1
|
Thau H, Neuber S, Emmert MY, Nazari-Shafti TZ. Targeting Lipoprotein(a): Can RNA Therapeutics Provide the Next Step in the Prevention of Cardiovascular Disease? Cardiol Ther 2024; 13:39-67. [PMID: 38381282 PMCID: PMC10899152 DOI: 10.1007/s40119-024-00353-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/12/2024] [Indexed: 02/22/2024] Open
Abstract
Numerous genetic and epidemiologic studies have demonstrated an association between elevated levels of lipoprotein(a) (Lp[a]) and cardiovascular disease. As a result, lowering Lp(a) levels is widely recognized as a promising strategy for reducing the risk of new-onset coronary heart disease, stroke, and heart failure. Lp(a) consists of a low-density lipoprotein-like particle with covalently linked apolipoprotein A (apo[a]) and apolipoprotein B-100, which explains its pro-thrombotic, pro-inflammatory, and pro-atherogenic properties. Lp(a) serum concentrations are genetically determined by the apo(a) isoform, with shorter isoforms having a higher rate of particle synthesis. To date, there are no approved pharmacological therapies that effectively reduce Lp(a) levels. Promising treatment approaches targeting apo(a) expression include RNA-based drugs such as pelacarsen, olpasiran, SLN360, and lepodisiran, which are currently in clinical trials. In this comprehensive review, we provide a detailed overview of RNA-based therapeutic approaches and discuss the recent advances and challenges of RNA therapeutics specifically designed to reduce Lp(a) levels and thus the risk of cardiovascular disease.
Collapse
Affiliation(s)
- Henriette Thau
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353, Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Sebastian Neuber
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353, Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Maximilian Y Emmert
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353, Berlin, Germany.
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353, Berlin, Germany.
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 13353, Berlin, Germany.
- Institute for Regenerative Medicine, University of Zurich, 8044, Zurich, Switzerland.
| | - Timo Z Nazari-Shafti
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353, Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 13353, Berlin, Germany
- BIH Biomedical Innovation Academy, BIH Charité (Junior) (Digital) Clinician Scientist Program, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 13353, Berlin, Germany
| |
Collapse
|
2
|
Tselepis AD. Treatment of Lp(a): Is It the Future or Are We Ready Today? Curr Atheroscler Rep 2023; 25:679-689. [PMID: 37668953 PMCID: PMC10564831 DOI: 10.1007/s11883-023-01141-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 09/06/2023]
Abstract
PURPOSE OF REVIEW The goal of this review is to present the pharmacodynamic effectiveness as well as the clinical efficacy and safety of investigational antisense oligonucleotides (ASOs) and small interference RNAs (siRNAs) drugs that specifically target lipoprotein(a) (Lp(a)). The review will discuss whether the existing lipid-lowering therapies are adequate to treat high Lp(a) levels or whether it is necessary to use the emerging new therapeutic approaches which are based on the current RNA technologies. RECENT FINDINGS Lipoprotein(a) (Lp(a)) is a causal risk factor for atherosclerotic cardiovascular disease (ASCVD), independent of other conventional risk factors. High Lp(a) levels are also independently associated with an increased risk of aortic stenosis progression rate. Plasma Lp(a) levels are primarily genetically determined by variation in the LPA gene coding for apo(a). All secondary prevention trials have demonstrated that the existing hypolipidemic therapies are not adequate to reduce Lp(a) levels to such an extent that could lead to a substantial reduction of ASCVD risk. This has led to the development of new drugs that target the mRNA transcript of LPA and efficiently inhibit Lp(a) synthesis leading to potent Lp(a) reduction. These new drugs are the ASO pelacarsen and the siRNAs olpasiran and SLN360. Recent pharmacodynamic studies showed that all these drugs potently reduce Lp(a) up to 98%, in a dose-dependent manner. Ongoing clinical trials will determine the Lp(a)-lowering efficacy, tolerability, and safety of these drugs as well as their potential effectiveness in reducing the ASCVD risk attributed to high plasma Lp(a) levels. We are not ready today to significantly reduce plasma Lp(a). Emerging therapies potently decrease Lp(a) and ongoing clinical trials will determine their effectiveness in reducing ASCVD risk in subjects with high Lp(a) levels.
