corresponding CXB gels. SP16 revealed the highest ability to decrease MDSC activation, recruitment and TME-immunosuppression in the isolated tumors. Consequently, SP16 exerted the greatest capacity to reduce histologic tumor grade, the OSCC-specific serum tumor markers levels, cancer hallmarks and stemness markers. CXB-loaded cubosomal sponges preferentially target MDSCs with noticeable anticancer potential and may exemplify novel mucoadhesive nanocarriers for OSCC treatment.
Collapse
Affiliation(s)
- Aya A Mabrouk
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Egypt.
| | - Nesrine S El-Mezayen
- Department of Pharmacology, Faculty of Pharmacy, Pharos University in Alexandria, Egypt.
| | - Mina I Tadros
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Egypt; Department of Pharmaceutics, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Egypt.
| | - Omaima N El-Gazayerly
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Egypt.
| | - Wessam M El-Refaie
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Egypt.
| |
Collapse
|
4
|
Karmakar AK, Hasan MS, Sreemani A, Das Jayanta A, Hasan MM, Tithe NA, Biswas P. A review on the current progress of layered double hydroxide application in biomedical sectors. THE EUROPEAN PHYSICAL JOURNAL PLUS 2022; 137:801. [DOI: 10.1140/epjp/s13360-022-02993-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/22/2022] [Indexed: 01/06/2025]
|
5
|
Li X, Zhao W, Peng L, Li Y, Nie S, Yu H, Qin Y, Zhang H. Elevated serum extracellular vesicle arginase 1 in type 2 diabetes mellitus: a cross-sectional study in middle-aged and elderly population. BMC Endocr Disord 2022; 22:62. [PMID: 35277141 PMCID: PMC8917686 DOI: 10.1186/s12902-022-00982-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 03/01/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Serum extracellular vesicle (EV)-derived arginase 1 (ARG 1) plays a critical role in diabetes-associated endothelial dysfunction. This study was performed to determine the levels of serum EV-derived ARG 1 in T2DM and non-T2DM participants and to examine the association of serum EV-derived ARG 1 with T2DM incidence. METHODS We performed a cross-sectional study in 103 Chinese, including 73 T2DM patients and 30 non-T2DM. Serum EVs were prepared via ultracentrifugation. Serum EV-derived ARG 1 levels were measured by enzyme-linked immunosorbent assay. The correlations between serum EV-derived ARG 1 and clinical variables were analyzed. The association of serum EV-derived ARG 1 levels with T2DM was determined by multivariate logistic regression analysis. Interaction subgroup analysis was used to evaluate the interaction of the relevant baselines on the association between serum EV-derived ARG 1 levels and T2DM. RESULTS Serum EV-derived ARG 1 levels were significantly higher in T2DM patients compared with non-T2DM patients (p < 0.001). Correlation analysis revealed that serum EV-derived ARG 1 levels were positively associated with fasting plasma glucose (FPG) (r = 0.316, p = 0.001) and glycated hemoglobin (HbA1c) (r = 0.322, p = 0.001). Serum EV-derived ARG 1 levels were significantly associated with T2DM, especially in the subgroup of T2DM for more than 10 years (OR 1.651, 95% CI = 1.066-2.557; P value, 0.025), after adjusting for confounding factors. CONCLUSIONS Elevated concentration of serum EV-derived ARG 1 is closely associated with T2DM.
Collapse
Affiliation(s)
- Xinwei Li
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, No. 2 Anzhen Road, Beijing, 100029, China
| | - Wen Zhao
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, No. 2 Anzhen Road, Beijing, 100029, China
| | - Lu Peng
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, No. 2 Anzhen Road, Beijing, 100029, China
| | - Yu Li
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, No. 2 Anzhen Road, Beijing, 100029, China
| | - Shaoping Nie
- Department of Emergency, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Huahui Yu
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, No. 2 Anzhen Road, Beijing, 100029, China
| | - Yanwen Qin
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, No. 2 Anzhen Road, Beijing, 100029, China
| | - Huina Zhang
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, No. 2 Anzhen Road, Beijing, 100029, China.
| |
Collapse
|
6
|
Mangoni AA, Woodman RJ, Piga M, Cauli A, Fedele AL, Gremese E, Erre GL. Patterns of Anti-Inflammatory and Immunomodulating Drug Usage and Microvascular Endothelial Function in Rheumatoid Arthritis. Front Cardiovasc Med 2021; 8:681327. [PMID: 34350216 PMCID: PMC8326370 DOI: 10.3389/fcvm.2021.681327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/22/2021] [Indexed: 01/19/2023] Open
Abstract
Objectives: Specific anti-inflammatory and/or immunomodulating drugs (AIDs) can influence endothelial function which is often impaired in patients with rheumatoid arthritis (RA). We sought to determine whether overall patterns of AID usage are similarly associated with endothelial function. Methods: The reactive hyperaemia index (RHI), a marker of microvascular endothelial function, was measured in 868 RA patients reporting their intake of seven AIDs known to affect endothelial function. Latent class analysis (LCA) was performed to characterise patterns of AID usage. Models for 2-6 classes were compared using the AIC and BIC statistics and Lo-Mendell-Rubin likelihood ratio tests. Associations between the classes and RHI were adjusted for age, gender, body mass index, diabetes, HDL-cholesterol, LDL-cholesterol, family history of ischaemic heart disease, smoking status, RA duration, DAS28 score, steroid dose, existing hypertension, and C-reactive protein. Results: LCA identified five distinct AID usage classes: Class 1, generally low medication usage; Class 2, using either sulfasalazine or non-tumour necrosis factor (TNF) inhibitors; Class 3, methotrexate users; Class 4, TNF-inhibitor users; and Class 5, hydroxychloroquine users. The geometric mean for the RHI for subjects in classes 1 to 5 was 1.92, 1.81, 1.94, 2.10, and 2.07, respectively, with subjects in classes 4 and 5 having better endothelial function than subjects in class 2 (p = 0.003 for each). The glucocorticoid dosage did not influence the classes formed or the association between the classes and the RHI in sensitivity analyses. Conclusion: There were five broad patterns (classes) of AID usage in RA patients. The RHI was relatively lower in users of either sulfasalazine or non-TNF inhibitors. TNF inhibitors or hydroxychloroquine may counteract the negative effects of RA on endothelial function.
