1
|
Wang J, Papanicolaou K, Tryon R, Sangalang J, Salazar B, Suarez-Pierre A, Dong J, Lee A, Larson E, Holmes S, O’Rourke B, Nichols C, Lawton J. Kir1.1 and SUR1 are not implicated as subunits of an adenosine triphosphate-sensitive potassium channel involved in diazoxide cardioprotection. JTCVS OPEN 2023; 15:231-241. [PMID: 37808059 PMCID: PMC10556815 DOI: 10.1016/j.xjon.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 10/10/2023]
Abstract
Objective The adenosine triphosphate-sensitive potassium channel opener diazoxide mimics ischemic preconditioning and is cardioprotective. Clarification of diazoxide's site and mechanism of action could lead to targeted pharmacologic therapies for patients undergoing cardiac surgery. Several mitochondrial candidate proteins have been investigated as potential adenosine triphosphate-sensitive potassium channel components. Renal outer medullary potassium (Kir1.1) and sulfonylurea sensitive regulatory subunit 1 have been suggested as subunits of a mitochondrial adenosine triphosphate-sensitive potassium channel. We hypothesized that pharmacologic blockade or genetic deletion (knockout) of renal outer medullary potassium and sensitive regulatory subunit 1 would result in loss of diazoxide cardioprotection in models of global ischemia with cardioplegia. Methods Myocyte volume and contractility were compared after Tyrode's physiologic solution (20 minutes), stress (hyperkalemic cardioplegia ± diazoxide, ± VU591 (Kir1.1 inhibitor), N = 9 to 23 each, 20 min), and Tyrode's (20 minutes). Isolated mouse (wild-type, sensitive regulatory subunit 1 [-/-], and cardiac knockout renal outer medullary potassium) hearts were given cardioplegia ± diazoxide (N = 9-16 each) before global ischemia (90 minutes) and 30 minutes reperfusion. Left ventricular pressures were compared before and after ischemia. Results Stress (cardioplegia) was associated with reduced myocyte contractility that was prevented by diazoxide. Isolated myocytes were not responsive to diazoxide in the presence of VU591. In isolated hearts, diazoxide improved left ventricular function after prolonged ischemia compared with cardioplegia alone in wild-type and knockout (sensitive regulatory subunit 1 [-/-] and cardiac knockout renal outer medullary potassium) mice. Conclusions Isolated myocyte and heart models may measure independent and separate actions of diazoxide. By definitive genetic deletion, these data indicate that sensitive regulatory subunit 1 and renal outer medullary potassium are not implicated in cardioprotection by diazoxide.
Collapse
Affiliation(s)
- Jie Wang
- Division of Cardiac Surgery, Department of Surgery, Johns Hopkins University, Baltimore, Md
| | - Kyriakos Papanicolaou
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, Md
| | - Robert Tryon
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Mo
| | - Janelle Sangalang
- Division of Cardiac Surgery, Department of Surgery, Johns Hopkins University, Baltimore, Md
| | - Ben Salazar
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, Md
| | | | - Jie Dong
- Division of Cardiac Surgery, Department of Surgery, Johns Hopkins University, Baltimore, Md
| | - Anson Lee
- Division of Cardiac Surgery, Department of Surgery, Johns Hopkins University, Baltimore, Md
| | - Emily Larson
- Division of Cardiac Surgery, Department of Surgery, Johns Hopkins University, Baltimore, Md
| | - Sari Holmes
- Division of Cardiac Surgery, Department of Surgery, Johns Hopkins University, Baltimore, Md
| | - Brian O’Rourke
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, Md
| | - Colin Nichols
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Mo
| | - Jennifer Lawton
- Division of Cardiac Surgery, Department of Surgery, Johns Hopkins University, Baltimore, Md
| |
Collapse
|
2
|
