1
|
Qin P, Chen X, Ma P, Li X, Lin Y, Liu X, Liang X, Qin T, Liang J, Ouyang J. Mitochondrial DNA copy number and Alzheimer's disease and Parkinson disease. Mitochondrion 2025; 83:102032. [PMID: 40157623 DOI: 10.1016/j.mito.2025.102032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/22/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
INTRODUCTION A systematic review on the association of mitochondrial DNA copy number (mtDNA-CN) with Alzheimer's disease (AD) and Parkinson disease (PD) is lacking and the causal relationship remains unclear. OBJECTIVE We aimed to conduct a systematic review of observational studies on the association of mtDNA-CN with AD and PD and perform a bidirectional 2-sample Mendelian randomization (MR) study to investigate their causal relationships. METHODS PubMed, Embase, and Web of Science were searched for eligible studies before Jan 2025. The causal links were conducted with inverse-variance weighted (IVW) method as the main analysis. RESULTS Fourteen case-control and 2 cohort studies investigated the association between mtDNA-CN and AD, with 13 reporting decreased mtDNA-CN associated with increased risk of AD and 3 showing no significant association. All the studies (9 case-control, 1 cross-sectional, 2 cohort studies) observed the relation between mtDNA-CN and PD except for 3 studies reporting no significant association. In MR analysis, genetically predicted mtDNA-CN was not associated with AD and PD, whereas genetically predicted AD (β -0.085, 95 % CI -0.156 to -0.013; P = 0.02) but not PD was associated with mtDNA-CN. Sensitivity and replication analyses showed a stable finding. DISCUSSION The systematic review found limited observational studies on mtDNA-CN and AD and PD and majority were case-control study. Findings of the bidirectional MR study did not support a causal effect of mtDNA-CN in the development of AD and PD but found that AD can lead to decreased levels of mtDNA-CN, which suggest mtDNA-CN as a potential biomarker of AD.
Collapse
Affiliation(s)
- Pei Qin
- Center for Clinical Epidemiology and Evidence-Based Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, Guangdong, China
| | - Xiaojuan Chen
- School of Public Health, Shantou University, Shantou, Guangdong, China
| | - Panpan Ma
- School of Public Health, Shantou University, Shantou, Guangdong, China
| | - Xinying Li
- School of Public Health, Shantou University, Shantou, Guangdong, China
| | - Yunying Lin
- Department of Neurology, Shunde Hospital, The First People's Hospital of Shunde, Southern Medical University, Shunde, Guangdong, China
| | - Xiaoning Liu
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoyan Liang
- Department of Neurology, Shunde Hospital, The First People's Hospital of Shunde, Southern Medical University, Shunde, Guangdong, China
| | - Tianhang Qin
- Institute of Software Chinese Academy of Sciences, Beijing, Guangdong, China
| | - Junyan Liang
- Department of Neurology, Shunde Hospital, The First People's Hospital of Shunde, Southern Medical University, Shunde, Guangdong, China
| | - Jipeng Ouyang
- Department of Neurology, Shunde Hospital, The First People's Hospital of Shunde, Southern Medical University, Shunde, Guangdong, China.
| |
Collapse
|
2
|
Xia H, Wang ZH, Wang XB, Gao MR, Jiang S, Du XY, Yang XL. Investigating the genetic association of mitochondrial DNA copy number with neurodegenerative diseases. BMC Neurol 2025; 25:160. [PMID: 40240969 PMCID: PMC12001617 DOI: 10.1186/s12883-025-04176-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 04/03/2025] [Indexed: 04/18/2025] Open
Abstract
OBJECTIVE This study aims to investigate the causal relationship between Mitochondrial DNA (mtDNA) copy number and several common neurodegenerative diseases (NDs). METHODS We conducted a bidirectional two-sample Mendelian randomization (MR) analysis using data from genome-wide association studies (GWAS) as instrumental variables (IVs). After screening for relevance and potential confounders, we estimated the association between mtDNA copy number and NDs, including Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS), and Multiple sclerosis (MS). Additionally, we validated our findings using GWAS data on mtDNA copy number from Longchamps et al., sourced from the Genetics Epidemiology Consortium and the UK Biobank (UKB) aging study cohort. RESULTS A GWAS analysis of 395,718 UKB participants found no significant association between mtDNA copy number and the risk of NDs, including AD (OR = 0.956, P = 0.708), PD (OR = 1.223, P = 0.179), ALS (OR = 0.972, P = 0.374), and MS (OR = 0.932, P = 0.789). Similarly, reverse MR analysis revealed no significant relationship between genetic predictions of NDs and mtDNA copy number: AD (OR = 0.987, P = 0.062), PD (OR = 0.997, P = 0.514), ALS (OR = 0.974, P = 0.706), and MS (OR = 1.003, P = 0.181). CONCLUSION Although mitochondrial dysfunction is implicated in the pathogenesis of NDs, no clear evidence supports a causal role for mtDNA copy number. The relationship between mtDNA copy number and NDs is likely mediated by more complex molecular regulatory mechanisms. Further research is required to elucidate these intricate interactions.
