1
|
Maekawa K, Nakamura E, Saito Y, Matsuura Y, Gi T, Nishihira K, Oguri N, Moriguchi-Goto S, Sato Y, Hatakeyama K, Shibata Y, Komohara Y, Kaikita K, Asada Y, Yamashita A. Inflammatory stimuli and hypoxia on atherosclerotic plaque thrombogenicity: Linking macrophage tissue factor and glycolysis. PLoS One 2025; 20:e0316474. [PMID: 40036261 PMCID: PMC11878908 DOI: 10.1371/journal.pone.0316474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 12/11/2024] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND The thrombogenic potential of cells within atherosclerotic plaques is critical in the formation of a coronary thrombus. We hypothesized that a combination of inflammatory and hypoxic stimuli enhances tissue factor (TF) expression and glycolysis in cells in atherosclerotic plaques and contributes to coronary thrombus formation. AIMS To identify TF- and hexokinase (HK)-II-expressing cells in coronary atherosclerotic plaques and thrombi and determine the effects of combined inflammatory and hypoxic stimuli and glycolysis on TF expression in peripheral blood mononuclear cell-derived macrophages. METHODS We immunohistochemically assessed TF and HK-II expression in stable (n = 20) and unstable (n = 24) human coronary plaques and aspirated acute coronary thrombi (n = 15). The macrophages were stimulated with tumor necrosis factor-α, interferon-γ, or interleukin-10 under normoxic (21% O2) or hypoxic (1% O2) conditions, and TF expression was assessed. RESULTS TF and HK-II expression were increased in unstable plaques compared with stable plaques. The number of CD68- and HK-II-immunopositive cells positively correlated with the number of TF-immunopositive cells. TF- and HK-II-expressing macrophages, which expressed M1- or M2-like markers, were involved in platelet-fibrin thrombus formation in ruptured plaques. The combination of inflammatory and hypoxic conditions additively augmented TF expression and procoagulant activity in the cultured macrophages. Inhibition of glycolysis with 2-deoxyglucose reduced the augmented TF expression and procoagulant activity. CONCLUSION Combined inflammatory and hypoxic conditions in atherosclerotic plaques may markedly enhance procoagulant activity in macrophages and contribute to coronary thrombus formation following plaque disruption. Macrophage TF expression may be associated with glycolysis.
Collapse
Affiliation(s)
- Kazunari Maekawa
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Miyazaki, Japan
| | - Eriko Nakamura
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Miyazaki, Japan
| | - Yoichi Saito
- Bioengineering Lab, Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Kumamoto, Japan
| | - Yunosuke Matsuura
- Division of Cardiovascular Medicine and Nephrology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Miyazaki, Japan
| | - Toshihiro Gi
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Miyazaki, Japan
| | - Kensaku Nishihira
- Department of Cardiology, Miyazaki Medical Association Hospital, Miyazaki, Miyazaki, Japan
| | - Nobuyuki Oguri
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Miyazaki, Japan
| | - Sayaka Moriguchi-Goto
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Miyazaki, Japan
| | - Yuichiro Sato
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Miyazaki, Japan
| | - Kinta Hatakeyama
- Department of Pathology, National Cerebral and Cardiovascular Center Hospital, Suita, Osaka, Japan
| | - Yoshisato Shibata
- Department of Cardiology, Miyazaki Medical Association Hospital, Miyazaki, Miyazaki, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Kumamoto, Japan
| | - Koichi Kaikita
- Division of Cardiovascular Medicine and Nephrology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Miyazaki, Japan
| | - Yujiro Asada
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Miyazaki, Japan
- Department of Diagnostic Pathology, Miyazaki Medical Association Hospital, Miyazaki, Miyazaki, Japan
| | - Atsushi Yamashita
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Miyazaki, Japan
| |
Collapse
|
2
|
He Q, Li J, Tao C, Zeng C, Liu C, Zheng Z, Mou S, Liu W, Zhang B, Yu X, Zhai Y, Wang J, Zhang Q, Zhang Y, Zhang D, Zhao J, Ge P. High glutamine increases stroke risk by inducing the endothelial-to-mesenchymal transition in moyamoya disease. MedComm (Beijing) 2024; 5:e525. [PMID: 38628905 PMCID: PMC11018113 DOI: 10.1002/mco2.525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 02/04/2024] [Accepted: 02/26/2024] [Indexed: 04/19/2024] Open
Abstract