Collapse
Affiliation(s)
- Arduino A Mangoni
- Discipline of Clinical Pharmacology, Flinders Medical Centre, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Richard J Woodman
- Centre of Epidemiology and Biostatistics, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Matteo Piga
- Dipartimento di Scienze Mediche e Sanità Pubblica, Università degli Studi di Cagliari, Cagliari, Italy.,Unità Operativa Complessa (UOC) di Reumatologia, Policlinico Universitario Azienda Ospedaliero-Universitaria (AOU) Cagliari, Cagliari, Italy
| | - Alberto Cauli
- Dipartimento di Scienze Mediche e Sanità Pubblica, Università degli Studi di Cagliari, Cagliari, Italy.,Unità Operativa Complessa (UOC) di Reumatologia, Policlinico Universitario Azienda Ospedaliero-Universitaria (AOU) Cagliari, Cagliari, Italy
| | - Anna Laura Fedele
- Fondazione Policlinico Gemelli-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Università Cattolica del Sacro Cuore, Rome, Italy
| | - Elisa Gremese
- Fondazione Policlinico Gemelli-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gian Luca Erre
- Dipartimento di Scienze Mediche, Chirurgiche e Sperimentali, Università degli Studi di Sassari, Sassari, Italy.,Dipartimento di Specialità Mediche, Unità Operativa Complessa (UOC) Reumatologia, Azienda Ospedaliero-Universitaria di Sassari, Sassari, Italy
| | | |
Collapse
|
7
|
Mitchell JA, Kirkby NS, Ahmetaj-Shala B, Armstrong PC, Crescente M, Ferreira P, Lopes Pires ME, Vaja R, Warner TD. Cyclooxygenases and the cardiovascular system. Pharmacol Ther 2021; 217:107624. [DOI: 10.1016/j.pharmthera.2020.107624] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023]
|
8
|
Madzia A, Agrawal C, Jarit P, Petterson S, Plancher K, Ortiz R. Sustained Acoustic Medicine Combined with A Diclofenac Ultrasound Coupling Patch for the Rapid Symptomatic Relief of Knee Osteoarthritis: Multi-Site Clinical Efficacy Study. Open Orthop J 2020; 14:176-185. [PMID: 33408796 PMCID: PMC7784557 DOI: 10.2174/1874325002014010176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/07/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Sustained Acoustic Medicine (SAM) is an emerging, non-invasive, non-narcotic, home-use ultrasound therapy for the daily treatment of joint pain. The aim of this multi-site clinical study was to examine the efficacy of long-duration continuous ultrasound combined with a 1% diclofenac ultrasound gel patch in treating pain and improving function in patients with knee osteoarthritis. METHODS The Consolidated Standards of Reporting Trials (CONSORT) were followed. Thirty-two (32) patients (18-males, 14-females) 54 years of average age with moderate to severe knee pain and radiographically confirmed knee osteoarthritis (Kellgren-Lawrence (KL) grade II/III) were enrolled for treatment with the SAM device and diclofenac patch applied daily to the treated knee. SAM ultrasound (3 MHz, 0.132 W/cm2, 1.3 W) and 6 grams of 1% diclofenac were applied with a wearable device for 4 hours daily for 1 week, delivering 18,720 Joules of ultrasound energy per treatment. The primary outcome was the daily change in pain intensity using a numeric rating scale (NRS 0-10), which was assessed prior to intervention (baseline, day 1), before and after each daily treatment, and after 1 week of daily treatment (day 7). Rapid responders were classified as those patients exhibiting greater than a 1-point reduction in pain following the first treatment. Change in Western Ontario McMaster Osteoarthritis Questionnaire (WOMAC) score from baseline to day 7 was the secondary functional outcome measure. Additionally, a series of daily usability and user experience questions related to devising ease of use, functionality, safety, and effectiveness, were collected. Data were analyzed using t-tests and repeated measure ANOVAs. RESULTS The study had a 94% retention rate, and there were no adverse events or study-related complaints across 224 unique treatment sessions. Rapid responders included 75% of the study population. Patients exhibited a significant mean NRS pain reduction over the 7-day study of 2.06-points (50%) for all subjects (n=32, p<0.001) and 2.96-points (70%) for rapid responders (n=24, p<0.001). The WOMAC functional score significantly improved by 351 points for all subjects (n=32, p<0.001), and 510 points for rapid responders (n=24, p<0.001). Over 95% of patients found the device safe, effective and easy to use, and would continue treatment for their knee OA symptoms. CONCLUSION Sustained Acoustic Medicine combined with 1% topical diclofenac rapidly reduced pain and improved function in patients with moderate to severe osteoarthritis-related knee pain. The clinical findings suggest that this treatment approach may be used as a conservative, non-invasive treatment option for patients with knee osteoarthritis. Additional research is warranted on non-weight bearing joints of the musculoskeletal system as well as different topical drugs that could benefit from improved localized delivery.Clinical Trial Registry Number: (NCT04391842).