Velez AK, Etchill E, Giuliano K, Kearney S, Jones M, Wang J, Cho B, Brady MB, Dodd‐o J, Meyer JM, Lawton JS. ATP-Sensitive Potassium Channel Opener Diazoxide Reduces Myocardial Stunning in a Porcine Regional With Subsequent Global Ischemia Model. J Am Heart Assoc 2022; 11:e026304. [PMID: 36444837 PMCID: PMC9851454 DOI: 10.1161/jaha.122.026304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Background ATP-sensitive potassium channels are inhibited by ATP and open during metabolic stress, providing endogenous myocardial protection. Pharmacologic opening of ATP potassium channels with diazoxide preserves myocardial function following prolonged global ischemia, making it an ideal candidate for use during cardiac surgery. We hypothesized that diazoxide would reduce myocardial stunning after regional ischemia with subsequent prolonged global ischemia, similar to the clinical situation of myocardial ischemia at the time of revascularization. Methods and Results Swine underwent left anterior descending occlusion (30 minutes), followed by 120 minutes global ischemia protected with hyperkalemic cardioplegia±diazoxide (N=6 each), every 20 minutes cardioplegia, then 60 minutes reperfusion. Cardiac output, time to wean from cardiopulmonary bypass, left ventricular (LV) function, caspase-3, and infarct size were compared. Six animals in the diazoxide group separated from bypass by 30 minutes, whereas only 4 animals in the cardioplegia group separated. Diazoxide was associated with shorter but not significant time to wean from bypass (17.5 versus 27.0 minutes; P=0.13), higher, but not significant, cardiac output during reperfusion (2.9 versus 1.5 L/min at 30 minutes; P=0.05), and significantly higher left ventricular ejection fraction at 30 minutes (42.5 versus 15.8%; P<0.01). Linear mixed regression modeling demonstrated greater left ventricular developed pressure (P<0.01) and maximum change in ventricular pressure during isovolumetric contraction (P<0.01) in the diazoxide group at 30 minutes of reperfusion. Conclusions Diazoxide reduces myocardial stunning and facilitates separation from cardiopulmonary bypass in a model that mimics the clinical setting of ongoing myocardial ischemia before revascularization. Diazoxide has the potential to reduce myocardial stunning in the clinical setting.
Collapse
Affiliation(s)
- Ana K. Velez
- Division of Cardiac Surgery, Department of SurgeryJohns Hopkins University School of MedicineBaltimoreMD
| | - Eric Etchill
- Division of Cardiac Surgery, Department of SurgeryJohns Hopkins University School of MedicineBaltimoreMD
| | - Katherine Giuliano
- Division of Cardiac Surgery, Department of SurgeryJohns Hopkins University School of MedicineBaltimoreMD
| | - Sean Kearney
- Division of Cardiac Surgery, Department of SurgeryJohns Hopkins University School of MedicineBaltimoreMD
| | - Melissa Jones
- Division of Cardiac Surgery, Department of SurgeryJohns Hopkins University School of MedicineBaltimoreMD
| | - Jie Wang
- Division of Cardiac Surgery, Department of SurgeryJohns Hopkins University School of MedicineBaltimoreMD
| | - Brian Cho
- Division of Cardiac Anesthesiology, Department of Anesthesiology and Critical Care MedicineJohns Hopkins University School of MedicineBaltimoreMD
| | - Mary Beth Brady
- Division of Cardiac Anesthesiology, Department of Anesthesiology and Critical Care MedicineJohns Hopkins University School of MedicineBaltimoreMD
| | - Jeffrey Dodd‐o
- Division of Cardiac Anesthesiology, Department of Anesthesiology and Critical Care MedicineJohns Hopkins University School of MedicineBaltimoreMD
| | - Joseph M. Meyer
- Division of Cardiology, Department of MedicineJohns Hopkins University School of MedicineBaltimoreMD
| | - Jennifer S. Lawton
- Division of Cardiac Surgery, Department of SurgeryJohns Hopkins University School of MedicineBaltimoreMD
| |
Collapse
|
3
|
Ahmad T, Wang J, Velez AK, Suarez-Pierre A, Clement KC, Dong J, Sebestyen K, Canner JK, Murphy MP, Lawton JS. Cardioprotective mechanisms of mitochondria-targeted S-nitrosating agent and adenosine triphosphate-sensitive potassium channel opener are mutually exclusive. JTCVS OPEN 2021; 8:338-354. [PMID: 36004142 PMCID: PMC9390287 DOI: 10.1016/j.xjon.2021.07.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 07/30/2021] [Indexed: 11/22/2022]
Abstract