At present, there is limited research on the mechanisms underlying moyamoya disease (MMD). Herein, we aimed to determine the role of glutamine in MMD pathogenesis, and 360 adult patients were prospectively enrolled. Human brain microvascular endothelial cells (HBMECs) were subjected to Integrin Subunit Beta 4 (ITGB4) overexpression or knockdown and atorvastatin. We assessed factors associated with various signaling pathways in the context of the endothelial-to-mesenchymal transition (EndMT), and the expression level of related proteins was validated in the superficial temporal arteries of patients. We found glutamine levels were positively associated with a greater risk of stroke (OR = 1.599, p = 0.022). After treatment with glutamine, HBMECs exhibited enhanced proliferation, migration, and EndMT, all reversed by ITGB4 knockdown. In ITGB4-transfected HBMECs, the MAPK-ERK-TGF-β/BMP pathway was activated, with Smad4 knockdown reversing the EndMT. Furthermore, atorvastatin suppressed the EndMT by inhibiting Smad1/5 phosphorylation and promoting Smad4 ubiquitination in ITGB4-transfected HBMECs. We also found the protein level of ITGB4 was upregulated in the superficial temporal arteries of patients with MMD. In conclusion, our study suggests that glutamine may be an independent risk factor for hemorrhage or infarction in patients with MMD and targeting ITGB4 could potentially be therapeutic approaches for MMD.
Collapse
Affiliation(s)
- Qiheng He
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Junsheng Li
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Chuming Tao
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Chaofan Zeng
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Chenglong Liu
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Zhiyao Zheng
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- Research Unit of Accurate Diagnosis, Treatment, and Translational Medicine of Brain TumorsChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Department of NeurosurgeryPeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Siqi Mou
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Wei Liu
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Bojian Zhang
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Xiaofan Yu
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Yuanren Zhai
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Jia Wang
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- 3D Printing Center in Clinical NeuroscienceChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Qian Zhang
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Yan Zhang
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Dong Zhang
- Department of NeurosurgeryBeijing HospitalBeijingChina
| | - Jizong Zhao
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- 3D Printing Center in Clinical NeuroscienceChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Peicong Ge
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| |
Collapse
|
3
|
Sarkar A, Pawar SV, Chopra K, Jain M. Gamut of glycolytic enzymes in vascular smooth muscle cell proliferation: Implications for vascular proliferative diseases. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167021. [PMID: 38216067 DOI: 10.1016/j.bbadis.2024.167021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
Vascular smooth muscle cells (VSMCs) are the predominant cell type in the media of the blood vessels and are responsible for maintaining vascular tone. Emerging evidence confirms that VSMCs possess high plasticity. During vascular injury, VSMCs switch from a "contractile" phenotype to an extremely proliferative "synthetic" phenotype. The balance between both strongly affects the progression of vascular remodeling in many cardiovascular pathologies such as restenosis, atherosclerosis and aortic aneurism. Proliferating cells demand high energy requirements and to meet this necessity, alteration in cellular bioenergetics seems to be essential. Glycolysis, fatty acid metabolism, and amino acid metabolism act as a fuel for VSMC proliferation. Metabolic reprogramming of VSMCs is dynamically variable that involves multiple mechanisms and encompasses the coordination of various signaling molecules, proteins, and enzymes. Here, we systemically reviewed the metabolic changes together with the possible treatments that are still under investigation underlying VSMC plasticity which provides a promising direction for the treatment of diseases associated with VSMC proliferation. A better understanding of the interaction between metabolism with associated signaling may uncover additional targets for better therapeutic strategies in vascular disorders.
