1
|
Gan P, Wu H, Zhu Y, Shu Y, Wei Y. A new look at angiogenesis inhibition of geniposide in experimental arthritis by blocking angiopoietin-2 exocytosis. Phytother Res 2024; 38:1245-1261. [PMID: 38185885 DOI: 10.1002/ptr.8094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024]
Abstract
Angiogenesis is a key player in the pathogenesis of rheumatoid arthritis. Exocytosis from Weibel-Palade bodies is a prerequisite for angiopoietin-2 (Ang-2) to activate endothelial cells and initiate angiogenesis. Geniposide (GE) was previously reported to exert anti-angiogenic effects. The aim of this study was to shed light on whether and how GE regulates Ang-2 exocytosis. A rat model of adjuvant arthritis (AA) was established to evaluate the therapeutic effect of GE (60 and 120 mg/kg) especially in synovial angiogenesis. In addition, the Matrigel plug assay was used to detect the effect of GE (120 and 240 mg/kg) on angiogenesis in AA mice. In vitro, sphingosine-1-phosphate (S1P)-stimulated human umbilical vein endothelial cells (HUVECs) were used to investigate the effect and mechanism of GE on Ang-2 exocytosis. It was found that GE improved the symptoms of AA rats and inhibited angiogenesis in AA, which may be related to the down-regulation of S1P receptors 1, 3 (S1PR1, S1PR3), phospholipase Cβ3 (PLCβ3), inositol 1,4,5-trisphosphate receptor (IP3 R) and Ang-2 expression. The results of in vitro experiments showed that S1P induced rapid release of Ang-2 from HUVECs with multigranular exocytosis. Suppression of the S1P/S1PR1/3/PLCβ3/Ca2+ signal axis by the S1PR1/3 inhibitor VPC23019 and the IP3 R inhibitor 2-APB blocked Ang-2 exocytosis, accompanied by diminished angiogenesis in vitro. GE dose-dependently weakened S1P/S1PR1/3/PLCβ3/Ca2+ signal axis activation, Ang-2 exocytosis and angiogenesis in HUVECs (p < 0.05, p < 0.01). Overall, these findings revealed that angiogenesis inhibition of GE was partly attributed to the intervention of Ang-2 exocytosis through negatively modulating the S1P/S1PR1/3/PLCβ3/Ca2+ signal axis, providing a novel strategy for rheumatoid arthritis anti-angiogenic therapy.
Collapse
Affiliation(s)
- Peirong Gan
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Science and Technology Department of Anhui Province, Hefei, China
| | - Hong Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Science and Technology Department of Anhui Province, Hefei, China
| | - Yulong Zhu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Science and Technology Department of Anhui Province, Hefei, China
| | - Yin Shu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Science and Technology Department of Anhui Province, Hefei, China
| | - Yi Wei
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Science and Technology Department of Anhui Province, Hefei, China
| |
Collapse
|
2
|
Xi W, Zhao X, Wang B, Zhu Y, Li H. A Review of the Mechanism of Bailing for Diabetic Nephropathy Based on ChatGPT and Network Pharmacology. Int J Clin Pract 2024; 2024. [DOI: 10.1155/2024/1432594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/20/2024] [Indexed: 01/04/2025] Open
Abstract
Diabetes nephropathy (DN) is increasingly recognized as a critical complication in individuals with diabetes and a significant contributor to end‐stage renal disease (ESRD). Bailing capsules, which contain fermented cordyceps mycelium, are commonly utilized in treating various kidney disorders, including DN in clinical practice. This review aims to comprehensively detail the pharmacologically active components of Bailing, its mechanisms of action, and its clinical usage. By employing network pharmacology, we delve into the possible pathways Bailing impacts DN treatment. Current studies suggest that Bailing’s efficacy in DN primarily involves mechanisms related to lipid and atherosclerosis, cancer pathways, and small‐cell lung cancer. Key active ingredients in Bailing that contribute to its therapeutic effects include arachidonic acid, linalyl acetate, β‐sitosterol, and CLR. Furthermore, for literature selection in this review, we integrated GPT‐4 with bias analysis coprocessing. This evaluation provides a foundational understanding and direction for future research into the use of Bailing as a novel treatment for DN.
Collapse
|
3
|
Lorey MB, Öörni K, Kovanen PT. Modified Lipoproteins Induce Arterial Wall Inflammation During Atherogenesis. Front Cardiovasc Med 2022; 9:841545. [PMID: 35310965 PMCID: PMC8927694 DOI: 10.3389/fcvm.2022.841545] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/26/2022] [Indexed: 12/15/2022] Open
Abstract
Circulating apolipoprotein B-containing lipoproteins, notably the low-density lipoproteins, enter the inner layer of the arterial wall, the intima, where a fraction of them is retained and modified by proteases, lipases, and oxidizing agents and enzymes. The modified lipoproteins and various modification products, such as fatty acids, ceramides, lysophospholipids, and oxidized lipids induce inflammatory reactions in the macrophages and the covering endothelial cells, initiating an increased leukocyte diapedesis. Lipolysis of the lipoproteins also induces the formation of cholesterol crystals with strong proinflammatory properties. Modified and aggregated lipoproteins, cholesterol crystals, and lipoproteins isolated from human atherosclerotic lesions, all can activate macrophages and thereby induce the secretion of proinflammatory cytokines, chemokines, and enzymes. The extent of lipoprotein retention, modification, and aggregation have been shown to depend largely on differences in the composition of the circulating lipoprotein particles. These properties can be modified by pharmacological means, and thereby provide opportunities for clinical interventions regarding the prevention and treatment of atherosclerotic vascular diseases.
Collapse
Affiliation(s)
- Martina B. Lorey
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland
- Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Katariina Öörni
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland
- Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- *Correspondence: Katariina Öörni
| | - Petri T. Kovanen
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland
| |
Collapse
|
4
|
The Role of P-Selectin in COVID-19 Coagulopathy: An Updated Review. Int J Mol Sci 2021; 22:ijms22157942. [PMID: 34360707 PMCID: PMC8348106 DOI: 10.3390/ijms22157942] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 01/14/2023] Open
Abstract
In severe COVID-19, which is characterized by blood clots and neutrophil-platelet aggregates in the circulating blood and different tissues, an increased incidence of cardiovascular complications and venous thrombotic events has been reported. The inflammatory storm that characterizes severe infections may act as a driver capable of profoundly disrupting the complex interplay between platelets, endothelium, and leukocytes, thus contributing to the definition of COVID-19-associated coagulopathy. In this frame, P-selectin represents a key molecule expressed on endothelial cells and on activated platelets, and contributes to endothelial activation, leucocyte recruitment, rolling, and tissue migration. Briefly, we describe the current state of knowledge about P-selectin involvement in COVID-19 pathogenesis, its possible use as a severity marker and as a target for host-directed therapeutic intervention.
Collapse
|