Collapse
Affiliation(s)
- Alex Madzia
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45219, USA
| | - Chirag Agrawal
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45219, USA
| | - Paddy Jarit
- Sport and Orthopaedic Physical Therapy, Fairfield, CT 06824, USA
| | | | - Kevin Plancher
- Albert Einstein College of Medicine, Bronx, NY, New York, USA
- Weill Cornell Medical College, New York, NY 13053, USA
- Plancher Orthopaedics & Sports Medicine, New York, NY 13053, USA
| | - Ralph Ortiz
- Medical Pain Consultants, Dryden, NY 13053, USA
| |
Collapse
|
9
|
Acacetin improves endothelial dysfunction and aortic fibrosis in insulin-resistant SHR rats by estrogen receptors. Mol Biol Rep 2020; 47:6899-6918. [PMID: 32892299 PMCID: PMC7561596 DOI: 10.1007/s11033-020-05746-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/28/2020] [Indexed: 12/20/2022]
Abstract
The aim of the work was to investigate the effects of acacetin on endothelial dysfunction and aortic fibrosis in insulin-resistant SHR rats and explore its mechanism. Seven-week-old male spontaneously hypertensive rats (SHR) were selected to establish a rat model of hypertension with insulin resistance induced by 10% fructose. The nuclear factor kappa B p65 (NF-κB p65) and Collagen I were observed by Immunohistochemistry. Immunofluorescence was used to observe estrogen receptor-alpha (ERα), estrogen receptor-beta (ERβ), and G protein-coupled receptor 30 (GPR30). Western blotting was used to detect interleukin (IL-1β), Arginase 2 (ARG2), Nostrin, endothelial nitric oxide synthase (eNOS), TGF-β, Smad3, ERK pathway proteins such as p-c-Raf, p-MEK1/2, p-ERK, ERK, p-P90RSK and p-MSK1. We found that acacetin did have an improvement on endothelial dysfunction and fibrosis. Meanwhile, it was also found to have a significant effect on the level of estrogen in this model by accident. Then, the experiment of uterine weight gain in mice confirmed that acacetin had a certain estrogen-like effect in vivo and played its role through the estrogen receptors pathway. In vitro experience HUVEC cells were stimulated with 30 mM/L glucose and 100 mM/L NaCl for 24 h to establish the endothelial cell injury model. HUVEC cells were treated with 1 μM/L estrogen receptors antagonist (ICI 182780) for 30 min before administration. Cell experiments showed that acacetin could reduce the apoptosis of HUVEC cells, the levels of inflammatory cytokines and the expression of TGF-β, Collagen I and Smad3 in endothelial cell injury model. After treatment with ICI 182780, the improvement of acacetin was significantly reversed. The results showed that acacetin relieved endothelial dysfunction and reduced the aortic fibrosis in insulin-resistant SHR rats by reducing the release of inflammatory factors and improving vasodilatory function through estrogen signaling pathway.
Collapse
|
10
|
Masterson J, Kluge B, Burdette A, Sr GL. Sustained acoustic medicine; sonophoresis for nonsteroidal anti-inflammatory drug delivery in arthritis. Ther Deliv 2020; 11:363-372. [PMID: 32657251 PMCID: PMC7373207 DOI: 10.4155/tde-2020-0009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/21/2020] [Indexed: 02/07/2023] Open
Abstract
Background: Arthritis pain is primarily managed by nonsteroidal anti-inflammatory drugs (NSAIDs), such as diclofenac. Topical diclofenac gel is limited in efficacy due to its limited penetration through the skin. This study investigates the use of a multihour, wearable, localized, sonophoresis transdermal drug delivery device for the penetration enhancement of diclofenac through the skin. Materials & methods: A commercially available, sustained acoustic medicine (sam®) ultrasound device providing 4 h, 1.3 W, 132 mW/cm2, 3 MHz ultrasound treatment was evaluated for increasing the drug delivery of diclofenac gel through a human skin model and was compared with standard of care topical control diclofenac gel. Results: Sonophoresis of the diclofenac gel for 4 h increases diclofenac delivery by 3.8× (p < 0.01), and penetration by 32% (p < 0.01). Conclusion: Sustained acoustic medicine can be used as a transdermal drug-delivery device for nonsteroidal anti-inflammatory drugs.