Collapse
Affiliation(s)
- Huan Xia
- Department of Neurology, The Second Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
- Xinjiang Medical University, Xinjiang, China
| | - Zi-Hao Wang
- Department of Neurology, The Second Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Xiao-Bei Wang
- Department of Neurology, The Second Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Mei-Rong Gao
- Department of Dermatology, The Second Hospital of Jilin University, Changchun, China
| | - Sen Jiang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin-Yu Du
- Department of Neurology, Jiangsu Provincial People's Hospital, Jiangsu, China
| | | |
Collapse
|
3
|
Papadam A, Mihov M, Koller A, Weissensteiner H, Stark K, Grassmann F. Tapping natures rhythm: the role of season in mitochondrial function and genetics in the UK biobank. Hum Genomics 2025; 19:34. [PMID: 40158147 PMCID: PMC11954186 DOI: 10.1186/s40246-025-00743-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/16/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Mitochondria are small organelles inside our cells crucial for producing energy and heat, cell signaling, production and degradation of important molecules, as well as cell death. The number of mitochondria in each cell is a marker for mitochondrial function, which generally declines with increasing age. However, we found that there is also a considerable seasonal variation of mitochondrial abundance, which warrants further research. METHODS We leveraged data from individuals participating in the UK Biobank study and computed their mitochondrial abundance from Exome sequencing reads mapping to the mitochondrial genome. The seasonal effect was modelled as a sine-cosine function across the year and changes in amplitude, acrophase and displacement of mitochondrial abundance due to various demographic, lifestyle, genetic, proteomic, and metabolomic markers were investigated with multivariate regression. RESULTS We found that mitochondrial DNA (mtDNA) abundance was higher in winter than in summer. This difference is related to advanced age, a higher BMI and smoking behavior which resulted in a reduced amplitude of mtDNA abundance. A higher education reduced the acrophase (i.e., shifted the distribution to earlier in the year) and a higher BMI and lack of physical activity led to a later acrophase. Generally, increased immune cell count resulted in lower amplitude, and an increased platelet and lymphocyte count was found to increase the acrophase. Importantly, a reduced seasonal amplitude was associated with increased risk for cardiovascular, digestive, genitourinary, and respiratory diseases as well as all-cause mortality. Most of the metabolomic and proteomic markers were associated with mtDNA displacement (i.e., increase of the baseline level) but not acrophase or amplitude. Similarly, we found that there are multiple genetic variants influencing displacement, but none reached genome-wide significance when investigating acrophase or amplitude. CONCLUSION Seasonal variation of mtDNA abundance is influenced by environmental, lifestyle and immune parameters. Differences in the seasonal oscillation of mitochondrial abundance could potentially explain discrepancies of previous associations results and might be useful to improve future risk prediction.
Collapse
Affiliation(s)
| | - Mihail Mihov
- Institute of Medical Science, University of Aberdeen, Aberdeen, UK
| | - Adriana Koller
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Hansi Weissensteiner
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Klaus Stark
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Felix Grassmann
- Institute of Medical Science, University of Aberdeen, Aberdeen, UK.
- Institute for Clinical Research and Systems Medicine, Health and Medical University, Potsdam, Germany.
- Institute for Clinical Research and Systems Medicine, Health and Medical University, Schiffbauergasse 14, 14467, Potsdam, Germany.
| |
Collapse
|
4
|
Jiang L, Jian J, Sai X, Yu H, Liang W, Wu X. Oxidative balance is associated with diabetic kidney disease and mortality in adults with diabetes mellitus: Insights from NHANES database and Mendelian randomization. J Diabetes Investig 2025; 16:451-462. [PMID: 39724381 PMCID: PMC11871406 DOI: 10.1111/jdi.14390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/25/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
OBJECTIVE To explore and validate the association between the oxidative balance and prevalence of diabetic kidney disease (DKD) and mortality in patients with diabetes. STUDY DESIGN A large and representative sample from the National Health and Nutrition Examination Survey (NHANES) from 2013 to 2016 was analyzed to study the potential association between Oxidative Balance Score (OBS) and prognosis of DKD in adult diabetic patients. Weighted multivariate logistic regression analysis was conducted to examine the relationship between OBS and DKD risk. Subgroup analysis, sensitivity analysis, and mediation effect analysis were conducted to explore the effect of the covariates and assess the robustness of the findings. Mendelian randomization (MR) was employed to evaluate the correlated relationship between mitochondrial reactive oxygen species (ROS) levels and DKD at the genetic level. RESULT The highest OBS quartile showed the most significant negative correlation with DKD compared to the lowest OBS quartile (OR = 0.62, 95% CI 0.41-0.92, P = 0.017). Higher OBS was associated with a reduced risk of DKD (OR = 0.96; 95% CI = 0.93, 0.98; P < 0.001) and mortality (P = 0.021 by log-rank) in diabetic patients. This association remained robust even after excluding individual OBS components. Subgroup analysis revealed the interaction of metabolic syndrome on OBS was significant. Mediation analyses revealed that OBS's effect on DKD was independent of blood uric acid and cholesterol. Restricted cubic spline (RCS) analysis indicated a typical L-shaped relationship between OBS and DKD risk. The physical activity was identified as the core variable predicting DKD risk by two machine learning algorithms. MR showed a potential correlated relationship between ROS and microalbuminuria in DKD. CONCLUSIONS The high level of oxidative balance score was negatively correlated with the risk of DKD and mortality in diabetic patients.