Collapse
Affiliation(s)
- Ankan Sarkar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Sandip V Pawar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Kanwaljit Chopra
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Manish Jain
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India.
| |
Collapse
|
4
|
Mao T, Xie L, Guo Y, Ji X, Wan J, Cui X, Fan Q, Liu W, Wang S, Han W, Lin Q, Jia W. Mechanistic exploration of Yiqi Liangxue Shengji prescription on restenosis after balloon injury by integrating metabolomics with network pharmacology. PHARMACEUTICAL BIOLOGY 2023; 61:1260-1273. [PMID: 37602438 PMCID: PMC10443980 DOI: 10.1080/13880209.2023.2244533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 06/28/2023] [Accepted: 07/31/2023] [Indexed: 08/22/2023]
Abstract
CONTEXT Yiqi Liangxue Shengji prescription (YQLXSJ) is a traditional Chinese medicine (TCM) formula that has long been used for treatment after percutaneous coronary intervention (PCI). OBJECTIVE To investigate the putative pharmacological mechanism of YQLXSJ on restenosis through an integrated approach utilizing metabolomics and network pharmacology. MATERIALS AND METHODS Forty male Sprague-Dawley rats were divided into sham, model, YQLXSJ, and positive groups. YQLXSJ group received the treatment of YQLXSJ (6 g/kg/d, i.g.) and the positive group was treated with atorvastatin (2 mg/kg/d, i.g.). After 4 weeks, the improvement in intimal hyperplasia was evaluated by ultrasound, H&E staining, and immunofluorescence. UPLC-MS/MS technology was utilized to screen the differential metabolites. Network pharmacology was conducted using TCMSP, GeneCards, and Metascape, etc., in combination with metabolomics. Eventually, the core targets were acquired and validated. RESULTS Compared to models, YQLXSJ exhibited decreased intima-media thickness on ultrasound (0.23 ± 0.02 mm vs. 0.20 ± 0.01 mm, p < 0.01) and reduced intima thickness by H&E (30.12 ± 6.05 μm vs. 14.32 ± 1.37 μm, p < 0.01). We identified 18 differential metabolites and 5 core targets such as inducible nitric oxide synthase (NOS2), endothelial nitric oxide synthase (NOS3), vascular endothelial growth factor-A (VEGFA), ornithine decarboxylase-1 (ODC1) and group IIA secretory phospholipase A2 (PLA2G2A). These targets were further confirmed by molecular docking and ELISA. DISCUSSION AND CONCLUSIONS This study confirms the effects of YQLXSJ on restenosis and reveals some biomarkers. TCM has great potential in the prevention and treatment of restenosis by improving metabolic disorders.
Collapse
Affiliation(s)
- Tianshi Mao
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Long Xie
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Yanqiong Guo
- Department of Cardiology, Beijing Fengtai District Hospital of Chinese Medicine, Beijing, P.R. China
| | - Xiang Ji
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Jie Wan
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Xiaoyun Cui
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Qian Fan
- Department of Cardiology, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, P.R. China
| | - Wei Liu
- Department of Cardiology, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, P.R. China
| | - Shuai Wang
- Department of Cardiology, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, P.R. China
| | - Wenbo Han
- Department of Cardiology, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, P.R. China
| | - Qian Lin
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Wenhao Jia
- Department of Cardiology, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, P.R. China
| |
Collapse
|
5
|
Durante W. Glutamine Deficiency Promotes Immune and Endothelial Cell Dysfunction in COVID-19. Int J Mol Sci 2023; 24:7593. [PMID: 37108759 PMCID: PMC10144995 DOI: 10.3390/ijms24087593] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has caused the death of almost 7 million people worldwide. While vaccinations and new antiviral drugs have greatly reduced the number of COVID-19 cases, there remains a need for additional therapeutic strategies to combat this deadly disease. Accumulating clinical data have discovered a deficiency of circulating glutamine in patients with COVID-19 that associates with disease severity. Glutamine is a semi-essential amino acid that is metabolized to a plethora of metabolites that serve as central modulators of immune and endothelial cell function. A majority of glutamine is metabolized to glutamate and ammonia by the mitochondrial enzyme glutaminase (GLS). Notably, GLS activity is upregulated in COVID-19, favoring the catabolism of glutamine. This disturbance in glutamine metabolism may provoke immune and endothelial cell dysfunction that contributes to the development of severe infection, inflammation, oxidative stress, vasospasm, and coagulopathy, which leads to vascular occlusion, multi-organ failure, and death. Strategies that restore the plasma concentration of glutamine, its metabolites, and/or its downstream effectors, in conjunction with antiviral drugs, represent a promising therapeutic approach that may restore immune and endothelial cell function and prevent the development of occlusive vascular disease in patients stricken with COVID-19.