Collapse
Affiliation(s)
- Jack Masterson
- Next Apprenticeship Program, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Brett Kluge
- Next Apprenticeship Program, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Aaron Burdette
- Next Apprenticeship Program, University of Cincinnati, Cincinnati, OH 45221, USA
| | | |
Collapse
|
11
|
Li XF, Chen X, Bao J, Xu L, Zhang L, Huang C, Meng XM, Li J. PTEN negatively regulates the expression of pro-inflammatory cytokines and chemokines of fibroblast-like synoviocytes in adjuvant-induced arthritis. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 47:3687-3696. [PMID: 31842626 DOI: 10.1080/21691401.2019.1661849] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Rheumatoid arthritis (RA) is characterized by tumor-like expansion of the synovium and the subsequent destruction of adjacent articular cartilage and bone. The latest studies proved phosphatase and tension homolog deleted on chromosome 10 (PTEN) might contribute to the surviving, proliferation and pro-inflammatory cytokines in RA. The purpose of this study was to explore the function and underlying mechanisms of PTEN in RA pro-inflammatory cytokines and chemokines of fibroblast-like synoviocytes (FLSs). Increased level of PTEN was observed in adjuvant-induced arthritis (AIA) FLSs in comparison to normal rats. Increased concentrations of pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β), chemokines (CCL-2 and CCL-3), VCAM-1 and VEGF-α expression were observed in FLSs with PTEN inhibitor bpv or PTEN-RNAi. Moreover, co-incubation FLSs with overexpression vector with PTEN-GV141 reduced the expression of pro-inflammatory cytokines, chemokines, VCAM-1 and VEGF-α in AIA. Interestingly, we also found DNA methylation could regulate PTEN expression and activation of AKT signaling was with a change of PTEN. Altogether, our findings in the present study suggested that PTEN might play a pivotal role during pro-inflammatory cytokines and chemokines of FLSs through activation of AKT signaling pathway. In addition, PTEN expression may be regulated by DNA methylation in the pathogenesis of AIA.
Collapse
Affiliation(s)
- Xiao-Feng Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Xin Chen
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Jing Bao
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,Hematology Department, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Le Xu
- Departments of Stomatology, Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lei Zhang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Cheng Huang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Xiao-Ming Meng
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Jun Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| |
Collapse
|
12
|
Łuczak A, Madej M, Kasprzyk A, Doroszko A. Role of the eNOS Uncoupling and the Nitric Oxide Metabolic Pathway in the Pathogenesis of Autoimmune Rheumatic Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1417981. [PMID: 32351667 PMCID: PMC7174952 DOI: 10.1155/2020/1417981] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 03/31/2020] [Indexed: 12/15/2022]
Abstract
Atherosclerosis and its clinical complications constitute the major healthcare problems of the world population. Due to the central role of endothelium throughout the atherosclerotic disease process, endothelial dysfunction is regarded as a common mechanism for various cardiovascular (CV) disorders. It is well established that patients with rheumatic autoimmune diseases are characterized by significantly increased prevalence of cardiovascular morbidity and mortality compared with the general population. The current European guidelines on cardiovascular disease (CVD) prevention in clinical practice recommend to use a 1,5-factor multiplier for CV risk in rheumatoid arthritis as well as in other autoimmune inflammatory diseases. However, mechanisms of accelerated atherosclerosis in these diseases, especially in the absence of traditional risk factors, still remain unclear. Oxidative stress plays the major role in the endothelial dysfunction and recently is strongly attributed to endothelial NO synthase dysfunction (eNOS uncoupling). Converted to a superoxide-producing enzyme, uncoupled eNOS not only leads to reduction of the nitric oxide (NO) generation but also potentiates the preexisting oxidative stress, which contributes significantly to atherogenesis. However, to date, there are no systemic analyses on the role of eNOS uncoupling in the excess CV mortality linked with autoimmune rheumatic diseases. The current review paper addresses this issue.
Collapse
Affiliation(s)
- Anna Łuczak
- Department of Rheumatology, Wroclaw Medical University, Poland
| | - Marta Madej
- Department of Rheumatology, Wroclaw Medical University, Poland
| | - Agata Kasprzyk
- Department of Rheumatology, Wroclaw Medical University, Poland
| | - Adrian Doroszko
- Department of Internal Medicine, Hypertension and Clinical Oncology, Wroclaw Medical University, Poland
| |
Collapse
|
13
|
Verhoeven F, Prati C, Demougeot C, Wendling D. Cardiovascular risk in psoriatic arthritis, a narrative review. Joint Bone Spine 2020; 87:413-418. [PMID: 31958573 DOI: 10.1016/j.jbspin.2019.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/03/2019] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Psoriatic arthritis (PsA) is a chronic inflammatory rheumatism characterized for a long time by a high degree of cardiovascular risk. Chronic inflammation is one of the mechanisms that explain this cardiovascular excess of risk through direct and indirect pathways. In recent years, epidemiological data have changed somewhat since the increasing use of bio-drugs that are effective in reducing this inflammation. The purpose of this review is to assess the current state of cardiovascular morbidity and mortality in PsA and thus to assess the cardiovascular risk in case of PsA. METHOD We conducted a literature review using Pubmed and Medline databases with the following keywords "Psoriatic Arthritis" AND "cardiovascular" including articles from the last three years. RESULTS It appears that in case of PsA, there is an increased prevalence of high blood pressure, diabetes, obesity and dyslipidemia, and therefore of metabolic syndrome. Insulin resistance is closely linked to PsA. On the other hand, the data are more contrasted for active smoking. There is also arterial inflammation specific to PsA. Finally, at the therapeutic level, the impact of NSAIDs remains controversial, while methotrexate and bio-drugs are beneficial at the cardiovascular level. CONCLUSION PsA is characterized by an increase in cardiovascular morbidity in relation with insulin resistance. Current treatments seem to improve this risk with a decrease in cardiovascular mortality in comparison with patients with plaque psoriasis but this requires confirmation in larger prospective studies.