Collapse
Affiliation(s)
- Li Jiang
- Diabetes Department of Integrated Chinese and Western MedicineChina‐Japan Friendship HospitalBeijingChina
- China National Center for Integrated Traditional Chinese and Western MedicineBeijingChina
| | - Jie Jian
- Mental Health Center of Dongcheng DistrictBeijingChina
| | - Xulin Sai
- Dongzhimen Hospital Affiliated to Beijing University of Chinese MedicineBeijingChina
| | - Hongda Yu
- Department of Dermatology, China‐Japan Friendship HospitalChina National Center for Integrated Traditional Chinese and Western MedicineBeijingChina
| | - Wanxian Liang
- Center for Evidence‐Based Chinese MedicineBeijing University of Chinese MedicineBeijingChina
| | - Xiai Wu
- Diabetes Department of Integrated Chinese and Western MedicineChina‐Japan Friendship HospitalBeijingChina
- China National Center for Integrated Traditional Chinese and Western MedicineBeijingChina
| |
Collapse
|
5
|
Luo J, le Cessie S, Willems van Dijk K, Hägg S, Grassmann F, van Heemst D, Noordam R. Mitochondrial DNA abundance and circulating metabolomic profiling: Multivariable-adjusted and Mendelian randomization analyses in UK Biobank. Mitochondrion 2025; 80:101991. [PMID: 39592086 DOI: 10.1016/j.mito.2024.101991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/11/2024] [Accepted: 11/22/2024] [Indexed: 11/28/2024]
Abstract
BACKGROUND Low leukocyte mitochondrial DNA (mtDNA) abundance has been associated with a higher risk of atherosclerotic cardiovascular disease, but through unclear mechanisms. We aimed to investigate whether low mtDNA abundance is associated with worse metabolomic profiling, as being potential intermediate phenotypes, using cross-sectional and genetic studies. METHODS Among 61,186 unrelated European participants from UK Biobank, we performed multivariable-adjusted linear regression analyses to examine the associations between mtDNA abundance and 168 NMR-based circulating metabolomic measures and nine metabolomic principal components (PCs) that collectively covered 91.5% of the total variation of individual metabolomic measures. Subsequently, we conducted Mendelian randomization (MR) to approximate the causal effects of mtDNA abundance on the individual metabolomic measures and their metabolomic PCs. RESULTS After correction for multiple testing, low mtDNA abundance was associated with 130 metabolomic measures, predominantly lower concentrations of some amino acids and higher concentrations of lipids, lipoproteins and fatty acids; moreover, mtDNA abundance was associated with seven out of the nine metabolomic PCs. Using MR, genetically-predicted low mtDNA abundance was associated with lower lactate (standardized beta and 95% confidence interval: -0.17; -0.26, -0.08), and higher acetate (0.15; 0.07,0.23), and unsaturation degree (0.14; 0.08,0.20). Similarly, genetically-predicted low mtDNA abundance was associated with lower metabolomic PC2 (related to lower concentrations of lipids and fatty acids), and higher metabolomic PC9 (related to lower concentrations of glycolysis-related metabolites). CONCLUSION Low mtDNA abundance is associated with metabolomic perturbations, particularly reflecting a pro-atherogenic metabolomic profile, which potentially could link low mtDNA abundance to higher atherosclerosis risk.
Collapse
Affiliation(s)
- Jiao Luo
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands; Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Saskia le Cessie
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands; Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Ko Willems van Dijk
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Sara Hägg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Felix Grassmann
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; Institute for Clinical Research and Systems Medicine, Health and Medical University, Potsdam, Germany
| | - Diana van Heemst
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
6
|
Fu X, Zhao Y, Ke Y, Gao Y, Wang M, Chen Y, Huo W, Wang L, Zhang W, Wu Y, Li X, Zhang D, Hu F, Hu D, Zhang M. Mitochondrial DNA copy number and risk of cardiovascular disease and all-cause mortality: a systematic review and meta-analysis of observational studies. QJM 2025; 118:5-15. [PMID: 39607770 DOI: 10.1093/qjmed/hcae208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/28/2024] [Indexed: 11/30/2024] Open
Abstract
Increasing studies have explored the correlation of mitochondrial DNA copy number (mtDNA-CN) abnormalities with cardiovascular disease (CVD) and all-cause mortality; however, their findings are contradictory. This systematic review and meta-analysis sought to quantitatively summarize current studies to elucidate the impact of mtDNA-CN on CVD outcomes and all-cause mortality. Relevant studies were searched for in PubMed, Embase and Web of Science databases, up to 23 October 2023. Summary relative risks (RRs) and 95% confidence intervals (CIs) were calculated with the random-effects model. In total, 22 articles were included in the systematic review, 13 of which were included in the meta-analysis of CVD outcomes and 8 in all-cause mortality. Compared to the highest mtDNA-CN level, the summary RR (95% CI) for the lowest mtDNA-CN level was 2.09 (95% CI 1.59-2.75) for CVD, 1.70 (95% CI 1.29-2.24) for coronary heart disease (CHD), 1.43 (95% CI 1.15-1.79) for heart failure (HF), 1.88 (95% CI 1.08-3.28) for stroke and 1.33 (95% CI 1.21-1.47) for all-cause mortality. Lower mtDNA-CN may increase the risk of CVD, including CHD, HF and stroke, as well as all-cause mortality. MtDNA-CN is a potential predictor of CVD and all-cause mortality.
