1
|
Zhu M, Qu J, Deng Q. Identification of potential inhibitors against Staphylococcus aureus shikimate dehydrogenase through virtual screening and susceptibility test. J Enzyme Inhib Med Chem 2024; 39:2301768. [PMID: 38234148 PMCID: PMC10798293 DOI: 10.1080/14756366.2024.2301768] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/20/2023] [Indexed: 01/19/2024] Open
Abstract
Staphylococcus aureus shikimate dehydrogenase (SaSDH) plays a crucial role in the growth of Staphylococcus aureus (S. aureus), but absent in mammals and therefore a potential target for antibacterial drugs to treat drug-resistant S. aureus infection. In this study, a 3D model of SaSDH was constructed by homology modelling and inhibitors of SaSDH were screened through virtual screening. (-)-Gallocatechin gallate and rhodiosin were identified as inhibitors with Kis of 2.47 μM and 73.38 μM, respectively. Molecular docking and isothermal titration calorimetry showed that both inhibitors interact with SaSDH with a KD of 44.65 μM for (-)-gallocatechin gallate and 16.45 μM for rhodiosin. Both inhibitors had antibacterial activity, showing MICs of 50 μg/mL for (-)-gallocatechin gallate and 250 μg/mL for rhodiosin against S. aureus. The current findings have the potential for identification of drugs to treat S. aureus infections by targeting SaSDH.
Collapse
Affiliation(s)
- Mengfan Zhu
- Department of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Jinfeng Qu
- Department of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Qi Deng
- Department of Pharmacy, Fujian Medical University, Fuzhou, China
| |
Collapse
|
2
|
Yang X, Dai H, Deng R, Zhang Z, Quan Y, Giri M, Shen J. Association between tea consumption and prevention of coronary artery disease: A systematic review and dose-response meta-analysis. Front Nutr 2022; 9:1021405. [PMID: 36505265 PMCID: PMC9729734 DOI: 10.3389/fnut.2022.1021405] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
Background Evidence from previous studies reporting on the relationship between tea consumption and its preventive effect on coronary artery disease (CAD) has conflicting outcomes. With the accumulation of new clinical evidence, we conducted this meta-analysis to assess tea consumption and CAD risk. Methods We searched PubMed, EMBASE, Cochrane Library, and Medline databases for published observational studies from their inception to May 2022. A random-effects model was used to calculate risk ratios with 95% confidence intervals. We also conducted linear and non-linear dose-response meta-analyses to analyze the association. We regarded that one cup equals 237 mL. Subgroup analyses and univariate meta-regression were conducted to explore the source of heterogeneity. Results A total of 35 studies, including 24 on green tea and 11 on black tea consumption, were included in this meta-analysis. An inverse association for the risk of CAD was observed for black tea (RR: 0.85; 95% CI: 0.76, 0.96) and green tea (RR: 0.93; 95% CI: 0.88, 0.99). The dose-response meta-analysis showed that drinking less than four cups of black tea daily may effectively prevent CAD, while more than 4-6 cups/d will promote disease risk. Furthermore, the dose-response relationship between green tea consumption and the prevention of CAD showed that the risk of CAD gradually decreased as green tea consumption increased. We also demonstrated that the more cups of green tea consumed, the lower the risk of CAD. In the subgroup analysis by continent, a significant negative correlation between CAD risk and green tea consumption was observed in the Asian population (RR: 0.92; 95% CI: 0.85, 0.99) but not in the western population [North America (RR: 0.97; 95% CI: 0.92, 1.03), Europe/Oceana (RR: 0.91; 95% CI: 0.78, 1.07)]. Conclusions Higher green tea consumption was associated with reduced CAD risk, but drinking more than 4-6 cups of black tea per day may increase the risk. This study offers new insight into the relationship between tea consumption and its preventive effect on CAD. However, further large prospective cohort studies are needed to validate these findings. Systematic review registration The protocol of this systematic review was registered in the International Prospective Register of Systematic Reviews (PROSPERO) system (CRD42022348069).