Collapse
Affiliation(s)
- Alexandros D Tselepis
- Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece.
| |
Collapse
|
3
|
Vinci P, Di Girolamo FG, Panizon E, Tosoni LM, Cerrato C, Pellicori F, Altamura N, Pirulli A, Zaccari M, Biasinutto C, Roni C, Fiotti N, Schincariol P, Mangogna A, Biolo G. Lipoprotein(a) as a Risk Factor for Cardiovascular Diseases: Pathophysiology and Treatment Perspectives. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6721. [PMID: 37754581 PMCID: PMC10531345 DOI: 10.3390/ijerph20186721] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 09/28/2023]
Abstract
Cardiovascular disease (CVD) is still a leading cause of morbidity and mortality, despite all the progress achieved as regards to both prevention and treatment. Having high levels of lipoprotein(a) [Lp(a)] is a risk factor for cardiovascular disease that operates independently. It can increase the risk of developing cardiovascular disease even when LDL cholesterol (LDL-C) levels are within the recommended range, which is referred to as residual cardiovascular risk. Lp(a) is an LDL-like particle present in human plasma, in which a large plasminogen-like glycoprotein, apolipoprotein(a) [Apo(a)], is covalently bound to Apo B100 via one disulfide bridge. Apo(a) contains one plasminogen-like kringle V structure, a variable number of plasminogen-like kringle IV structures (types 1-10), and one inactive protease region. There is a large inter-individual variation of plasma concentrations of Lp(a), mainly ascribable to genetic variants in the Lp(a) gene: in the general po-pulation, Lp(a) levels can range from <1 mg/dL to >1000 mg/dL. Concentrations also vary between different ethnicities. Lp(a) has been established as one of the risk factors that play an important role in the development of atherosclerotic plaque. Indeed, high concentrations of Lp(a) have been related to a greater risk of ischemic CVD, aortic valve stenosis, and heart failure. The threshold value has been set at 50 mg/dL, but the risk may increase already at levels above 30 mg/dL. Although there is a well-established and strong link between high Lp(a) levels and coronary as well as cerebrovascular disease, the evidence regarding incident peripheral arterial disease and carotid atherosclerosis is not as conclusive. Because lifestyle changes and standard lipid-lowering treatments, such as statins, niacin, and cholesteryl ester transfer protein inhibitors, are not highly effective in reducing Lp(a) levels, there is increased interest in developing new drugs that can address this issue. PCSK9 inhibitors seem to be capable of reducing Lp(a) levels by 25-30%. Mipomersen decreases Lp(a) levels by 25-40%, but its use is burdened with important side effects. At the current time, the most effective and tolerated treatment for patients with a high Lp(a) plasma level is apheresis, while antisense oligonucleotides, small interfering RNAs, and microRNAs, which reduce Lp(a) levels by targeting RNA molecules and regulating gene expression as well as protein production levels, are the most widely explored and promising perspectives. The aim of this review is to provide an update on the current state of the art with regard to Lp(a) pathophysiological mechanisms, focusing on the most effective strategies for lowering Lp(a), including new emerging alternative therapies. The purpose of this manuscript is to improve the management of hyperlipoproteinemia(a) in order to achieve better control of the residual cardiovascular risk, which remains unacceptably high.
Collapse
Affiliation(s)
- Pierandrea Vinci
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (F.G.D.G.); (E.P.); (L.M.T.); (C.C.); (F.P.); (N.A.); (A.P.); (M.Z.); (N.F.); (G.B.)
| | - Filippo Giorgio Di Girolamo
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (F.G.D.G.); (E.P.); (L.M.T.); (C.C.); (F.P.); (N.A.); (A.P.); (M.Z.); (N.F.); (G.B.)