Collapse
Affiliation(s)
- Xueru Fu
- Department of General Practice, The Affiliated Luohu Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, People's Republic of China
| | - Yang Zhao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yamin Ke
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yajuan Gao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Mengmeng Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yaobing Chen
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Weifeng Huo
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Longkang Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Wenkai Zhang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yuying Wu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Xi Li
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Dongdong Zhang
- Department of General Practice, The Affiliated Luohu Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, People's Republic of China
| | - Fulan Hu
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Medical School, Shenzhen, Guangdong, People's Republic of China
| | - Dongsheng Hu
- Department of General Practice, The Affiliated Luohu Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, People's Republic of China
| | - Ming Zhang
- Department of General Practice, The Affiliated Luohu Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, People's Republic of China
| |
Collapse
|
7
|
Jiang Y, Cheng S, Shi Y, Xu Z, Wang H, Li Y, Liu Y, Li Z, Jiang Y, Meng X, Cheng S, Li H, Wang C, Wang Y. Subtype-Specific Association of Mitochondrial DNA Copy Number With Poststroke/TIA Outcomes in 10 241 Patients in China. Stroke 2024; 55:1261-1270. [PMID: 38511332 DOI: 10.1161/strokeaha.123.045069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 02/01/2024] [Accepted: 02/12/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Mitochondrial DNA copy number (mtDNA-CN) is associated with the severity and mortality in patients with stroke, but the associations in different stroke subtypes remain unexplored. METHODS We conducted an observational prospective cohort analysis on patients with ischemic stroke or transient ischemic attack enrolled in the Third China National Stroke Registry. We applied logistic models to assess the association of mtDNA-CN with functional outcome (modified Rankin Scale score, 3-6 versus 0-2) and Cox proportional hazard models to assess the association with stroke recurrence (treating mortality as a competing risk) and mortality during a 12-month follow-up, adjusting for sex, age, physical activity, National Institutes of Health Stroke Scale at admission, history of stroke and peripheral artery disease, small artery occlusion, and interleukin-6. Subgroup analyses stratified by age and stroke subtypes were conducted. RESULTS The Third China National Stroke Registry enrolled 15 166 patients, of which 10 241 with whole-genome sequencing data were retained (mean age, 62.2 [SD, 11.2] years; 68.8% men). The associations between mtDNA-CN and poststroke/transient ischemic attack outcomes were specific to patients aged ≤65 years, with lower mtDNA-CN significantly associated with stroke recurrence in 12 months (subdistribution hazard ratio, 1.15 per SD lower mtDNA-CN [95% CI, 1.04-1.27]; P=5.2×10-3) and higher all-cause mortality in 3 months (hazard ratio, 2.19 [95% CI, 1.41-3.39]; P=5.0×10-4). Across subtypes, the associations of mtDNA-CN with stroke recurrence were specific to stroke of undetermined cause (subdistribution hazard ratio, 1.28 [95% CI, 1.11-1.48]; P=6.6×10-4). In particular, lower mtDNA-CN was associated with poorer functional outcomes in stroke of undetermined cause patients diagnosed with embolic stroke of undetermined source (odds ratio, 1.53 [95% CI, 1.20-1.94]; P=5.4×10-4), which remained significant after excluding patients with recurrent stroke (odds ratio, 1.49 [95% CI, 1.14-1.94]; P=3.0×10-3). CONCLUSIONS Lower mtDNA-CN is associated with higher stroke recurrence rate and all-cause mortality, as well as poorer functional outcome at follow-up, among stroke of undetermined cause, embolic stroke of undetermined source, and younger patients.
Collapse
Affiliation(s)
- Yi Jiang
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Yi Jiang, H.W., Shanshan Cheng, C.W.)
| | - Si Cheng
- Department of Neurology (Si Cheng, Y.S., Z.X., Y. Li, Y. Liu, Z.L., Yong Jiang, X.M., H.L., Y.W.), Beijing Tiantan Hospital, Capital Medical University, China
- Center of Excellence for Omics Research (Si Cheng, Y.S., Z.X., Y. Li, Y. Liu, H.L., Y.W.), Beijing Tiantan Hospital, Capital Medical University, China
- China National Clinical Research Center for Neurological Diseases, Beijing (Si Cheng, Y.S., Z.X., Y. Li, Y. Liu, Z.L., Yong Jiang, X.M., H.L., Y.W.)