Background Myocytes exposed to stress exhibit significant swelling and reduced contractility. These consequences are ameliorated by adenosine triphosphate-sensitive potassium (KATP) channel opener diazoxide (DZX) via an unknown mechanism. KATP channel openers also provide cardioprotection in multiple animal models. Nitric oxide donors are similarly cardioprotective, and their combination with KATP activation may provide synergistic benefit. We hypothesized that mitochondria-targeted S-nitrosating agent (MitoSNO) would provide synergistic cardioprotection with DZX. Methods Myocyte volume and contractility were compared following Tyrode's physiologic solution (20 minutes) and stress (hyperkalemic cardioplegia [CPG] ± DZX; n = 5-20 each; 20 minutes) with or without MitoSNO (n = 5-11 each) at the end of stress, followed by Tyrode's solution (20 minutes). Isolated mouse hearts received CPG ± DZX (n = 8-10 each) before global ischemia (90 minutes) with or without MitoSNO (n = 8 each) at the end of ischemia, followed by reperfusion (30 minutes). Left ventricular (LV) pressures were compared using a linear mixed model to assess the impact of treatment on the outcome, adjusting for baseline and balloon volume. Results Stress (CPG) was associated with reduced myocyte contractility that was prevented by DZX and MitoSNO individually; however, their combination was associated with loss of cardioprotection. Similarly, DZX and MitoSNO improved LV function after prolonged ischemia compared with CPG alone, and cardioprotection was lost with their combination. Conclusions MitoSNO and DZX provide cardioprotection that is lost with their combination, suggesting mutually exclusive mechanisms of action. The lack of a synergistic beneficial effect informs the current knowledge of the cardioprotective mechanisms of DZX and will aid planning of future clinical trials.
Collapse
Key Words
- CPG, cardioplegia
- DZX, diazoxide
- EDP, end-diastolic pressure
- KATP, adenosine triphosphate–sensitive potassium
- KHB, Krebs–Henseleit buffer
- LV, left ventricular
- LVDP, left ventricular developed pressure
- MitoSNO, mitochondrial-selective S–nitrosating agent
- NO, nitric oxide
- ROS, reactive oxygen species
- SDH, succinate dehydrogenase
- SUR, sulfonylurea
- basic science
- ion channels
- ischemia
- preconditioning
Collapse
Affiliation(s)
- Thaniyyah Ahmad
- Division of Cardiac Surgery, Department of Surgery, Johns Hopkins University, Baltimore, Md
| | - Jie Wang
- Division of Cardiac Surgery, Department of Surgery, Johns Hopkins University, Baltimore, Md
| | - Ana Karen Velez
- Division of Cardiac Surgery, Department of Surgery, Johns Hopkins University, Baltimore, Md
| | | | - Kathleen C. Clement
- Division of Cardiac Surgery, Department of Surgery, Johns Hopkins University, Baltimore, Md
| | - Jie Dong
- Division of Cardiac Surgery, Department of Surgery, Johns Hopkins University, Baltimore, Md
| | - Krisztian Sebestyen
- Johns Hopkins Center for Outcomes Research, Johns Hopkins University, Baltimore, Md
| | - Joseph K. Canner
- Johns Hopkins Center for Outcomes Research, Johns Hopkins University, Baltimore, Md
| | - Michael P. Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Jennifer S. Lawton
- Division of Cardiac Surgery, Department of Surgery, Johns Hopkins University, Baltimore, Md
| |
Collapse
|
4
|
Tinker A, Aziz Q, Li Y, Specterman M. ATP‐Sensitive Potassium Channels and Their Physiological and Pathophysiological Roles. Compr Physiol 2018; 8:1463-1511. [DOI: 10.1002/cphy.c170048] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
5
|
Henn MC, Janjua MB, Zhang H, Kanter EM, Makepeace CM, Schuessler RB, Nichols CG, Lawton JS. Increased tolerance to stress in cardiac expressed gain-of-function of adenosine triphosphate-sensitive potassium channel subunit Kir6.1. J Surg Res 2016; 206:460-465. [PMID: 27884343 DOI: 10.1016/j.jss.2016.08.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 06/22/2016] [Accepted: 08/05/2016] [Indexed: 11/25/2022]
Abstract