- SC Assistenza Farmaceutica, Cattinara Hospital, Azienda Sanitaria Universitaria Integrata di Trieste, 34149 Trieste, Italy; (C.B.); (C.R.); (P.S.)
| | - Emiliano Panizon
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (F.G.D.G.); (E.P.); (L.M.T.); (C.C.); (F.P.); (N.A.); (A.P.); (M.Z.); (N.F.); (G.B.)
| | - Letizia Maria Tosoni
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (F.G.D.G.); (E.P.); (L.M.T.); (C.C.); (F.P.); (N.A.); (A.P.); (M.Z.); (N.F.); (G.B.)
| | - Carla Cerrato
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (F.G.D.G.); (E.P.); (L.M.T.); (C.C.); (F.P.); (N.A.); (A.P.); (M.Z.); (N.F.); (G.B.)
| | - Federica Pellicori
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (F.G.D.G.); (E.P.); (L.M.T.); (C.C.); (F.P.); (N.A.); (A.P.); (M.Z.); (N.F.); (G.B.)
| | - Nicola Altamura
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (F.G.D.G.); (E.P.); (L.M.T.); (C.C.); (F.P.); (N.A.); (A.P.); (M.Z.); (N.F.); (G.B.)
| | - Alessia Pirulli
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (F.G.D.G.); (E.P.); (L.M.T.); (C.C.); (F.P.); (N.A.); (A.P.); (M.Z.); (N.F.); (G.B.)
| | - Michele Zaccari
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (F.G.D.G.); (E.P.); (L.M.T.); (C.C.); (F.P.); (N.A.); (A.P.); (M.Z.); (N.F.); (G.B.)
| | - Chiara Biasinutto
- SC Assistenza Farmaceutica, Cattinara Hospital, Azienda Sanitaria Universitaria Integrata di Trieste, 34149 Trieste, Italy; (C.B.); (C.R.); (P.S.)
| | - Chiara Roni
- SC Assistenza Farmaceutica, Cattinara Hospital, Azienda Sanitaria Universitaria Integrata di Trieste, 34149 Trieste, Italy; (C.B.); (C.R.); (P.S.)
| | - Nicola Fiotti
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (F.G.D.G.); (E.P.); (L.M.T.); (C.C.); (F.P.); (N.A.); (A.P.); (M.Z.); (N.F.); (G.B.)
| | - Paolo Schincariol
- SC Assistenza Farmaceutica, Cattinara Hospital, Azienda Sanitaria Universitaria Integrata di Trieste, 34149 Trieste, Italy; (C.B.); (C.R.); (P.S.)
| | - Alessandro Mangogna
- Institute for Maternal and Child Health, I.R.C.C.S “Burlo Garofolo”, 34137 Trieste, Italy;
| | - Gianni Biolo
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (F.G.D.G.); (E.P.); (L.M.T.); (C.C.); (F.P.); (N.A.); (A.P.); (M.Z.); (N.F.); (G.B.)
| |
Collapse
|
4
|
Sbrana F, Bigazzi F, Ripoli A, Dal Pino B. Alirocumab in lipoprotein apheresis: A synergy for patients with high-Lp(a). Transfus Apher Sci 2023:103660. [PMID: 36828747 DOI: 10.1016/j.transci.2023.103660] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/23/2023]
Abstract
Until today lipoprotein apheresis (LA) is considered the most effective treatment for patients with high-Lp(a) and proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9i) are often combined with LA to dampen the rebound in lipoprotein concentrations. The aim of the present work is to evaluate the effect of dose-adjustment strategy for alirocumab in a small cohort of high-Lp(a) subjects with ischemic heart disease and in chronic LA treatment. Chronic LA effect on Lp(a) levels is a significant reduction in pre-LA Lp(a) concentrations compared to native Lp(a) value (118 [116-119] mg/dl vs 150 [137-155] mg/dl; p < 0.001). Furthermore, the administration of Arilocumab 75 mg after 7 days from LA shows a significant pre-LA reduction in the Lp(a) concentrations respect to those obtained with administration immediately after the LA treatment. In high-Lp(a) patients treated with chronic LA the deferred addition of alirocumab, resulted in lower LDL-cholesterol and Lp(a) values.