Collapse
Affiliation(s)
- Frank Verhoeven
- Service de rhumatologie, CHRU de Besanço, 25030 Besançon cedex, France; EA 4267 « PEPITE », université de Bourgogne Franche-Comté, 25000 Besançon, France.
| | - Clément Prati
- Service de rhumatologie, CHRU de Besanço, 25030 Besançon cedex, France; EA 4267 « PEPITE », université de Bourgogne Franche-Comté, 25000 Besançon, France
| | - Céline Demougeot
- EA 4267 « PEPITE », université de Bourgogne Franche-Comté, 25000 Besançon, France
| | - Daniel Wendling
- Service de rhumatologie, CHRU de Besanço, 25030 Besançon cedex, France; EA 4266 «EPILAB », université de Bourgogne Franche-Comté, 25000 Besançon,France
| |
Collapse
|
14
|
Mokotedi L, Millen AM, Mogane C, Gomes M, Woodiwiss AJ, Norton GR, Michel FS. Associations of inflammatory markers and vascular cell adhesion molecule-1 with endothelial dysfunction in collagen-induced arthritis. Eur J Pharmacol 2019; 865:172786. [DOI: 10.1016/j.ejphar.2019.172786] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 10/30/2019] [Accepted: 11/07/2019] [Indexed: 01/01/2023]
|
15
|
Ricciotti E, Castro C, Tang SY, Briggs WTE, West JA, Malik D, Rhoades SD, Meng H, Li X, Lahens NF, Sparks JA, Karlson EW, Weljie AM, Griffin JL, FitzGerald GA. Cyclooxygenase-2, Asymmetric Dimethylarginine, and the Cardiovascular Hazard From Nonsteroidal Anti-Inflammatory Drugs. Circulation 2019; 138:2367-2378. [PMID: 29930022 DOI: 10.1161/circulationaha.118.033540] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Large-scale, placebo-controlled trials established that nonsteroidal anti-inflammatory drugs confer a cardiovascular hazard: this has been attributed to depression of cardioprotective products of cyclooxygenase (COX)-2, especially prostacyclin. An alternative mechanism by which nonsteroidal anti-inflammatory drugs might constrain cardioprotection is by enhancing the formation of methylarginines in the kidney that would limit the action of nitric oxide throughout the vasculature. METHODS Targeted and untargeted metabolomics were used to investigate the effect of COX-2 deletion or inhibition in mice and in osteoarthritis patients exposed to nonsteroidal anti-inflammatory drugs on the l-arginine/nitric oxide pathway. RESULTS Analysis of the plasma and renal metabolome was performed in postnatal tamoxifen-inducible Cox-2 knockout mice, which exhibit normal renal function and blood pressure. This revealed no changes in arginine and methylarginines compared with their wild-type controls. Moreover, the expression of genes in the l-arginine/nitric oxide pathway was not altered in the renal medulla or cortex of tamoxifen inducible Cox-2 knockout mice. Therapeutic concentrations of the selective COX-2 inhibitors, rofecoxib, celecoxib, and parecoxib, none of which altered basal blood pressure or renal function as reflected by plasma creatinine, failed to elevate plasma arginine and methylarginines in mice. Finally, plasma arginine or methylarginines were not altered in osteoarthritis patients with confirmed exposure to nonsteroidal anti-inflammatory drugs that inhibit COX-1 and COX-2. By contrast, plasma asymmetrical dimethylarginine was increased in mice infused with angiotensin II sufficient to elevate blood pressure and impair renal function. Four weeks later, blood pressure, plasma creatinine, and asymmetrical dimethylarginine were restored to normal levels. The increase in asymmetrical dimethylarginine in response to infusion with angiotensin II in celecoxib-treated mice was also related to transient impairment of renal function. CONCLUSIONS Plasma methylarginines are not altered by COX-2 deletion or inhibition but rather are elevated coincident with renal compromise.
Collapse
Affiliation(s)
- Emanuela Ricciotti
- Department of Systems Pharmacology and Translational Therapeutics and the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, Philadelphia, PA (E.R., S.Y.T., D.M., S.D.R., H.M., X.L., N.F.L., A.M.W., G.A.F.)
| | - Cecilia Castro
- Department of Biochemistry, Cambridge Systems Biology Centre, University of Cambridge, United Kingdom (C.C., W.T.E.B., J.A.W., J.L.G.)
| | - Soon Yew Tang
- Department of Systems Pharmacology and Translational Therapeutics and the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, Philadelphia, PA (E.R., S.Y.T., D.M., S.D.R., H.M., X.L., N.F.L., A.M.W., G.A.F.)
| | - William T E Briggs
- Department of Biochemistry, Cambridge Systems Biology Centre, University of Cambridge, United Kingdom (C.C., W.T.E.B., J.A.W., J.L.G.)
| | - James A West
- Department of Biochemistry, Cambridge Systems Biology Centre, University of Cambridge, United Kingdom (C.C., W.T.E.B., J.A.W., J.L.G.)
| | - Dania Malik
- Department of Systems Pharmacology and Translational Therapeutics and the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, Philadelphia, PA (E.R., S.Y.T., D.M., S.D.R., H.M., X.L., N.F.L., A.M.W., G.A.F.)