BACKGROUND The adenosine triphosphate-sensitive potassium (KATP) channel opener diazoxide (DZX) prevents myocyte volume derangement and reduced contractility secondary to stress. KATP channels are composed of pore-forming (Kir6.1 or Kir6.2) and regulatory (sulfonylurea receptor, SUR1 or SUR2) subunits. Gain of function (GOF) of Kir6.1 subunits has been implicated in cardiac pathology in Cantu syndrome in humans (cardiomegaly, lymphedema, and pericardial effusions). We hypothesized that GOF of Kir6.1 subunits would result in altered myocyte response to stress. MATERIALS AND METHODS Isolated cardiac myocytes from wild type (WT) and transgenic Kir6.1GOF mice were exposed to Tyrode's physiologic solution for 20 min, test solution (Tyrode's or stress [hyperkalemic cardioplegia {CPG, known myocyte stress}] +/- KATP channel opener DZX), followed by Tyrode's for 20 min. Myocyte volume and contractility were measured and compared. RESULTS WT myocytes demonstrated significant swelling in response to stress, but significantly less swelling was seen in Kir6.1GOF myocytes. DZX prevented swelling secondary to CPG in WT but resulted in a nonsignificant reduction in swelling in Kir6.1GOF myocytes. Both WT and Kir6.1GOF myocytes demonstrated a reduction in contractility during stress, although this was only significant in Kir6.1GOF myocytes. DZX was not associated with an improvement in contractility in Kir6.1GOF myocytes following stress. CONCLUSIONS Similar to previous results in Kir6.1(-/-) myocytes, Kir6.1GOF myocytes demonstrate resistance (less volume derangement) to stress of cardioplegia. Understanding the role of Kir6.1 in myocyte response to stress may aid in the treatment of patients with Cantu syndrome and warrants further investigation.
Collapse
Affiliation(s)
- Matthew C Henn
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - M Burhan Janjua
- Department of Neurological Surgery, Weill Cornell Medical College, New York, New York
| | - Haixia Zhang
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
| | - Evelyn M Kanter
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Carol M Makepeace
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Richard B Schuessler
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Colin G Nichols
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
| | - Jennifer S Lawton
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
6
|
Roy Chowdhury U, Bahler CK, Holman BH, Dosa PI, Fautsch MP. Ocular Hypotensive Effects of the ATP-Sensitive Potassium Channel Opener Cromakalim in Human and Murine Experimental Model Systems. PLoS One 2015; 10:e0141783. [PMID: 26535899 PMCID: PMC4633217 DOI: 10.1371/journal.pone.0141783] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/13/2015] [Indexed: 11/17/2022] Open
Abstract
Elevated intraocular pressure (IOP) is the most prevalent and only treatable risk factor for glaucoma, a leading cause of irreversible blindness worldwide. Unfortunately, all current therapeutics used to treat elevated IOP and glaucoma have significant and sometimes irreversible side effects necessitating the development of novel compounds. We evaluated the IOP lowering ability of the broad spectrum KATP channel opener cromakalim. Cultured human anterior segments when treated with 2 μM cromakalim showed a decrease in pressure (19.33 ± 2.78 mmHg at 0 hours to 13.22 ± 2.64 mmHg at 24 hours; p<0.001) when compared to vehicle treated controls (15.89 ± 5.33 mmHg at 0 h to 15.56 ± 4.88 mmHg at 24 hours; p = 0.89). In wild-type C57BL/6 mice, cromakalim reduced IOP by 18.75 ± 2.22% compared to vehicle treated contralateral eyes (17.01 ± 0.32 mmHg at 0 hours to 13.82 ± 0.37 mmHg at 24 hours; n = 10, p = 0.002). Cromakalim demonstrated an additive effect when used in conjunction with latanoprost free acid, a common ocular hypotensive drug prescribed to patients with elevated IOP. To examine KATP channel subunit specificity, Kir6.2(-/-) mice were treated with cromakalim, but unlike wild-type animals, no change in IOP was noted. Histologic analysis of treated and control eyes in cultured human anterior segments and in mice showed similar cell numbers and extracellular matrix integrity within the trabecular meshwork, with no disruptions in the inner and outer walls of Schlemm's canal. Together, these studies suggest that cromakalim is a potent ocular hypotensive agent that lowers IOP via activation of Kir6.2 containing KATP channels, its effect is additive when used in combination with the commonly used glaucoma drug latanoprost, and is not toxic to cells and tissues of the aqueous humor outflow pathway, making it a candidate for future therapeutic development.