Collapse
Affiliation(s)
- Francesco Sbrana
- Lipoapheresis Unit - Reference Center for Diagnosis and Treatment of Inherited Dyslipidemias, Fondazione Toscana "Gabriele Monasterio", Via Moruzzi 1, Pisa 56124, Italy.
| | - Federico Bigazzi
- Lipoapheresis Unit - Reference Center for Diagnosis and Treatment of Inherited Dyslipidemias, Fondazione Toscana "Gabriele Monasterio", Via Moruzzi 1, Pisa 56124, Italy
| | - Andrea Ripoli
- Bioengineering Department, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Beatrice Dal Pino
- Lipoapheresis Unit - Reference Center for Diagnosis and Treatment of Inherited Dyslipidemias, Fondazione Toscana "Gabriele Monasterio", Via Moruzzi 1, Pisa 56124, Italy
| |
Collapse
|
5
|
Kuss SFR, Schatz U, Tselmin S, Fischer S, Julius U. The development of lipoprotein apheresis in Saxony in the last years. Ther Apher Dial 2022; 26 Suppl 1:53-63. [PMID: 36584880 DOI: 10.1111/1744-9987.13940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/23/2022] [Accepted: 10/11/2022] [Indexed: 01/01/2023]
Abstract
METHODS Three hundred thirty-nine patients (230 men, 109 women) treated with lipoprotein apheresis in Saxony, Germany, in 2018 are described in terms of age, lipid pattern, risk factors, cardiovascular events, medication, and number of new admissions since 2014, and the data are compared with figures from 2010 to 2013. RESULTS Patients were treated by 45.5 physicians in 16 lipoprotein apheresis centers. With about 10 patients per 100 000 inhabitants, the number of patients treated with lipoprotein apheresis in Saxony is twice as high as in Germany as a whole. The median treatment time was 3 years. Almost all patients had hypertension; type 2 diabetes mellitus was seen significantly more often in patients with low Lipoprotein(a). Cardiovascular events occurred in almost all patients before initiation of lipoprotein apheresis, under apheresis therapy the cardiovascular events rate was very low in this high-risk group. For some cardiovascular regions even no events could be observed. CONCLUSIONS The importance of lipoprotein apheresis in Saxony had been increasing from 2010 to 2018.
Collapse
Affiliation(s)
- Solveig Frieda Rosa Kuss
- Department of Internal Medicine III, University Hospital Carl Gustav Carus Dresden at the Technische Universität Dresden, Dresden, Germany
| | - Ulrike Schatz
- Department of Internal Medicine III, University Hospital Carl Gustav Carus Dresden at the Technische Universität Dresden, Dresden, Germany
| | - Sergey Tselmin
- Department of Internal Medicine III, University Hospital Carl Gustav Carus Dresden at the Technische Universität Dresden, Dresden, Germany
| | - Sabine Fischer
- Department of Internal Medicine III, University Hospital Carl Gustav Carus Dresden at the Technische Universität Dresden, Dresden, Germany
| | - Ulrich Julius
- Department of Internal Medicine III, University Hospital Carl Gustav Carus Dresden at the Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
6
|
Elevated Lipoprotein(a) Linked to Recurrent Cardiovascular Events – A Case Report. JOURNAL OF INTERDISCIPLINARY MEDICINE 2022. [DOI: 10.2478/jim-2022-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Abstract
The role of lipoprotein(a) [Lp(a)] in the development of atherosclerosis has been recently recognized, and the current recommendation is to measure Lp(a) once in a lifetime in all individuals, in order to identify those at risk for developing an acute coronary syndrome or recurrent events, even in the absence of other cardiovascular risk factors. We present the case of a middle-aged patient with recurrent cardiovascular events, in whom we identified high levels of Lp(a) as a possible explanation of the recurrent events.