- Changping Laboratory, Beijing, China (Si Cheng, Yong Jiang, Y.W.)
- Clinical Center for Precision Medicine in Stroke (Si Cheng, Y.W.), Capital Medical University, Beijing, China
| | - Yanfeng Shi
- Department of Neurology (Si Cheng, Y.S., Z.X., Y. Li, Y. Liu, Z.L., Yong Jiang, X.M., H.L., Y.W.), Beijing Tiantan Hospital, Capital Medical University, China
- China National Clinical Research Center for Neurological Diseases, Beijing (Si Cheng, Y.S., Z.X., Y. Li, Y. Liu, Z.L., Yong Jiang, X.M., H.L., Y.W.)
| | - Zhe Xu
- Department of Neurology (Si Cheng, Y.S., Z.X., Y. Li, Y. Liu, Z.L., Yong Jiang, X.M., H.L., Y.W.), Beijing Tiantan Hospital, Capital Medical University, China
- Center of Excellence for Omics Research (Si Cheng, Y.S., Z.X., Y. Li, Y. Liu, H.L., Y.W.), Beijing Tiantan Hospital, Capital Medical University, China
- China National Clinical Research Center for Neurological Diseases, Beijing (Si Cheng, Y.S., Z.X., Y. Li, Y. Liu, Z.L., Yong Jiang, X.M., H.L., Y.W.)
| | - Huihui Wang
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Yi Jiang, H.W., Shanshan Cheng, C.W.)
| | - Yanran Li
- Department of Neurology (Si Cheng, Y.S., Z.X., Y. Li, Y. Liu, Z.L., Yong Jiang, X.M., H.L., Y.W.), Beijing Tiantan Hospital, Capital Medical University, China
- Center of Excellence for Omics Research (Si Cheng, Y.S., Z.X., Y. Li, Y. Liu, H.L., Y.W.), Beijing Tiantan Hospital, Capital Medical University, China
- China National Clinical Research Center for Neurological Diseases, Beijing (Si Cheng, Y.S., Z.X., Y. Li, Y. Liu, Z.L., Yong Jiang, X.M., H.L., Y.W.)
| | - Yang Liu
- Department of Neurology (Si Cheng, Y.S., Z.X., Y. Li, Y. Liu, Z.L., Yong Jiang, X.M., H.L., Y.W.), Beijing Tiantan Hospital, Capital Medical University, China
- Center of Excellence for Omics Research (Si Cheng, Y.S., Z.X., Y. Li, Y. Liu, H.L., Y.W.), Beijing Tiantan Hospital, Capital Medical University, China
- China National Clinical Research Center for Neurological Diseases, Beijing (Si Cheng, Y.S., Z.X., Y. Li, Y. Liu, Z.L., Yong Jiang, X.M., H.L., Y.W.)
| | - Zixiao Li
- Department of Neurology (Si Cheng, Y.S., Z.X., Y. Li, Y. Liu, Z.L., Yong Jiang, X.M., H.L., Y.W.), Beijing Tiantan Hospital, Capital Medical University, China
- China National Clinical Research Center for Neurological Diseases, Beijing (Si Cheng, Y.S., Z.X., Y. Li, Y. Liu, Z.L., Yong Jiang, X.M., H.L., Y.W.)
| | - Yong Jiang
- Department of Neurology (Si Cheng, Y.S., Z.X., Y. Li, Y. Liu, Z.L., Yong Jiang, X.M., H.L., Y.W.), Beijing Tiantan Hospital, Capital Medical University, China
- China National Clinical Research Center for Neurological Diseases, Beijing (Si Cheng, Y.S., Z.X., Y. Li, Y. Liu, Z.L., Yong Jiang, X.M., H.L., Y.W.)
- Changping Laboratory, Beijing, China (Si Cheng, Yong Jiang, Y.W.)
| | - Xia Meng
- China National Clinical Research Center for Neurological Diseases, Beijing (Si Cheng, Y.S., Z.X., Y. Li, Y. Liu, Z.L., Yong Jiang, X.M., H.L., Y.W.)
| | - Shanshan Cheng
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Yi Jiang, H.W., Shanshan Cheng, C.W.)
| | - Hao Li
- Department of Neurology (Si Cheng, Y.S., Z.X., Y. Li, Y. Liu, Z.L., Yong Jiang, X.M., H.L., Y.W.), Beijing Tiantan Hospital, Capital Medical University, China
- Center of Excellence for Omics Research (Si Cheng, Y.S., Z.X., Y. Li, Y. Liu, H.L., Y.W.), Beijing Tiantan Hospital, Capital Medical University, China
- China National Clinical Research Center for Neurological Diseases, Beijing (Si Cheng, Y.S., Z.X., Y. Li, Y. Liu, Z.L., Yong Jiang, X.M., H.L., Y.W.)