Collapse
Affiliation(s)
- Xin Yang
- The First College of Clinical Medicine, Chongqing Medical University, Chongqing, China
| | - Haiyun Dai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ruihang Deng
- The First College of Clinical Medicine, Chongqing Medical University, Chongqing, China
| | - Ziang Zhang
- The First College of Clinical Medicine, Chongqing Medical University, Chongqing, China
| | - Yiwen Quan
- The First College of Clinical Medicine, Chongqing Medical University, Chongqing, China
| | - Mohan Giri
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian Shen
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China,*Correspondence: Jian Shen
| |
Collapse
|
3
|
Green tea polyphenols in cardiometabolic health: A critical appraisal on phytogenomics towards personalized green tea. PHARMANUTRITION 2022. [DOI: 10.1016/j.phanu.2022.100296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
4
|
AL-HATIM RR, AL-ALNABI DIB, AL-YOUNIS ZK, AL-SHAWI SG, SINGH K, ABDELBASSET WK, MUSTAFA YF. Extraction of tea polyphenols based on orthogonal test method and its application in food preservation. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.70321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Maluchenko NV, Feofanov AV, Studitsky VM. PARP-1-Associated Pathological Processes: Inhibition by Natural Polyphenols. Int J Mol Sci 2021; 22:11441. [PMID: 34768872 PMCID: PMC8584120 DOI: 10.3390/ijms222111441] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 02/06/2023] Open
Abstract
Poly (ADP-ribose) polymerase-1 (PARP-1) is a nuclear enzyme involved in processes of cell cycle regulation, DNA repair, transcription, and replication. Hyperactivity of PARP-1 induced by changes in cell homeostasis promotes development of chronic pathological processes leading to cell death during various metabolic disorders, cardiovascular and neurodegenerative diseases. In contrast, tumor growth is accompanied by a moderate activation of PARP-1 that supports survival of tumor cells due to enhancement of DNA lesion repair and resistance to therapy by DNA damaging agents. That is why PARP inhibitors (PARPi) are promising agents for the therapy of tumor and metabolic diseases. A PARPi family is rapidly growing partly due to natural polyphenols discovered among plant secondary metabolites. This review describes mechanisms of PARP-1 participation in the development of various pathologies, analyzes multiple PARP-dependent pathways of cell degeneration and death, and discusses representative plant polyphenols, which can inhibit PARP-1 directly or suppress unwanted PARP-dependent cellular processes.
Collapse
Affiliation(s)
- Natalya V. Maluchenko
- Biology Faculty, Lomonosov Moscow State University, Lenin Hills 1/12, 119234 Moscow, Russia; (A.V.F.); (V.M.S.)
| | - Alexey V. Feofanov
- Biology Faculty, Lomonosov Moscow State University, Lenin Hills 1/12, 119234 Moscow, Russia; (A.V.F.); (V.M.S.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Mikluko-Maklaya Str., 16/10, 117997 Moscow, Russia
| | - Vasily M. Studitsky
- Biology Faculty, Lomonosov Moscow State University, Lenin Hills 1/12, 119234 Moscow, Russia; (A.V.F.); (V.M.S.)
- Fox Chase Cancer Center, Cottman Avenue 333, Philadelphia, PA 19111, USA
| |
Collapse
|
6
|
Aoi W, Iwasa M, Marunaka Y. Metabolic functions of flavonoids: From human epidemiology to molecular mechanism. Neuropeptides 2021; 88:102163. [PMID: 34098453 DOI: 10.1016/j.npep.2021.102163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/11/2021] [Accepted: 05/19/2021] [Indexed: 12/12/2022]
Abstract
Dietary flavonoid intake is associated with the regulation of nutrient metabolism in the living body. Observational and cohort studies have reported a negative association between flavonoid intake and the risk of metabolic and cardiovascular diseases. Several intervention trials in humans have also supported the benefits of dietary flavonoids. In experimental studies using animal models, a daily diet rich in typical flavonoids such as catechins, anthocyanin, isoflavone, and quercetin was shown to improve whole-body energy expenditure, mitochondrial activity, and glucose tolerance. For some flavonoids, molecular targets for the metabolic modulations have been suggested. Although the effect of flavonoids on neurons has been unclear, several flavonoids have been shown to regulate thermogenesis and feeding behavior through modulating autonomic and central nervous systems. Based on epidemiological and experimental studies, this review summarizes the evidence on the metabolic benefits of flavonoids and their potential mechanism of action in metabolic regulation.