Collapse
|
7
|
Bornstein SR, Cozma D, Kamel M, Hamad M, Mohammad MG, Khan NA, Saber MM, Semreen MH, Steenblock C. Long-COVID, Metabolic and Endocrine Disease. Horm Metab Res 2022; 54:562-566. [PMID: 35724687 PMCID: PMC9363148 DOI: 10.1055/a-1878-9307] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In the aftermath of the corona pandemic, long-COVID or post-acute COVID-19 syndrome still represents a great challenge, and this topic will continue to represent a significant health problem in the coming years. At present, the impact of long-COVID on our health system cannot be fully assessed but according to current studies, up to 40% of people who have been infected with SARS-CoV-2 suffer from clinically relevant symptoms of long-COVID syndrome several weeks to months after the acute phase. The main symptoms are chronic fatigue, dyspnea, and various cognitive symptoms. Initial studies have shown that people with overweight and diabetes mellitus have a higher risk of developing long-COVID associated symptoms. Furthermore, repeated treatment of acute COVID-19 and long-COVID with steroids can contribute to long-term metabolic and endocrine disorders. Therefore, a structured program with rehabilitation and physical activity as well as optimal dietary management is of utmost importance, especially for patients with metabolic diseases and/or long-COVID. Furthermore, the removal of autoantibodies and specific therapeutic apheresis procedures could lead to a significant improvement in the symptoms of long-COVID in individual patients.
Collapse
Affiliation(s)
- Stefan R. Bornstein
- Department of Medicine III, Universitätsklinikum Carl Gustav
Carus, Dresden, Germany
- School of Cardiovascular and Metabolic Medicine and Sciences, Faculty
of Life Sciences & Medicine, King’s College London, London,
UK
| | - Diana Cozma
- Department of Medicine III, Universitätsklinikum Carl Gustav
Carus, Dresden, Germany
| | - Margrit Kamel
- Center for Regenerative Therapies Dresden, Technische
Universität Dresden, Dresden, Germany
| | - Mawieh Hamad
- Sharjah Institute for Medical Research, University of Sharjah College
of Health Sciences, Sharjah, United Arab Emirates
| | - Mohammad G. Mohammad
- Department of Medical Laboratory Sciences, College of Health Sciences,
University of Sharjah, Sharjah, United Arab Emirates
| | - Naveed A. Khan
- College of Medicine, University of Sharjah, Sharjah, United Arab
Emirates
| | - Maha M. Saber
- College of Medicine, University of Sharjah, Sharjah, United Arab
Emirates
| | | | - Charlotte Steenblock
- Department of Medicine III, Universitätsklinikum Carl Gustav
Carus, Dresden, Germany
- Correspondence Dr. Charlotte
Steenblock University Hospital Carl Gustav Carus,
Technische Universität DresdenDepartment of
Medicine IIIFetscherstraße
7401307
DresdenGermany+493514586130+493514586336
| |
Collapse
|
8
|
Parthymos I, Kostapanos MS, Mikhailidis DP, Florentin M. Lipoprotein (a) as a treatment target for cardiovascular disease prevention and related therapeutic strategies: a critical overview. Eur J Prev Cardiol 2022; 29:739-755. [PMID: 34389859 DOI: 10.1093/eurjpc/zwab052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/30/2020] [Accepted: 03/15/2021] [Indexed: 12/21/2022]
Abstract
Advances in several fields of cardiovascular (CV) medicine have produced new treatments (e.g. to treat dyslipidaemia) that have proven efficacy in terms of reducing deaths and providing a better quality of life. However, the burden of CV disease (CVD) remains high. Thus, there is a need to search for new treatment targets. Lipoprotein (a) [Lp(a)] has emerged as a potential novel target since there is evidence that it contributes to CVD events. In this narrative review, we present the current evidence of the potential causal relationship between Lp(a) and CVD and discuss the likely magnitude of Lp(a) lowering required to produce a clinical benefit. We also consider current and investigational treatments targeting Lp(a), along with the potential cost of these interventions.