| | - Seth D Rhoades
- Department of Systems Pharmacology and Translational Therapeutics and the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, Philadelphia, PA (E.R., S.Y.T., D.M., S.D.R., H.M., X.L., N.F.L., A.M.W., G.A.F.)
| | - Hu Meng
- Department of Systems Pharmacology and Translational Therapeutics and the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, Philadelphia, PA (E.R., S.Y.T., D.M., S.D.R., H.M., X.L., N.F.L., A.M.W., G.A.F.)
| | - Xuanwen Li
- Department of Systems Pharmacology and Translational Therapeutics and the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, Philadelphia, PA (E.R., S.Y.T., D.M., S.D.R., H.M., X.L., N.F.L., A.M.W., G.A.F.)
| | - Nicholas F Lahens
- Department of Systems Pharmacology and Translational Therapeutics and the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, Philadelphia, PA (E.R., S.Y.T., D.M., S.D.R., H.M., X.L., N.F.L., A.M.W., G.A.F.)
| | - Jeffrey A Sparks
- Department of Medicine, Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (J.A.S., E.W.K.)
| | - Elizabeth W Karlson
- Department of Medicine, Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (J.A.S., E.W.K.)
| | - Aalim M Weljie
- Department of Systems Pharmacology and Translational Therapeutics and the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, Philadelphia, PA (E.R., S.Y.T., D.M., S.D.R., H.M., X.L., N.F.L., A.M.W., G.A.F.)
| | - Julian L Griffin
- Department of Biochemistry, Cambridge Systems Biology Centre, University of Cambridge, United Kingdom (C.C., W.T.E.B., J.A.W., J.L.G.)
| | - Garret A FitzGerald
- Department of Systems Pharmacology and Translational Therapeutics and the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, Philadelphia, PA (E.R., S.Y.T., D.M., S.D.R., H.M., X.L., N.F.L., A.M.W., G.A.F.)
| |
Collapse
|
16
|
Bordy R, Totoson P, Prati C, Marie C, Wendling D, Demougeot C. Microvascular endothelial dysfunction in rheumatoid arthritis. Nat Rev Rheumatol 2019; 14:404-420. [PMID: 29855620 DOI: 10.1038/s41584-018-0022-8] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The systemic autoimmune disease rheumatoid arthritis (RA) is characterized by increased cardiovascular mortality and morbidity and is an independent cardiovascular risk factor. Cardiovascular diseases (CVDs) result from accelerated atherogenesis, which is a consequence of endothelial dysfunction in the early stages of the disease. Endothelial dysfunction is a functional and reversible alteration of endothelial cells and leads to a shift in the properties of the endothelium towards reduced vasodilation, a pro-inflammatory state, and proliferative and prothrombotic properties. In RA, endothelial dysfunction can occur in the large vessels (such as the conduit arteries) and in the small vessels of the microvasculature, which supply oxygen and nutrients to the tissue and control inflammation, repair and fluid exchange with the surrounding tissues. Growing evidence suggests that microvascular endothelial dysfunction contributes to CVD development, as it precedes and predicts the development of conduit artery atherosclerosis and associated risk factors. As such, numerous studies have investigated microvascular endothelial dysfunction in RA, including its link with disease activity, disease duration and inflammation, the effect of treatments on endothelial function, and possible circulating biomarkers of microvascular endothelial dysfunction. Such findings could have important implications in the cardiovascular risk management of patients with RA.
Collapse
Affiliation(s)
- Romain Bordy
- PEPITE EA4267, FHU INCREASE, Universitaire Bourgogne Franche-Comté, UFR Santé, F-25000, Besançon, France
| | - Perle Totoson
- PEPITE EA4267, FHU INCREASE, Universitaire Bourgogne Franche-Comté, UFR Santé, F-25000, Besançon, France
| | - Clément Prati
- PEPITE EA4267, FHU INCREASE, Universitaire Bourgogne Franche-Comté, UFR Santé, F-25000, Besançon, France.,Service de Rhumatologie, Centre Hospitalier Régional et Universitaire de Besançon, F-25000, Besançon, France
| | - Christine Marie
- INSERM UMR1093 CAPS, Universitaire Bourgogne Franche-Comté, UFR des Sciences de Santé, F-21000, Dijon, France
| | - Daniel Wendling
- Service de Rhumatologie, Centre Hospitalier Régional et Universitaire de Besançon, F-25000, Besançon, France.,EA 4266, Universitaire Bourgogne Franche-Comté, UFR Santé, F-25000, Besançon, France
| | - Céline Demougeot
- PEPITE EA4267, FHU INCREASE, Universitaire Bourgogne Franche-Comté, UFR Santé, F-25000, Besançon, France.