Collapse
Affiliation(s)
- Wataru Aoi
- Laboratory of Nutrition Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan.
| | - Masayo Iwasa
- Laboratory of Nutrition Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Yoshinori Marunaka
- Medical Research Institute, Kyoto Industrial Health Association, Kyoto 604-8472, Japan; Research Center for Drug Discovery and Pharmaceutical Development Science, Research Organization of Science and Technology, Ritsumeikan University, Kusatsu 525-8577, Japan; Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; International Research Center for Food Nutrition and Safety, College of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
7
|
Park DH, Park JY, Kang KS, Hwang GS. Neuroprotective Effect of Gallocatechin Gallate on Glutamate-Induced Oxidative Stress in Hippocampal HT22 Cells. Molecules 2021; 26:molecules26051387. [PMID: 33806640 PMCID: PMC7961752 DOI: 10.3390/molecules26051387] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress leads to protein degeneration or mitochondrial dysfunction, causing neuronal cell death. Glutamate is a neurotransmitter that nerve cells use to send signals. However, the excess accumulation of glutamate can cause excitotoxicity in the central nervous system. In this study, we deciphered the molecular mechanism of catechin-mediated neuroprotective effect on glutamate-induced oxidative stress in mouse hippocampal neuronal HT22 cells. Cellular antioxidant activity was determined using the 1,1-diphenyl-picryl hydrazyl (DPPH) assay and 2',7'-dichlorodihydrofluorescein diacetate (DCFDA) staining. Furthermore, the levels of intracellular calcium (Ca2+) as well as nuclear condensation and protein expression related to neuronal damage were assessed. All five catechins (epigallocatechin gallate, gallocatechin gallate (GCG), gallocatechin, epicatechin gallate, and epicatechin) showed strong antioxidant effects. Among them, GCG exhibited the highest neuroprotective effect against glutamate excitotoxicity and was used for further mechanistic studies. The glutamate-induced increase in intracellular Ca2+ was reduced after GCG treatment. Moreover, GCG reduced nuclear condensation and the phosphorylation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinases (JNK) involved in cell death. The neuroprotective effect of GCG against glutamate-induced oxidative stress in HT22 cells was attributed to the reduction in intracellular free radicals and Ca2+ influx and also the inhibition of phosphorylation of ERK and JNK. Furthermore, the antioxidant effect of GCG was found to be likely due to the inhibition of phosphorylation of ERK and JNK that led to the effective suppression of neurocytotoxicity caused by glutamate in HT22 cells.
Collapse
Affiliation(s)
- Do Hwi Park
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea;
| | - Jun Yeon Park
- Department of Food Science and Biotechnology, Kyonggi University, Suwon 16227, Korea;
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea;
- Correspondence: (K.S.K.); (G.S.H.); Tel.: +82-31-750-5402 (K.S.K.); +82-31-750-5421 (G.S.H.); Fax: +82-31-750-6028 (K.S.K.); +82-31-750-7029 (G.S.H.)
| | - Gwi Seo Hwang
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea;
- Correspondence: (K.S.K.); (G.S.H.); Tel.: +82-31-750-5402 (K.S.K.); +82-31-750-5421 (G.S.H.); Fax: +82-31-750-6028 (K.S.K.); +82-31-750-7029 (G.S.H.)