Collapse
Affiliation(s)
- Ioannis Parthymos
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina 45110, Greece
| | - Michael S Kostapanos
- Department of General Medicine, Lipid Clinic, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London NW3 2QG, UK
| | - Matilda Florentin
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina 45110, Greece
| |
Collapse
|
9
|
Koutsogianni AD, Liberopoulos E, Tellis K, Tselepis AD. Oxidized phospholipids and lipoprotein(a): An update. Eur J Clin Invest 2022; 52:e13710. [PMID: 34837383 DOI: 10.1111/eci.13710] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 12/17/2022]
Abstract
Over the past few years, there has been an undiminished interest in lipoprotein(a) [Lp(a)] and oxidized phospholipids (OxPLs), mainly carried on this lipoprotein. Elevated Lp(a) has been established as an independent causal risk factor for cardiovascular disease. OxPLs play an important role in atherosclerosis. The main questions that remain to be answered, however, is to what extent OxPLs contribute to the atherogenicity of Lp(a), what effect hypolipidaemic medications may have on their levels and the potential clinical benefit of their reduction. This narrative review aimed to summarize currently available data on OxPLs and cardiovascular risk, as well as the effect of established and emerging hypolipidaemic medications on Lp(a)-OxPLs.
Collapse
Affiliation(s)
| | - Evangelos Liberopoulos
- Department of Internal Medicine, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Konstantinos Tellis
- Department of Chemistry, Atherothrombosis Research Centre/Laboratory of Biochemistry, University of Ioannina, Ioannina, Greece
| | - Alexandros D Tselepis
- Department of Chemistry, Atherothrombosis Research Centre/Laboratory of Biochemistry, University of Ioannina, Ioannina, Greece
| |
Collapse
|
10
|
Korneva VA, Kuznetsova TY, Julius U. Modern Approaches to Lower Lipoprotein(a) Concentrations and Consequences for Cardiovascular Diseases. Biomedicines 2021; 9:biomedicines9091271. [PMID: 34572458 PMCID: PMC8469722 DOI: 10.3390/biomedicines9091271] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/09/2021] [Accepted: 09/15/2021] [Indexed: 12/11/2022] Open
Abstract
Lipoprotein(a) (Lp(a)) is a low density lipoprotein particle that is associated with poor cardiovascular prognosis due to pro-atherogenic, pro-thrombotic, pro-inflammatory and pro-oxidative properties. Traditional lipid-lowering therapy does not provide a sufficient Lp(a) reduction. For PCSK9 inhibitors a small reduction of Lp(a) levels could be shown, which was associated with a reduction in cardiovascular events, independently of the effect on LDL cholesterol. Another option is inclisiran, for which no outcome data are available yet. Lipoprotein apheresis acutely and in the long run decreases Lp(a) levels and effectively improves cardiovascular prognosis in high-risk patients who cannot be satisfactorily treated with drugs. New drugs inhibiting the synthesis of apolipoprotein(a) (an antisense oligonucleotide (Pelacarsen) and two siRNA drugs) are studied. Unlike LDL-cholesterol, for Lp(a) no target value has been defined up to now. This overview presents data of modern capabilities of cardiovascular risk reduction by lowering Lp(a) level.
Collapse
Affiliation(s)
- Victoria A. Korneva
- Department of Faculty Therapy, Petrozavodsk State University, Lenin Ave. 33, 185000 Petrozavodsk, Russia;
- Correspondence:
| | | | - Ulrich Julius
- Lipidology and Lipoprotein Apheresis Center, Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany;
| |
Collapse
|
11
|
Iannuzzo G, Tripaldella M, Mallardo V, Morgillo M, Vitelli N, Iannuzzi A, Aliberti E, Giallauria F, Tramontano A, Carluccio R, Calcaterra I, Di Minno MND, Gentile M. Lipoprotein(a) Where Do We Stand? From the Physiopathology to Innovative Terapy. Biomedicines 2021; 9:838. [PMID: 34356902 PMCID: PMC8301358 DOI: 10.3390/biomedicines9070838] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/02/2021] [Accepted: 07/09/2021] [Indexed: 12/24/2022] Open
Abstract
A number of epidemiologic studies have demonstrated a strong association between increasing lipoprotein a [Lp(a)] and cardiovascular disease. This correlation was demonstrated independent of other known cardiovascular (CV) risk factors. Screening for Lp(a) in the general population is not recommended, although Lp(a) levels are predominantly genetically determined so a single assessment is needed to identify patients at risk. In 2019 ESC/EAS guidelines recommend Lp(a) measurement at least once a lifetime, fo subjects at very high and high CV risk and those with a family history of premature cardiovascular disease, to reclassify patients with borderline risk. As concerning medications, statins play a key role in lipid lowering therapy, but present poor efficacy on Lp(a) levels. Actually, treatment options for elevated serum levels of Lp(a) are very limited. Apheresis is the most effective and well tolerated treatment in patients with high levels of Lp(a). However, promising new therapies, in particular antisense oligonucleotides have showed to be able to significantly reduce Lp(a) in phase II RCT. This review provides an overview of the biology and epidemiology of Lp(a), with a view to future therapies.