| |
Collapse
|
17
|
Vardenafil and cilostazol can improve vascular reactivity in rats with diabetes mellitus and rheumatoid arthritis co-morbidity. Life Sci 2019; 229:67-79. [PMID: 31085245 DOI: 10.1016/j.lfs.2019.05.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/27/2019] [Accepted: 05/10/2019] [Indexed: 12/17/2022]
Abstract
Endothelial dysfunction and vascular reactivity defects secondary to metabolic and immunological disorders carry risk of serious cardiovascular complications. Here, the effects of the phosphodiesterase (PDE) inhibitors vardenafil and cilostazol were examined against rheumatoid arthritis (RA)/diabetes mellitus (DM)-co-morbidity-induced endothelial dysfunction and vascular reactivity defects. After setting of RA/DM-co-morbidity model, rats were divided into a normal control group, an RA/DM-co-morbidity group, and two treatment groups receiving oral vardenafil (10 mg/kg/day) and cilostazol (30 mg/kg/day) for 21 days after RA/DM-co-morbidity induction. Aorta was isolated for biochemical estimations of the pro-inflammatory vasoconstrictor molecules angiotensin-II (Ang-II) and endothelin-1 (ET-1), the adhesion molecules P-selectin and vascular cell adhesion molecule-1 (VCAM-1), the energy sensor adenosine-5'-monophosphate-activated protein kinase (AMPK), and the vasodilator anti-inflammatory molecule vasoactive intestinal peptide (VIP) using enzyme-linked immunosorbent assay (ELISA) and western blot analysis. Immunohistochemical estimations of endothelial nitric oxide synthase (eNOS) and matrix metalloproteinase (MMP)-2 were performed coupled with histopathological examination using routine hematoxylin and eosin (H&E) and special Masson trichrome staining. The in vitro study was conducted using aortic strips where cumulative concentration response curves were done for the endothelium-dependent relaxing factor acetylcholine and the endothelium-independent relaxing factor sodium nitroprusside after submaximal contraction with phenylephrine. Vardenafil and cilostazol significantly improved endothelial integrity biomarkers in vivo supported with histopathological findings in addition to improved vasorelaxation in vitro. Apart from their known PDE inhibition, up-regulation of vascular AMPK and eNOS coupled with down-regulation of Ang-II, ET-1, P-selectin, VCAM-1 and MMP-2 may explain vardenafil and cilostazol protective effect against RA/DM-co-morbidity-induced endothelial dysfunction and vascular reactivity defects.
Collapse
|
18
|
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are among the most widely used therapeutic class in clinical medicine. These are sub-divided based on their selectivity for inhibition of cyclooxygenase (COX) isoforms (COX-1 and COX-2) into: (1) non-selective (ns-NSAIDs), and (2) selective NSAIDs (s-NSAIDs) with preferential inhibition of COX-2 isozyme. The safety and pathophysiology of NSAIDs on the renal and cardiovascular systems have continued to evolve over the years following short- and long-term treatment in both preclinical models and humans. This review summarizes major learnings on cardiac and renal complications associated with pharmaceutical inhibition of COX-1 and COX-2 with focus on preclinical to clinical translatability of cardio-renal data.
Collapse
Affiliation(s)
- Zaher A Radi
- Drug Safety Research & Development, Pfizer Research, Development & Medical, Cambridge, USA
| | - K Nasir Khan
- Drug Safety Research & Development, Pfizer Research, Development & Medical, Cambridge, USA
| |
Collapse
|
19
|
Bordy R, Quirié A, Marie C, Wendling D, Totoson P, Demougeot C. Vascular Arginase Is a Relevant Target to Improve Cerebrovascular Endothelial Dysfunction in Rheumatoid Arthritis: Evidence from the Model of Adjuvant-Induced Arthritis. Transl Stroke Res 2019; 11:4-15. [DOI: 10.1007/s12975-019-00699-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/06/2019] [Accepted: 03/07/2019] [Indexed: 12/12/2022]
|
20
|
Verhoeven F, Prati C, Totoson P, Bordy R, Wendling D, Demougeot C. Structural efficacy of NSAIDs, COX-2 inhibitor and glucocorticoid compared with TNFα blocker: a study in adjuvant-induced arthritis rats. Rheumatology (Oxford) 2019; 58:1099-1103. [DOI: 10.1093/rheumatology/key444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 12/03/2018] [Indexed: 12/12/2022] Open
Affiliation(s)
- Frank Verhoeven
- EA 4267 ≪PEPITE≫, UFR Santé, Franche-Comté University, 19 rue Ambroise Paré, bâtiment S 25030 BESANCON cedex, France
- 2Department of Rheumatology, CHRU de Besançon, 3 boulevard Fleming 25000 BESANCON, France
| | - Clément Prati
- EA 4267 ≪PEPITE≫, UFR Santé, Franche-Comté University, 19 rue Ambroise Paré, bâtiment S 25030 BESANCON cedex, France
- 2Department of Rheumatology, CHRU de Besançon, 3 boulevard Fleming 25000 BESANCON, France
| | - Perle Totoson
- EA 4267 ≪PEPITE≫, UFR Santé, Franche-Comté University, 19 rue Ambroise Paré, bâtiment S 25030 BESANCON cedex, France
| | - Romain Bordy
- EA 4267 ≪PEPITE≫, UFR Santé, Franche-Comté University, 19 rue Ambroise Paré, bâtiment S 25030 BESANCON cedex, France
| | - Daniel Wendling
- 2Department of Rheumatology, CHRU de Besançon, 3 boulevard Fleming 25000 BESANCON, France
- EA 4266 ≪EPILAB≫, UFR Santé, Franche-Comté University, 19 rue Ambroise Paré, bâtiment S 25030 BESANCON cedex, France
| | - Céline Demougeot
- EA 4267 ≪PEPITE≫, UFR Santé, Franche-Comté University, 19 rue Ambroise Paré, bâtiment S 25030 BESANCON cedex, France