| |
Collapse
|
8
|
Samanta S. Potential Bioactive Components and Health Promotional Benefits of Tea (Camellia sinensis). J Am Coll Nutr 2020; 41:65-93. [DOI: 10.1080/07315724.2020.1827082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Saptadip Samanta
- Department of Physiology, Midnapore College, Midnapore, West Bengal, India
| |
Collapse
|
9
|
Yang HH, Zhou H, Zhu WZ, Chen CL, Chen GC, Yu LG, Qin LQ. Green Tea Consumption May Be Associated with Cardiovascular Disease Risk and Nonalcoholic Fatty Liver Disease in Type 2 Diabetics: A Cross-Sectional Study in Southeast China. J Med Food 2020; 23:1120-1127. [PMID: 32833552 DOI: 10.1089/jmf.2020.4688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Dietary factors play a crucial role in the management of type 2 diabetes mellitus (T2DM) by reducing cardiovascular disease (CVD) risk. Therefore, we aimed to examine the associations between habitual green tea consumption and risk factors of CVD among T2DM patients. A total of 1013 patients with T2DM were included in a community-based cross-sectional study. Data on dietary habits, including tea consumption, were collected using a food frequency questionnaire. A multivariable logistic regression model was used to analyze the associations. In men, as compared with nongreen tea drinkers, odds ratios (ORs) (95% confidence interval [CI]) of nonalcoholic fatty liver disease (NAFLD) were 2.06 (95% CI, 1.20-3.55) for those with green tea consumption of once per day and 2.45 (95% CI, 1.31-4.58) for more than or equal to twice per day (P-trend = .004); ORs (95% CI) of general obesity were 2.19 (95% CI, 1.02-4.68) and 2.70 (95% CI, 1.18-6.21), respectively (P-trend = .021); whereas no such association was found in women. Sensitivity analysis according to self-awareness of their T2DM status revealed that the positive association between green tea consumption and general obesity was not reliable. Higher intake of green tea was still positively associated with NAFLD, but it only persisted in participants aged ≥52 years or the lower dietary quality subgroup in further analyses. Our findings suggest that tea consumption was associated with an increased risk of NAFLD among male T2DM patients aged 52 years or older, and those with lower dietary quality, which needs to be confirmed in future prospective studies.
Collapse
Affiliation(s)
- Huan-Huan Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Hui Zhou
- Suzhou Industrial Park Centers for Disease Control and Prevention, Suzhou, China
| | - Wan-Zhan Zhu
- Suzhou Industrial Park Centers for Disease Control and Prevention, Suzhou, China
| | - Cai-Long Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Guo-Chong Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China.,Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Lu-Gang Yu
- Suzhou Industrial Park Centers for Disease Control and Prevention, Suzhou, China
| | - Li-Qiang Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| |
Collapse
|
10
|
Hao Z, Gong L, Shen Q, Wang H, Feng S, Wang X, Cai Y, Chen J. Effectiveness of concomitant use of green tea and polyethylene glycol in bowel preparation for colonoscopy: a randomized controlled study. BMC Gastroenterol 2020; 20:150. [PMID: 32404056 PMCID: PMC7218831 DOI: 10.1186/s12876-020-01220-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 03/12/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Polyethylene glycol solution (PEG) is widely used for bowel preparation prior to colonoscopies. However, patients often exhibited adverse events as nausea, vomit and distention due to its uncomfortable tastes and potential side affects. This study aimed to evaluate the effectiveness and safety of concomitant use of green tea (GT) with PEG in bowel preparation prior to colonoscopy. METHODS This was a prospective, randomized controlled study. It was conducted at an outpatient setting of colorectal surgery in a tertiary hospital. Patients aged 18 through 80 who were scheduled to undergo colonoscopy between August 2015 and February 2016 were randomly assigned into two groups, admitting either 2 L-PEG solutions with 1 L GT liquids or 2 L-PEG solutions only for bowel preparation. Admitted doses of PEG solutions, taste evaluation, adverse reactions (nausea and vomiting, distention and abdominal pain) were investigated by questionnaires. The bowel cleanliness of each patient was evaluated according to the Aronchick indicators. RESULTS A total of 116 patients were enrolled in this study (PEG+GT 59, PEG 57). Full compliances were achieved in 93.2% patients of group PEG+GT and 59.6% of group PEG (p < 0.001). Mean Aronchick scale between two groups were 2.0 ± 0.9 versus 2.2 ± 0.7 respectively (PEG+GT vs PEG, p = 0.296). Rates of adverse events as nausea and vomiting, abdominal pain in bowel preparation were significantly different between two groups (55.9% vs 77.2%, p = 0.015 and 13.6% vs 33.3%, p = 0.012). Patients in group PEG+GT who have probabilities to receive repeating colonoscopy had a higher willingness to accept PEG+GT again for bowel preparation, compared with PEG group (94.9% vs 57.9%, p < 0.001). CONCLUSIONS Concomitant use of green tea and polyethylene glycol may effectively reduce incidence of adverse events, increase compliances, with comparable bowel cleanliness in bowel preparation. TRIAL REGISTRATION This trial was retrospectively registered on Feb 1st, 2019 (ChiCTR1900021178).