Collapse
Affiliation(s)
- William Durante
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
6
|
Yamashita A, Asada Y. Underlying mechanisms of thrombus formation/growth in atherothrombosis and deep vein thrombosis. Pathol Int 2023; 73:65-80. [PMID: 36598039 PMCID: PMC11551813 DOI: 10.1111/pin.13305] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 12/03/2022] [Accepted: 12/17/2022] [Indexed: 01/05/2023]
Abstract
Thrombosis remains a leading cause of death worldwide despite technological advances in prevention, diagnosis, and treatment. The traditional view of arterial thrombus formation is that it is a platelet-dependent process, whereas that of venous thrombus formation is a coagulation-dependent process. Current pathological and basic studies on atherothrombosis and venous thrombosis have revealed the diverse participation of platelet and coagulation activation mechanisms in both thrombus initiation and growth processes during clinical thrombotic events. Atherosclerotic plaque cell-derived tissue factor contributes to fibrin formation and platelet aggregation. The degree of plaque disruption and a blood flow alteration promote atherothrombotic occlusion. While blood stasis/turbulent flow due to luminal stenosis itself initiates venous thrombus formation. The coagulation factor XI-driven propagation phase of blood coagulation plays a major role in venous thrombus growth, but a minor role in hemostasis. These lines of evidence indicate that atherothrombosis onset is affected by the thrombogenic potential of atherosclerotic plaques, the plaque disruption size, and an alteration in blood flow. Upon onset of venous thrombosis, enhancement of the propagation phase of blood coagulation under blood stasis and a hypercoagulable state contribute to large thrombus formation.
Collapse
Affiliation(s)
- Atsushi Yamashita
- Pathophysiology Section, Department of Pathology, Faculty of MedicineUniversity of MiyazakiMiyazakiJapan
| | - Yujiro Asada
- Pathophysiology Section, Department of Pathology, Faculty of MedicineUniversity of MiyazakiMiyazakiJapan
- Department of PathologyMiyazaki Medical Association HospitalMiyazakiJapan
| |
Collapse
|
7
|
Zhang X, Gao F. Exercise improves vascular health: Role of mitochondria. Free Radic Biol Med 2021; 177:347-359. [PMID: 34748911 DOI: 10.1016/j.freeradbiomed.2021.11.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/20/2021] [Accepted: 11/02/2021] [Indexed: 01/10/2023]
Abstract
Vascular mitochondria constantly integrate signals from environment and respond accordingly to match vascular function to metabolic requirements of the organ tissues, while mitochondrial dysfunction contributes to vascular aging and pathologies such as atherosclerosis, stenosis, and hypertension. As an effective lifestyle intervention, exercise induces extensive mitochondrial adaptations through vascular mechanical stress and the increased production and release of reactive oxygen species and nitric oxide that activate multiple intracellular signaling pathways, among which peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) plays a critical role. PGC-1α coordinates mitochondrial quality control mechanisms to maintain a healthy mitochondrial pool and promote endothelial nitric oxide synthase activity in vasculature. The mitochondrial adaptations to exercise improve bioenergetics, balance redox status, protect endothelial cells against detrimental insults, increase vascular plasticity, and ameliorate aging-related vascular dysfunction, thus benefiting vascular health. This review highlights recent findings of mitochondria as a central hub integrating exercise-afforded vascular benefits and its underlying mechanisms. A better understanding of the mitochondrial adaptations to exercise will not only shed light on the mechanisms of exercise-induced cardiovascular protection, but may also provide new clues to mitochondria-oriented precise exercise prescriptions for cardiovascular health.