| | - Chaolong Wang
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Yi Jiang, H.W., Shanshan Cheng, C.W.)
| | - Yongjun Wang
- Department of Neurology (Si Cheng, Y.S., Z.X., Y. Li, Y. Liu, Z.L., Yong Jiang, X.M., H.L., Y.W.), Beijing Tiantan Hospital, Capital Medical University, China
- Center of Excellence for Omics Research (Si Cheng, Y.S., Z.X., Y. Li, Y. Liu, H.L., Y.W.), Beijing Tiantan Hospital, Capital Medical University, China
- China National Clinical Research Center for Neurological Diseases, Beijing (Si Cheng, Y.S., Z.X., Y. Li, Y. Liu, Z.L., Yong Jiang, X.M., H.L., Y.W.)
- Changping Laboratory, Beijing, China (Si Cheng, Yong Jiang, Y.W.)
- Clinical Center for Precision Medicine in Stroke (Si Cheng, Y.W.), Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection (Y.W.), Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Harvey C, Weinreich M, Lee JA, Shaw AC, Ferraiuolo L, Mortiboys H, Zhang S, Hop PJ, Zwamborn RA, van Eijk K, Julian TH, Moll T, Iacoangeli A, Al Khleifat A, Quinn JP, Pfaff AL, Kõks S, Poulton J, Battle SL, Arking DE, Snyder MP, Project MinE ALS Sequencing Consortium, Veldink JH, Kenna KP, Shaw PJ, Cooper-Knock J. Rare and common genetic determinants of mitochondrial function determine severity but not risk of amyotrophic lateral sclerosis. Heliyon 2024; 10:e24975. [PMID: 38317984 PMCID: PMC10839612 DOI: 10.1016/j.heliyon.2024.e24975] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease involving selective vulnerability of energy-intensive motor neurons (MNs). It has been unclear whether mitochondrial function is an upstream driver or a downstream modifier of neurotoxicity. We separated upstream genetic determinants of mitochondrial function, including genetic variation within the mitochondrial genome or autosomes; from downstream changeable factors including mitochondrial DNA copy number (mtCN). Across three cohorts including 6,437 ALS patients, we discovered that a set of mitochondrial haplotypes, chosen because they are linked to measurements of mitochondrial function, are a determinant of ALS survival following disease onset, but do not modify ALS risk. One particular haplotype appeared to be neuroprotective and was significantly over-represented in two cohorts of long-surviving ALS patients. Causal inference for mitochondrial function was achievable using mitochondrial haplotypes, but not autosomal SNPs in traditional Mendelian randomization (MR). Furthermore, rare loss-of-function genetic variants within, and reduced MN expression of, ACADM and DNA2 lead to ∼50 % shorter ALS survival; both proteins are implicated in mitochondrial function. Both mtCN and cellular vulnerability are linked to DNA2 function in ALS patient-derived neurons. Finally, MtCN responds dynamically to the onset of ALS independently of mitochondrial haplotype, and is correlated with disease severity. We conclude that, based on the genetic measures we have employed, mitochondrial function is a therapeutic target for amelioration of disease severity but not prevention of ALS.
Collapse
Affiliation(s)
- Calum Harvey
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Marcel Weinreich
- Clinical Neurobiology, German Cancer Research Center and University Hospital Heidelberg, Germany
| | - James A.K. Lee
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Allan C. Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Heather Mortiboys
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Sai Zhang
- Department of Epidemiology, University of Florida, Gainesville, FL, USA
| | - Paul J. Hop
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ramona A.J. Zwamborn
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Kristel van Eijk
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Thomas H. Julian
- Division of Evolution, Infection and Genomics, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Tobias Moll
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Alfredo Iacoangeli
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, London, UK
| | - Ahmad Al Khleifat
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, London, UK
| | - John P. Quinn
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular & Integrative Biology, Liverpool, UK
| | - Abigail L. Pfaff
- Perron Institute for Neurological and Translational Science, Perth, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Australia
| | - Sulev Kõks
- Perron Institute for Neurological and Translational Science, Perth, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Australia
| | - Joanna Poulton
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford, UK
| | - Stephanie L. Battle
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dan E. Arking
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael P. Snyder
- Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Project MinE ALS Sequencing Consortium
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
- Clinical Neurobiology, German Cancer Research Center and University Hospital Heidelberg, Germany
- Department of Epidemiology, University of Florida, Gainesville, FL, USA
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
- Division of Evolution, Infection and Genomics, School of Biological Sciences, The University of Manchester, Manchester, UK
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, London, UK
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular & Integrative Biology, Liverpool, UK
- Perron Institute for Neurological and Translational Science, Perth, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Australia
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford, UK
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jan H. Veldink