Collapse
Affiliation(s)
- Uttio Roy Chowdhury
- Department of Ophthalmology, Mayo Clinic, Rochester, MN, United States of America
| | - Cindy K Bahler
- Department of Ophthalmology, Mayo Clinic, Rochester, MN, United States of America
| | - Bradley H Holman
- Department of Ophthalmology, Mayo Clinic, Rochester, MN, United States of America
| | - Peter I Dosa
- Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN, United States of America
| | - Michael P Fautsch
- Department of Ophthalmology, Mayo Clinic, Rochester, MN, United States of America
| |
Collapse
|
7
|
Henn MC, Janjua MB, Kanter EM, Makepeace CM, Schuessler RB, Nichols CG, Lawton JS. Adenosine Triphosphate-Sensitive Potassium Channel Kir Subunits Implicated in Cardioprotection by Diazoxide. J Am Heart Assoc 2015; 4:e002016. [PMID: 26304939 PMCID: PMC4599460 DOI: 10.1161/jaha.115.002016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background ATP-sensitive potassium (KATP) channel openers provide cardioprotection in multiple models. Ion flux at an unidentified mitochondrial KATP channel has been proposed as the mechanism. The renal outer medullary kidney potassium channel subunit, potassium inward rectifying (Kir)1.1, has been implicated as a mitochondrial channel pore-forming subunit. We hypothesized that subunit Kir1.1 is involved in cardioprotection (maintenance of volume homeostasis and contractility) of the KATP channel opener diazoxide (DZX) during stress (exposure to hyperkalemic cardioplegia [CPG]) at the myocyte and mitochondrial levels. Methods and Results Kir subunit inhibitor Tertiapin Q (TPN-Q) was utilized to evaluate response to stress. Mouse ventricular mitochondrial volume was measured in the following groups: isolation buffer; 200 μmol/L of ATP; 100 μmol/L of DZX+200 μmol/L of ATP; or 100 μmol/L of DZX+200 μmol/L of ATP+TPN-Q (500 or 100 nmol/L). Myocytes were exposed to Tyrode’s solution (5 minutes), test solution (Tyrode’s, cardioplegia [CPG], CPG+DZX, CPG+DZX+TPN-Q, Tyrode’s+TPN-Q, or CPG+TPN-Q), N=12 for all (10 minutes); followed by Tyrode’s (5 minutes). Volumes were compared. TPN-Q, with or without DZX, did not alter mitochondrial or myocyte volume. Stress (CPG) resulted in myocyte swelling and reduced contractility that was prevented by DZX. TPN-Q prevented the cardioprotection afforded by DZX (volume homeostasis and maintenance of contractility). Conclusions TPN-Q inhibited myocyte cardioprotection provided by DZX during stress; however, it did not alter mitochondrial volume. Because TPN-Q inhibits Kir1.1, Kir3.1, and Kir3.4, these data support that any of these Kir subunits could be involved in the cardioprotection afforded by diazoxide. However, these data suggest that mitochondrial swelling by diazoxide does not involve Kir1.1, 3.1, or 3.4.
Collapse
Affiliation(s)
- Matthew C Henn
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO (M.C.H., B.J., E.M.K., C.M.M., R.B.S., J.S.L.)
| | - M Burhan Janjua
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO (M.C.H., B.J., E.M.K., C.M.M., R.B.S., J.S.L.)
| | - Evelyn M Kanter
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO (M.C.H., B.J., E.M.K., C.M.M., R.B.S., J.S.L.)
| | - Carol M Makepeace
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO (M.C.H., B.J., E.M.K., C.M.M., R.B.S., J.S.L.)
| | - Richard B Schuessler
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO (M.C.H., B.J., E.M.K., C.M.M., R.B.S., J.S.L.)
| | - Colin G Nichols
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO (C.G.N.)
| | - Jennifer S Lawton
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO (M.C.H., B.J., E.M.K., C.M.M., R.B.S., J.S.L.)