Collapse
Affiliation(s)
- Xing Zhang
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Feng Gao
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
8
|
Liao L, Zhou M, Wang J, Xue X, Deng Y, Zhao X, Peng C, Li Y. Identification of the Antithrombotic Mechanism of Leonurine in Adrenalin Hydrochloride-Induced Thrombosis in Zebrafish via Regulating Oxidative Stress and Coagulation Cascade. Front Pharmacol 2021; 12:742954. [PMID: 34803688 PMCID: PMC8600049 DOI: 10.3389/fphar.2021.742954] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/20/2021] [Indexed: 01/11/2023] Open
Abstract
Thrombosis is a general pathological phenomenon during severe disturbances to homeostasis, which plays an essential role in cardiovascular and cerebrovascular diseases. Leonurine (LEO), isolated from Leonurus japonicus Houtt, showes a crucial role in anticoagulation and vasodilatation. However, the properties and therapeutic mechanisms of this effect have not yet been systematically elucidated. Therefore, the antithrombotic effect of LEO was investigated in this study. Hematoxylin-Eosin staining was used to detect the thrombosis of zebrafish tail. Fluorescence probe was used to detect the reactive oxygen species. The biochemical indexes related to oxidative stress (lactate dehydrogenase, malondialdehyde, superoxide dismutase and glutathione) and vasodilator factor (endothelin-1 and nitric oxide) were analyzed by specific commercial assay kits. Besides, we detected the expression of related genes (fga, fgb, fgg, pkcα, pkcβ, vwf, f2) and proteins (PI3K, phospho-PI3K, Akt, phospho-Akt, ERK, phospho-ERK FIB) related to the anticoagulation and fibrinolytic system by quantitative reverse transcription and western blot. Beyond that, metabolomic analyses were carried out to identify the expressions of metabolites associated with the anti-thrombosis mechanism of LEO. Our in vivo experimental results showed that LEO could improve the oxidative stress injury, abnormal platelet aggregation and coagulation dysfunction induced by adrenalin hydrochloride. Moreover, LEO restored the modulation of amino acids and inositol metabolites which are reported to alleviate the thrombus formation. Collectively, LEO attenuates adrenalin hydrochloride-induced thrombosis partly via modulating oxidative stress, coagulation cascade and platelet activation and amino acid and inositol metabolites.
Collapse
Affiliation(s)
- Li Liao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Mengting Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Jing Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Xinyan Xue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Ying Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Xingtao Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| |
Collapse
|
9
|
Sorrentino S, Polini A, Arima V, Romano A, Quattrini A, Gigli G, Mozetic P, Moroni L. Neurovascular signals in amyotrophic lateral sclerosis. Curr Opin Biotechnol 2021; 74:75-83. [PMID: 34800850 DOI: 10.1016/j.copbio.2021.10.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/24/2021] [Accepted: 10/22/2021] [Indexed: 12/21/2022]
Abstract
The neurovascular system (NVS) is a complex anatomic-functional unit that synergically works to maintain organs/tissues homeostasis of the entire body. NVS alterations have recently emerged as a common distinct feature in the pathogenesis of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Despite their undeniable involvement, neurovascular signalling pathways remain still far unknown in ALS. This review underlines the importance of endothelial, mural, and fibroblast cells as novel targets for ALS investigation and identifies in the interplay between neuronal and vascular systems the way to disclose novel molecular mechanisms behind the pathogenesis of ALS.
Collapse
Affiliation(s)
- Stefano Sorrentino
- CNR Nanotec - Institute of Nanotechnology, Campus Ecotekne, via Monteroni, Lecce, 73100, Italy
| | - Alessandro Polini
- CNR Nanotec - Institute of Nanotechnology, Campus Ecotekne, via Monteroni, Lecce, 73100, Italy
| | - Valentina Arima
- CNR Nanotec - Institute of Nanotechnology, Campus Ecotekne, via Monteroni, Lecce, 73100, Italy
| | - Alessandro Romano
- San Raffaele Hospital, Division of Neuroscience, Institute of Experimental Neurology, San Rafaele Scientifc Institute, Via Olgettina, 60, 20132, Milan, Italy
| | - Angelo Quattrini
- San Raffaele Hospital, Division of Neuroscience, Institute of Experimental Neurology, San Rafaele Scientifc Institute, Via Olgettina, 60, 20132, Milan, Italy
| | - Giuseppe Gigli
- CNR Nanotec - Institute of Nanotechnology, Campus Ecotekne, via Monteroni, Lecce, 73100, Italy; Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, via Arnesano, 73100, Lecce, Italy
| | - Pamela Mozetic
- CNR Nanotec - Institute of Nanotechnology, Campus Ecotekne, via Monteroni, Lecce, 73100, Italy; San Raffaele Hospital, Division of Neuroscience, Institute of Experimental Neurology, San Rafaele Scientifc Institute, Via Olgettina, 60, 20132, Milan, Italy
| | - Lorenzo Moroni
- CNR Nanotec - Institute of Nanotechnology, Campus Ecotekne, via Monteroni, Lecce, 73100, Italy; Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Universiteitssingel 40, 6229ER, Maastricht, The Netherlands.
| |
Collapse
|