Collapse
Affiliation(s)
- Gabriella Iannuzzo
- Department of Clinical Medicine and Surgery, “Federico II” University, 80131 Naples, Italy; (M.T.); (V.M.); (M.M.); (N.V.); (I.C.); (M.N.D.D.M.); (M.G.)
| | - Maria Tripaldella
- Department of Clinical Medicine and Surgery, “Federico II” University, 80131 Naples, Italy; (M.T.); (V.M.); (M.M.); (N.V.); (I.C.); (M.N.D.D.M.); (M.G.)
| | - Vania Mallardo
- Department of Clinical Medicine and Surgery, “Federico II” University, 80131 Naples, Italy; (M.T.); (V.M.); (M.M.); (N.V.); (I.C.); (M.N.D.D.M.); (M.G.)
| | - Mena Morgillo
- Department of Clinical Medicine and Surgery, “Federico II” University, 80131 Naples, Italy; (M.T.); (V.M.); (M.M.); (N.V.); (I.C.); (M.N.D.D.M.); (M.G.)
| | - Nicoletta Vitelli
- Department of Clinical Medicine and Surgery, “Federico II” University, 80131 Naples, Italy; (M.T.); (V.M.); (M.M.); (N.V.); (I.C.); (M.N.D.D.M.); (M.G.)
| | - Arcangelo Iannuzzi
- Department of Medicine and Medical Specialties, A. Cardarelli Hospital, 80131 Naples, Italy;
| | - Emilio Aliberti
- North Tees University Hospital Stockton-on-Tees, Stockton TS19 8PE, UK;
| | - Francesco Giallauria
- Department of Translational Medical Sciences, “Federico II” University of Naples, Via S. Pansini 5, 80131 Naples, Italy; (F.G.); (A.T.); (R.C.)
| | - Anna Tramontano
- Department of Translational Medical Sciences, “Federico II” University of Naples, Via S. Pansini 5, 80131 Naples, Italy; (F.G.); (A.T.); (R.C.)
| | - Raffaele Carluccio
- Department of Translational Medical Sciences, “Federico II” University of Naples, Via S. Pansini 5, 80131 Naples, Italy; (F.G.); (A.T.); (R.C.)
| | - Ilenia Calcaterra
- Department of Clinical Medicine and Surgery, “Federico II” University, 80131 Naples, Italy; (M.T.); (V.M.); (M.M.); (N.V.); (I.C.); (M.N.D.D.M.); (M.G.)
| | - Matteo Nicola Dario Di Minno
- Department of Clinical Medicine and Surgery, “Federico II” University, 80131 Naples, Italy; (M.T.); (V.M.); (M.M.); (N.V.); (I.C.); (M.N.D.D.M.); (M.G.)
| | - Marco Gentile
- Department of Clinical Medicine and Surgery, “Federico II” University, 80131 Naples, Italy; (M.T.); (V.M.); (M.M.); (N.V.); (I.C.); (M.N.D.D.M.); (M.G.)