| |
Collapse
|
8
|
Henn MC, Janjua MB, Zhang H, Kanter EM, Makepeace CM, Schuessler RB, Nichols CG, Lawton JS. Diazoxide Cardioprotection Is Independent of Adenosine Triphosphate-Sensitive Potassium Channel Kir6.1 Subunit in Response to Stress. J Am Coll Surg 2015; 221:319-25. [PMID: 25872691 DOI: 10.1016/j.jamcollsurg.2015.02.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/10/2015] [Accepted: 02/10/2015] [Indexed: 10/24/2022]
Abstract
BACKGROUND The sarcolemmal adenosine triphosphate-sensitive potassium channel (sK(ATP)), composed primarily of potassium inward rectifier (Kir) 6.2 and sulfonylurea receptor 2A subunits, has been implicated in cardiac myocyte volume regulation during stress; however, it is not involved in cardioprotection by the adenosine triphosphate-sensitive potassium channel (K(ATP)) channel opener diazoxide (7-chloro-3-methyl-1,2,4-benzothiadiazine-1,1-dioxide [DZX]). Paradoxically, the sK(ATP) channel subunit Kir6.2 is necessary for detrimental myocyte swelling secondary to stress. The Kir6.1 subunit can also contribute to K(ATP) channels in the heart, and we hypothesized that this subunit might play a role in myocyte volume regulation in response to stress. STUDY DESIGN Isolated cardiac myocytes from either wild-type mice or mice lacking the Kir6.1 subunit (Kir6.1[-/-]) were exposed to control Tyrode's solution (TYR) for 20 minutes, test solution (TYR, hypothermic hyperkalemic cardioplegia [CPG], or CPG + K(ATP) channel opener DZX [CPG + DZX]) for 20 minutes, followed by TYR for 20 minutes. Myocyte volume and contractility were measured and analyzed. RESULTS Both wild-type and Kir6.1(-/-) myocytes demonstrated substantial swelling during exposure to stress (CPG), which was prevented by DZX. Wild-type myocytes also demonstrated reduced contractility during stress of CPG that was prevented by DZX. However, Kir6.1(-/-) myocytes did not show reduced contractility during stress. CONCLUSIONS These data indicate that K(ATP) channel subunit Kir6.1 is not necessary for DZX's maintenance of cell volume during the stress of CPG. The absence of Kir6.1 does not affect the contractile properties of myocytes during stress, suggesting the absence of Kir6.1 improves myocyte tolerance to stress via an unknown mechanism.
Collapse
Affiliation(s)
- Matthew C Henn
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St Louis, MO
| | | | - Haixia Zhang
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO
| | - Evelyn M Kanter
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St Louis, MO
| | - Carol M Makepeace
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St Louis, MO
| | - Richard B Schuessler
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St Louis, MO
| | - Colin G Nichols
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO
| | - Jennifer S Lawton
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St Louis, MO.
| |
Collapse
|
9
|
Tinker A, Aziz Q, Thomas A. The role of ATP-sensitive potassium channels in cellular function and protection in the cardiovascular system. Br J Pharmacol 2014; 171:12-23. [PMID: 24102106 DOI: 10.1111/bph.12407] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/30/2013] [Accepted: 08/26/2013] [Indexed: 12/14/2022] Open
Abstract
ATP-sensitive potassium channels (K(ATP)) are widely distributed and present in a number of tissues including muscle, pancreatic beta cells and the brain. Their activity is regulated by adenine nucleotides, characteristically being activated by falling ATP and rising ADP levels. Thus, they link cellular metabolism with membrane excitability. Recent studies using genetically modified mice and genomic studies in patients have implicated K(ATP) channels in a number of physiological and pathological processes. In this review, we focus on their role in cellular function and protection particularly in the cardiovascular system.