Collapse
Affiliation(s)
- Zong Hao
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| | - Lifeng Gong
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| | - Qiang Shen
- Department of Endoscopic Center, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| | - Huipeng Wang
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| | - Shaowen Feng
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| | - Xin Wang
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| | - Yuankun Cai
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China.
| | - Jun Chen
- Department of Colorectal Surgery, Peking University International Hospital, Beijing, 102206, China.
| |
Collapse
|
11
|
Miao Y, Sun X, Gao G, Jia X, Wu H, Chen Y, Huang L. Evaluation of (-)-epigallocatechin-3-gallate (EGCG)-induced cytotoxicity on astrocytes: A potential mechanism of calcium overloading-induced mitochondrial dysfunction. Toxicol In Vitro 2019; 61:104592. [DOI: 10.1016/j.tiv.2019.104592] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 01/09/2023]
|
12
|
Long R, Drawbaugh ML, Davis CM, Goodlett CR, Williams JR, Roper RJ. Usage of and attitudes about green tea extract and Epigallocathechin-3-gallate (EGCG) as a therapy in individuals with Down syndrome. Complement Ther Med 2019; 45:234-241. [PMID: 31331567 PMCID: PMC6929204 DOI: 10.1016/j.ctim.2019.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 02/02/2023] Open
Abstract
OBJECTIVE Usage of and views concerning alternative therapies in the DS community are not well documented. Some positive effects of green tea extracts (GTE) containing Epigallocathechin-3-gallate (EGCG) have been reported in individuals with DS and DS mouse models, but minimal improvements or detrimental effects of pure EGCG treatment have been reported in DS mouse models. Given the uncertainty about the effectiveness of these supplements, the goal of this study was to determine the relative prevalence of and attitudes about GTE/EGCG treatments among DS caregivers. METHODS An anonymous survey about attitudes and usage of GTE/EGCG in individuals with DS was completed by caregivers of these individuals. RESULTS GTE/EGCG treatment was provided by 18% of responding caregivers who were mostly younger, highly educated, and utilized scientific sources and other parents to influence their decision to use GTE/EGCG. Individuals with DS who received GTE/EGCG were characterized as less severely disabled. Most caregivers who did not give GTE/EGCG reported concerns about potential side effects and lack of effectiveness. Few caregivers consulted with medical providers about GTE/EGCG usage. CONCLUSIONS These results demonstrate a need for communication between caregivers, medical providers, and scientists about potential benefits and risks for adverse effects of GTE, EGCG, and other nutritional supplements in individuals with DS.
Collapse
Affiliation(s)
- Rachel Long
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Montana L Drawbaugh
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Charlene M Davis
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Charles R Goodlett
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Jane R Williams
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Randall J Roper
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States.
| |
Collapse
|
13
|
Cao SY, Zhao CN, Gan RY, Xu XY, Wei XL, Corke H, Atanasov AG, Li HB. Effects and Mechanisms of Tea and Its Bioactive Compounds for the Prevention and Treatment of Cardiovascular Diseases: An Updated Review. Antioxidants (Basel) 2019; 8:E166. [PMID: 31174371 PMCID: PMC6617169 DOI: 10.3390/antiox8060166] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular diseases (CVDs) are critical global public health issues with high morbidity and mortality. Epidemiological studies have revealed that regular tea drinking is inversely associated with the risk of CVDs. Additionally, substantial in vitro and in vivo experimental studies have shown that tea and its bioactive compounds are effective in protecting against CVDs. The relevant mechanisms include reducing blood lipid, alleviating ischemia/reperfusion injury, inhibiting oxidative stress, enhancing endothelial function, attenuating inflammation, and protecting cardiomyocyte function. Moreover, some clinical trials also proved the protective role of tea against CVDs. In order to provide a better understanding of the relationship between tea and CVDs, this review summarizes the effects of tea and its bioactive compounds against CVDs and discusses potential mechanisms of action based on evidence from epidemiological, experimental, and clinical studies.