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Kevin P. Kenna
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Pamela J. Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| |
Collapse
|
9
|
Qin P, Qin T, Liang L, Li X, Jiang B, Wang X, Ma J, Hu F, Zhang M, Hu D. The role of mitochondrial DNA copy number in cardiometabolic disease: a bidirectional two-sample mendelian randomization study. Cardiovasc Diabetol 2024; 23:45. [PMID: 38282013 PMCID: PMC10823732 DOI: 10.1186/s12933-023-02074-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/25/2023] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND This study used a bidirectional 2-sample Mendelian randomization study to investigate the potential causal links between mtDNA copy number and cardiometabolic disease (obesity, hypertension, hyperlipidaemia, type 2 diabetes [T2DM], coronary artery disease [CAD], stroke, ischemic stroke, and heart failure). METHODS Genetic associations with mtDNA copy number were obtained from a genome-wide association study (GWAS) summary statistics from the UK biobank (n = 395,718) and cardio-metabolic disease were from largest available GWAS summary statistics. Inverse variance weighting (IVW) was conducted, with weighted median, MR-Egger, and MR-PRESSO as sensitivity analyses. We repeated this in the opposite direction using instruments for cardio-metabolic disease. RESULTS Genetically predicted mtDNA copy number was not associated with risk of obesity (P = 0.148), hypertension (P = 0.515), dyslipidemia (P = 0.684), T2DM (P = 0.631), CAD (P = 0.199), stroke (P = 0.314), ischemic stroke (P = 0.633), and heart failure (P = 0.708). Regarding the reverse directions, we only found that genetically predicted dyslipidemia was associated with decreased levels of mtDNA copy number in the IVW analysis (β= - 0.060, 95% CI - 0.044 to - 0.076; P = 2.416e-14) and there was suggestive of evidence for a potential causal association between CAD and mtDNA copy number (β= - 0.021, 95% CI - 0.003 to - 0.039; P = 0.025). Sensitivity and replication analyses showed the stable findings. CONCLUSIONS Findings of this Mendelian randomization study did not support a causal effect of mtDNA copy number in the development of cardiometabolic disease, but found dyslipidemia and CAD can lead to reduced mtDNA copy number. These findings have implications for mtDNA copy number as a biomarker of dyslipidemia and CAD in clinical practice.
Collapse
Affiliation(s)
- Pei Qin
- Department of General Practice, The Affiliated Luohu Hospital of Shenzhen University, No. 47, Youti Road, Shenzhen, 518001, Guangdong, China
| | - Tianhang Qin
- Institute of Software Chinese Academy of Sciences, Beijing, Guangdong, China
| | - Lei Liang
- Department of Gynecology and Obstetrics, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, Guangdong, China
| | - Xinying Li
- School of Public Health, Shantou University, Shantou, Guangdong, China
| | - Bin Jiang
- Department of Neurology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, Guangdong, China
| | - Xiaojie Wang
- Department of Neurology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, Guangdong, China
| | - Jianping Ma
- Department of Neurology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, Guangdong, China
| | - Fulan Hu
- School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Ming Zhang
- School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Dongsheng Hu
- Department of General Practice, The Affiliated Luohu Hospital of Shenzhen University, No. 47, Youti Road, Shenzhen, 518001, Guangdong, China.
| |
Collapse
|
10
|
Hong MY, Chen YX, Xiong YC, Sun YH, Al Mamun A, Xiao J. Association between migraine and mitochondria: A Mendelian randomization study. Mol Pain 2024; 20:17448069241298849. [PMID: 39716036 DOI: 10.1177/17448069241298849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Mitochondria are important organelles functioning in metabolic processes, inflammatory response and neurological disorders. Migraines are chronic and paroxysmal neurological disorders characterized by recurrent episodes of severe headache and other neurological symptoms. We explored whether mitochondria may be genetically and/or causally associated with migraine. METHODS Summary-level statistics of mitochondrial DNA copy number (mtDNA-CN), 69 mitochondria related exposures and migraine with aura, migraine without aura, migraine with aura and triptan purchases, migraine with aura, drug-induced, migraine without aura and triptan purchases and migraine without aura, drug-induced, were collected from genome-wide association studies (GWAS). The analysis employed two-sample Mendelian randomization, utilizing various methods including MR-Egger, inverse-variance weighted (IVW), MR-PRESSO (MR-pleiotropy residual sum and outlier), maximum likelihood, and weighted median. RESULTS We observed a potential association with decreased levels of mtDNA-CN with the risk of migraine without aura (Odds ratio (OR) 1.517, 95% Confidence interval (CI) 1.072-2.147, p = 0.019). Besides, for every 1 unit in NAD-dependent protein deacylase sirtuin-5 (SIRT5), relative risk of migraine without aura increased by 16.4%. For every 1 unit increase in Phenylalanine-transfer RNA (tRNA) ligase, relative risk of migraine without aura increased by 13.5%. For every 1 unit increase in Apoptosis-inducing factor 1, relative risk of migraine without aura increased by 27.4%. CONCLUSION This study indicates fresh evidence of association between mtDNA-CN, mitochondrial related exposures and migraine especially migraine without aura. The findings may shed light on developing interventions targeting on the causal pathway from mitochondria to migraine.