| |
Collapse
|
12
|
Abstract
Lipoprotein(a) [Lp(a)] is an atherogenic lipoprotein with a strong genetic regulation. Up to 90% of the concentrations are explained by a single gene, the LPA gene. The concentrations show a several-hundred-fold interindividual variability ranging from less than 0.1 mg/dL to more than 300 mg/dL. Lp(a) plasma concentrations above 30 mg/dL and even more above 50 mg/dL are associated with an increased risk for cardiovascular disease including myocardial infarction, stroke, aortic valve stenosis, heart failure, peripheral arterial disease, and all-cause mortality. Since concentrations above 50 mg/dL are observed in roughly 20% of the Caucasian population and in an even higher frequency in African-American and Asian-Indian ethnicities, it can be assumed that Lp(a) is one of the most important genetically determined risk factors for cardiovascular disease.Carriers of genetic variants that are associated with high Lp(a) concentrations have a markedly increased risk for cardiovascular events. Studies that used these genetic variants as a genetic instrument to support a causal role for Lp(a) as a cardiovascular risk factor are called Mendelian randomization studies. The principle of this type of studies has been introduced and tested for the first time ever with Lp(a) and its genetic determinants.There are currently no approved pharmacologic therapies that specifically target Lp(a) concentrations. However, some therapies that target primarily LDL cholesterol have also an influence on Lp(a) concentrations. These are mainly PCSK9 inhibitors that lower LDL cholesterol by 60% and Lp(a) by 25-30%. Furthermore, lipoprotein apheresis lowers both, Lp(a) and LDL cholesterol, by about 60-70%. Some sophisticated study designs and statistical analyses provided support that lowering Lp(a) by these therapies also lowers cardiovascular events on top of the effect caused by lowering LDL cholesterol, although this was not the main target of the therapy. Currently, new therapies targeting RNA such as antisense oligonucleotides (ASO) or small interfering RNA (siRNA) against apolipoprotein(a), the main protein of the Lp(a) particle, are under examination and lower Lp(a) concentrations up to 90%. Since these therapies specifically lower Lp(a) concentrations without influencing other lipoproteins, they will serve the last piece of the puzzle whether a decrease of Lp(a) results also in a decrease of cardiovascular events.
Collapse
|
13
|
Greco MF, Sirtori CR, Corsini A, Ezhov M, Sampietro T, Ruscica M. Lipoprotein(a) Lowering-From Lipoprotein Apheresis to Antisense Oligonucleotide Approach. J Clin Med 2020; 9:jcm9072103. [PMID: 32635396 PMCID: PMC7408876 DOI: 10.3390/jcm9072103] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 06/24/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022] Open
Abstract
It is well-known that elevated lipoprotein(a)—Lp(a)—levels are associated with a higher risk of cardiovascular (CV) mortality and all-cause mortality, although a standard pharmacotherapeutic approach is still undefined for patients with high CV risk dependent on hyperlipoproteinemia(a). Combined with high Lp(a) levels, familial hypercholesterolemia (FH) leads to a greater CVD risk. In suspected FH patients, the proportion of cases explained by a rise of Lp(a) levels ranges between 5% and 20%. In the absence of a specific pharmacological approach able to lower Lp(a) to the extent required to achieve CV benefits, the most effective strategy today is lipoprotein apheresis (LA). Although limited, a clear effect on Lp(a) is exerted by PCSK9 antagonists, with apparently different mechanisms when given with statins (raised catabolism) or as monotherapy (reduced production). In the era of RNA-based therapies, a new dawn is represented by the use of antisense oligonucleotides APO(a)Lrx, able to reduce Lp(a) from 35% to over 80%, with generally modest injection site reactions. The improved knowledge of Lp(a) atherogenicity and possible prevention will be of benefit for patients with residual CV risk remaining after the most effective available lipid-lowering agents.
Collapse
Affiliation(s)
- Maria Francesca Greco
- Dipartimento di Science Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy; (M.F.G.); (A.C.)
| | - Cesare R. Sirtori
- Dyslipidemia Center, A.S.S.T. Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy;
| | - Alberto Corsini
- Dipartimento di Science Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy; (M.F.G.); (A.C.)
- IRCCS Multimedica, 20099 Milan, Italy
| | - Marat Ezhov
- National Medical Research Center of Cardiology of the Ministry of Health, Moscow, Russia;
| | - Tiziana Sampietro
- U.O. Lipoapheresis and Center for Inherited Dyslipidemias, Fondazione Toscana Gabriele Monasterio, 56126 Pisa, Italy;
| | - Massimiliano Ruscica
- Dipartimento di Science Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy; (M.F.G.); (A.C.)
- Correspondence: ; Tel.: +39-0250318220
| |
Collapse
|