Collapse
Affiliation(s)
- Andrew Tinker
- William Harvey Heart Centre, Barts and The London School of Medicine and Dentistry, London, UK
| | | | | |
Collapse
|
10
|
Anastacio MM, Kanter EM, Makepeace CM, Keith AD, Zhang H, Schuessler RB, Nichols CG, Lawton JS. Relationship between mitochondrial matrix volume and cellular volume in response to stress and the role of ATP-sensitive potassium channel. Circulation 2013; 128:S130-5. [PMID: 24030396 DOI: 10.1161/circulationaha.112.000128] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cardiac myocytes demonstrate significant swelling and associated reduced contractility in response to stress that is prevented by the ATP-sensitive potassium channel opener, diazoxide (DZX) via an unknown mechanism. One proposed mechanism of cardioprotection is mitochondrial matrix swelling. To establish the relationship between mitochondrial and cellular volume during stress, this study examined the effect of DZX on mitochondrial volume. METHODS AND RESULTS Isolated mouse mitochondria were exposed to the following solutions: Tyrode, isolation buffer, cardioplegia (CPG)±DZX±ATP-sensitive potassium channel inhibitor, 5-hydroxydecanoate, and metabolic inhibition (MI) ± DZX ± 5-hydroxydecanoate. Mitochondrial volume was measured. DZX resulted in significant mitochondrial swelling (P<0.0001 versus Tyrode). MI and CPG resulted in significant mitochondrial swelling compared with baseline volume. The addition of DZX did not alter the response of mitochondrial volume to CPG (P=0.912) but increased swelling in response to MI (P=0.036). The addition of 5-hydroxydecanoate to MI + DZX or CPG+DZX significantly reduced mitochondrial swelling (P<0.003 MI+DZX versus MI + DZX + 5HD; P<0.001 CPG+DZX versus CPG + DZX + 5HD). CONCLUSIONS Both cellular and mitochondrial volume increased during exposure to MI and CPG. DZX did not alter mitochondrial volume during CPG; however, it was associated with an increase in mitochondrial volume during MI. 5-Hydroxydecanoate reduced mitochondrial volume during exposure to both stresses with DZX, supporting a role for a mitochondrial ATP-sensitive potassium channel in the mechanism of cardioprotection by DZX.
Collapse
Affiliation(s)
- Melissa M Anastacio
- Division of Cardiothoracic Surgery, Department of Surgery (M.M.A., E.M.K., C.M.M., A.D.K., R.B.S., J.S.L.) and Departments of Cell Biology and Physiology (H.Z., C.G.N.), Washington University School of Medicine, St. Louis, MO
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Cardioprotective mechanism of diazoxide involves the inhibition of succinate dehydrogenase. Ann Thorac Surg 2013; 95:2042-50. [PMID: 23642436 DOI: 10.1016/j.athoracsur.2013.03.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 01/16/2013] [Accepted: 03/04/2013] [Indexed: 01/09/2023]
Abstract
BACKGROUND The adenosine triphosphate-sensitive potassium (KATP) channel opener, diazoxide, preserves myocyte volume homeostasis and contractility during stress via an unknown mechanism. Pharmacologic overlap has been suggested between succinate dehydrogenase (SDH) activity and KATP channel modulators. Diazoxide may be cardioprotective due to the inhibition of SDH which may form a portion of the mitochondrial KATP channel. To determine the role of inhibition of SDH in diazoxide's cardioprotection, this study utilized glutathione to prevent the inhibition of SDH. METHODS SDH activity was measured in isolated mitochondria exposed to succinate (control), malonate (inhibitor of succinate dehydrogenase), diazoxide, and varying concentrations of glutathione alone or in combination with diazoxide. Enzyme activity was measured by spectrophotometric analysis. To evaluate myocyte volume and contractility, cardiac myocytes were superfused with Tyrode's physiologic solution (Tyrode's) (20 minutes), followed by test solution (20 minutes), including Tyrode's, hyperkalemic cardioplegia (stress), cardioplegia + diazoxide, cardioplegia + diazoxide + glutathione, or glutathione alone; followed by Tyrode's (20 minutes). Myocyte volume and contractility were recorded using image grabbing software. RESULTS Both malonate and diazoxide inhibited succinate dehydrogenase. Glutathione prevented the inhibition of succinate dehydrogenase by diazoxide in a dose-dependent manner. The addition of diazoxide prevented the detrimental myocyte swelling due to cardioplegia alone and this benefit was lost with the addition of glutathione. However, glutathione elicited an independent cardioprotective effect on myocyte contractility. CONCLUSIONS The ability of diazoxide to provide beneficial myocyte homeostasis during stress involves the inhibition of succinate dehydrogenase, which may also involve the opening of a purported mitochondrial adenosine triphosphate sensitive potassium channel.