Collapse
Affiliation(s)
- Shi-Yu Cao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Cai-Ning Zhao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Ren-You Gan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xiao-Yu Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Xin-Lin Wei
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Harold Corke
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Atanas G Atanasov
- The Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, 05-552 Magdalenka, Poland.
- Department of Pharmacognosy, University of Vienna, 1090 Vienna, Austria.
- Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev str., 1113 Sofia, Bulgaria.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| |
Collapse
|
14
|
Abstract
Tea is the most widely used beverage worldwide. Japanese and Chinese people have been drinking tea for centuries and in Asia, it is the most consumed beverage besides water. It is a rich source of pharmacologically active molecules which have been implicated to provide diverse health benefits. The three major forms of tea are green, black and oolong tea based on the degree of fermentation. The composition of tea differs with the species, season, leaves, climate, and horticultural practices. Polyphenols are the major active compounds present in teas. The catechins are the major polyphenolic compounds in green tea, which include epigallocatechin-3-gallate (EGCG), epigallocatechin, epicatechin-3-gallate and epicatechin, gallocatechins and gallocatechin gallate. EGCG is the predominant and most studied catechin in green tea. There are numerous evidences from cell culture and animal studies that tea polyphenols have beneficial effects against several pathological diseases including cancer, diabetes and cardiovascular diseases. The polyphenolic compounds present in black tea include theaflavins and thearubigins. In this review article, we will summarize recent studies documenting the role of tea polyphenols in the prevention of cancer, diabetes, cardiovascular and neurological diseases.
Collapse
Affiliation(s)
- Naghma Khan
- 4385 Medical Sciences Center, 1300 University Ave, Dept. of Dermatology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Hasan Mukhtar
- 4385 Medical Sciences Center, 1300 University Ave, Dept. of Dermatology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
15
|
Khan N, Mukhtar H. Tea Polyphenols in Promotion of Human Health. Nutrients 2018; 11:nu11010039. [PMID: 30585192 PMCID: PMC6356332 DOI: 10.3390/nu11010039] [Citation(s) in RCA: 387] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/16/2018] [Accepted: 12/21/2018] [Indexed: 02/07/2023] Open
Abstract
Tea is the most widely used beverage worldwide. Japanese and Chinese people have been drinking tea for centuries and in Asia, it is the most consumed beverage besides water. It is a rich source of pharmacologically active molecules which have been implicated to provide diverse health benefits. The three major forms of tea are green, black and oolong tea based on the degree of fermentation. The composition of tea differs with the species, season, leaves, climate, and horticultural practices. Polyphenols are the major active compounds present in teas. The catechins are the major polyphenolic compounds in green tea, which include epigallocatechin-3-gallate (EGCG), epigallocatechin, epicatechin-3-gallate and epicatechin, gallocatechins and gallocatechin gallate. EGCG is the predominant and most studied catechin in green tea. There are numerous evidences from cell culture and animal studies that tea polyphenols have beneficial effects against several pathological diseases including cancer, diabetes and cardiovascular diseases. The polyphenolic compounds present in black tea include theaflavins and thearubigins. In this review article, we will summarize recent studies documenting the role of tea polyphenols in the prevention of cancer, diabetes, cardiovascular and neurological diseases.
Collapse
Affiliation(s)
- Naghma Khan
- 4385 Medical Sciences Center, 1300 University Ave, Dept. of Dermatology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Hasan Mukhtar
- 4385 Medical Sciences Center, 1300 University Ave, Dept. of Dermatology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|