| |
Collapse
|
21
|
Oyama JI, Node K. Rheumatoid Arthritis and Vascular Failure - Rheumatoid Arthritis Is a Risk Factor for Cardiovascular Disease. Intern Med 2019; 58:1373-1374. [PMID: 31092770 PMCID: PMC6548926 DOI: 10.2169/internalmedicine.2182-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Jun-Ichi Oyama
- Department of Circulation Regulation, Saga University, Japan
| | - Koichi Node
- Department of Cardiovascular Medicine, Saga University, Japan
| |
Collapse
|
22
|
Nirbhavane P, Sharma G, Singh B, Khuller GK, Goni VG, Patil AB, Katare OP. Preclinical Explorative Assessment of Celecoxib-Based Biocompatible Lipidic Nanocarriers for the Management of CFA-Induced Rheumatoid Arthritis in Wistar Rats. AAPS PharmSciTech 2018; 19:3187-3198. [PMID: 30143947 DOI: 10.1208/s12249-018-1148-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 08/08/2018] [Indexed: 12/18/2022] Open
Abstract
Celecoxib (CXB), a COX-2 inhibitor, is primarily indicated for long-term treatment of rheumatoid arthritis (RA). The effective therapeutic efficacy of CXB on RA via oral administration shows adverse systemic complications, and therefore, local application of CXB has been recommended. The aim of the present study was to develop and characterize solid lipid nanoparticles (SLNs) with enhanced skin permeation potential of CXB. The particle size, polydispersity index (PDI), and percentage drug entrapment (PDE) of the developed SLNs (CXB-SLNs) were found to be 240 nm, < 0.3, and ~ 86% respectively. The developed SLNs exhibited sustained release up to 70% at the end of 48 h. Drug permeation was found to be 45% for SLN gel and 31% for conventional gel. The dermatokinetic studies also confirmed enhanced permeation of CXB in the epidermis and dermis and revealed superiority of the developed SLN gel vis-à-vis the conventional gel. Further, in the CFA-induced arthritis rat model, % arthritis index (AI) of the CXB-SLN gel formulation was found to be very less (18.54%) as compared to untreated (187.34%) and conventional gel-treated (91.61%) animals. In conclusion, the current study can provide a suitable alternative for the development of an effective topical formulation of CXB in lipid nanocarriers.
Collapse
|
23
|
Pedard M, Quirié A, Totoson P, Verhoeven F, Garnier P, Tessier A, Demougeot C, Marie C. Vascular brain-derived neurotrophic factor pathway in rats with adjuvant-induced arthritis: Effect of anti-rheumatic drugs. Atherosclerosis 2018; 274:77-85. [PMID: 29753231 DOI: 10.1016/j.atherosclerosis.2018.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 04/11/2018] [Accepted: 05/01/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND AIMS In rheumatoid arthritis, the control of both disease activity and standard cardiovascular (CV) risk factors is expected to attenuate the increased CV risk. Evidence that brain-derived neurotrophic factor (BDNF) plays a role in vascular biology led us to investigate the vascular BDNF pathway in arthritis rats as well as the interaction between endothelial nitric oxide (NO) and BDNF production. METHODS The aortic BDNF pathway was studied in rats with adjuvant-induced arthritis, (AIA) using Western blot and immunohistochemical analysis. Control of arthritis score was achieved by administration (for 3 weeks) of an equipotent dosage of etanercept, prednisolone, methotrexate, celecoxib or diclofenac. Aortas were exposed to an NO donor or an NO synthase inhibitor and vasoreactivity experiments were performed using LM22A-4 as a TrkB agonist. RESULTS Vascular BDNF and full length tropomyosin-related kinase B receptor (TrkB-FL) were higher in AIA than in control rats. These changes coincided with decreased endothelial immunoreactivity in BDNF and pTrkBtyr816 and were disconnected from arthritis score. Among anti-rheumatic drugs, only prednisolone and methotrexate prevented AIA-induced vascular BDNF loss. The effect of AIA on aortic BDNF levels was reversed by an NO donor and reproduced by an NOS inhibitor. Finally, LM22A-4 induced both NO-dependent vasodilation and phosphorylation of endothelial NO synthase at serine 1177. CONCLUSIONS Our study identified changes in the BDNF/TrkB pathway as a disease activity-independent component of AIA-associated changes in endothelial phenotype. It provides new perspectives in the understanding and management of the high CV risk reported in rheumatoid arthritis.
Collapse
Affiliation(s)
- Martin Pedard
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences de Santé, F-21000, Dijon, France; Service de Neurologie, CHRU, Dijon, France
| | - Aurore Quirié
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences de Santé, F-21000, Dijon, France
| | - Perle Totoson
- EA4267 PEPITE, FHU INCREASE, Univ. Bourgogne Franche-Comté, F-25030, Besançon, France
| | - Frank Verhoeven
- EA4267 PEPITE, FHU INCREASE, Univ. Bourgogne Franche-Comté, F-25030, Besançon, France
| | - Philippe Garnier
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences de Santé, F-21000, Dijon, France
| | - Anne Tessier
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences de Santé, F-21000, Dijon, France
| | - Céline Demougeot
- EA4267 PEPITE, FHU INCREASE, Univ. Bourgogne Franche-Comté, F-25030, Besançon, France
| | - Christine Marie
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences de Santé, F-21000, Dijon, France.
| |
Collapse
|