Collapse
Affiliation(s)
- Ming-Yang Hong
- Central Laboratory of The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui City, Zhejiang, China
- Alberta Institute, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yu-Xin Chen
- Central Laboratory of The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui City, Zhejiang, China
- Alberta Institute, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi-Cheng Xiong
- Alberta Institute, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi-Han Sun
- Second College of Clinical Medical, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Abdullah Al Mamun
- Central Laboratory of The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui City, Zhejiang, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jian Xiao
- Central Laboratory of The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui City, Zhejiang, China
- Alberta Institute, Wenzhou Medical University, Wenzhou, Zhejiang, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
11
|
Wang Q, Ma L, Sun B, Zhang A. Reduced Peripheral Blood Mitochondrial DNA Copy Number as Identification Biomarker of Suspected Arsenic-Induced Liver Damage. Biol Trace Elem Res 2023; 201:5083-5097. [PMID: 36720785 DOI: 10.1007/s12011-023-03584-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/24/2023] [Indexed: 02/02/2023]
Abstract
Arsenic (As) can cause liver damage and liver cancer and is capable of seriously affecting human health. Therefore, it is important to identify biomarkers of arsenic-induced liver damage. Mitochondria are key targets of hepatotoxicity caused by arsenic. The mitochondrial DNA copy number (mtDNAcn) is the number of mitochondrial DNA (mtDNA) copies in the genome. mtDNA is vulnerable to exogenous chemical attacks, thus causing mtDNAcn to change after exposure to environmental pollutants. Therefore, mtDNAcn can serve as a potential marker to identify and assess the risk of diseases caused by exposure to environmental pollutants. In this study, we selected 272 arsenicosis patients (155 cases without liver damage and 117 cases with liver damage) and 218 participants not exposed to arsenic (155 cases without liver damage and 63 cases with liver damage) as subjects to investigate the correlation between peripheral blood mtDNAcn and arsenic-induced liver damage, as well as the ability of peripheral blood mtDNAcn to identify and assess the risk of arsenic-induced liver damage. Peripheral blood mtDNAcn in patients with arsenic-induced liver damage is significantly decreased and negatively correlated with serum ALT, AST, and GGT levels. The decrease of peripheral blood mtDNAcn was associated with an increased risk of arsenic-induced liver damage. The receiver operating characteristic (ROC) curve analysis indicated that peripheral blood mtDNAcn could specifically identify patients with liver damage in the arsenicosis group. The decision tree C5.0 model was established to identify arsenicosis in all patients with liver damage. Peripheral blood mtDNAcn was included in the model and played the most important role in the identification of arsenic-induced liver damage. This study provided a basis for the identification and evaluation of arsenic-induced liver damage by peripheral blood mtDNAcn, indicating that peripheral blood mtDNAcn is expected to be a potential biomarker of arsenic-induced liver damage, and provides clues for exploring the mechanism of arsenic-induced liver damage from mitochondria damage.
Collapse
Affiliation(s)
- Qi Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Lu Ma
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Baofei Sun
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China.
| |
Collapse
|
12
|
Ikezaki H, Nomura H, Shimono N. Impact of peripheral mitochondrial DNA level on immune response after COVID-19 vaccination. iScience 2023; 26:107094. [PMID: 37351502 PMCID: PMC10256584 DOI: 10.1016/j.isci.2023.107094] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/30/2023] [Accepted: 06/07/2023] [Indexed: 06/24/2023] Open
Abstract
The efficacy of vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the elderly is partially hindered by immunosenescence, resulting from decreased mtDNA levels. This study evaluated the correlation between mtDNA levels in peripheral leukocytes and immune response to the SARS-CoV-2 vaccine. Two hundred ten participants (median age 79.5 years), including 83 frail residents/inpatients and 70 robust outpatients, were analyzed. Anti-spike IgG antibody (IgG(S)) titers were serially measured from before the first vaccination to after the third vaccination. The mtDNA levels and cell-mediated immunity were measured in 45 elderly and 22 elderly individuals two months after the third vaccination. The robust group had consistently higher IgG(S) titers than the frail group. The mtDNA levels positively correlated with IgG(S) titers, as well as with cell-mediated immunity. These findings suggest that mtDNA levels positively impact vaccine-induced immunity. Further studies into maintaining mtDNA levels may provide insights into immunosenescence in the elderly.
Collapse
Affiliation(s)
- Hiroaki Ikezaki
- Department of General Internal Medicine, Kyushu University Hospital, Fukuoka 8128582, Japan
- Department of Comprehensive General Internal Medicine, Kyushu University Faculty of Medical Sciences, Fukuoka 8128582, Japan
- Department of Internal Medicine, Haradoi Hospital, Fukuoka 8138588, Japan
| | - Hideyuki Nomura
- Department of Internal Medicine, Haradoi Hospital, Fukuoka 8138588, Japan
| | - Nobuyuki Shimono
- Department of General Internal Medicine, Kyushu University Hospital, Fukuoka 8128582, Japan
| |
Collapse
|