Collapse
|
12
|
Anastacio MM, Kanter EM, Keith AD, Schuessler RB, Nichols CG, Lawton JS. Inhibition of Succinate Dehydrogenase by Diazoxide Is Independent of the ATP-Sensitive Potassium Channel Subunit Sulfonylurea Type 1 Receptor. J Am Coll Surg 2013; 216:1144-9. [PMID: 23535164 DOI: 10.1016/j.jamcollsurg.2013.01.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/03/2013] [Accepted: 01/23/2013] [Indexed: 10/27/2022]
Abstract
BACKGROUND Diazoxide maintains myocyte volume and contractility during stress via an unknown mechanism. The mechanism of action may involve an undefined (genotype unknown) mitochondrial ATP-sensitive potassium channel and is dependent on the ATP-sensitive potassium channel subunit sulfonylurea type 1 receptor (SUR1). The ATP-sensitive potassium channel openers have been shown to inhibit succinate dehydrogenase (SDH) and a gene for a portion of SDH has been found in the SUR intron. Diazoxide may be cardioprotective via inhibition of SDH, which can form part of an ATP-sensitive potassium channel or share its genetic material. This study investigated the role of inhibition of SDH by diazoxide and its relationship to the SUR1 subunit. STUDY DESIGN Mitochondria were isolated from wild-type and SUR1 knockout mice. Succinate dehydrogenase activity was measured by spectrophotometric analysis of 2,6-dichloroindophenol reduction for 20 minutes as the relative change in absorbance over time. Mitochondria were treated with succinate (20 mM), succinate + 1% dimethylsulfoxide, succinate + malonate (8 mM) (competitive inhibitor of SDH), or succinate + diazoxide (100 μM). RESULTS Both malonate and diazoxide inhibit SDH activity in mitochondria of wild-type mice and in mice lacking the SUR1 subunit (p < 0.05 vs control). CONCLUSIONS The ability of DZX to inhibit SDH persists even after deletion of the SUR1 gene. Therefore, the enzyme complex SDH is not dependent on the SUR1 gene. The inhibition of SDH by DZX can play a role in the cardioprotection afforded by DZX; however, this role is independent of the ATP-sensitive potassium channel subunit SUR1.
Collapse
Affiliation(s)
- Melissa M Anastacio
- Department of Surgery, Division of Cardiothoracic Surgery, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
13
|
Maffit SK, Sellitto AD, Al-Dadah AS, Schuessler RB, Damiano RJ, Lawton JS. Diazoxide maintains human myocyte volume homeostasis during stress. J Am Heart Assoc 2012; 1:jah312. [PMID: 23130119 PMCID: PMC3487366 DOI: 10.1161/jaha.112.000778] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 02/14/2012] [Indexed: 11/30/2022]
Abstract
Background Exposure to hypothermic hyperkalemic cardioplegia, hyposmotic stress, or metabolic inhibition results in significant animal myocyte swelling (6% to10%) and subsequent reduced contractility (10% to 20%). Both are eliminated by the adenosine triphosphate-sensitive potassium channel opener diazoxide (DZX). The relationship between swelling and reduced contractility suggests that the structural change may represent one mechanism of postoperative myocardial stunning. This study evaluated human myocyte volume during stress to investigate if similar phenomena exist in human myocytes. Methods and Results Human atrial myocytes isolated from tissue obtained during cardiac surgery were perfused with Tyrode's physiological solution (20 minutes, 37°C), test solution (20 minutes), and Tyrode's (37°C, 20 minutes). Test solutions (n=6 to 12 myocytes each) included Tyrode's (37°C or 9°C), Tyrode's+DZX (9°C), hyperkalemic cardioplegia (9°C)±DZX, cardioplegia+DZX+HMR 1098 (sarcolemmal adenosine triphosphate-sensitive potassium channel inhibitor, 9°C), cardioplegia+DZX+5-hydroxydeconoate (mitochondrial adenosine triphosphate-sensitive potassium channel inhibitor, 9°C), mild hyposmotic solution±DZX, metabolic inhibition±DZX, and metabolic inhibition+DZX+5-hydroxydeconoate. Myocyte volume was recorded every 5 minutes. Exposure to hypothermic hyperkalemic cardioplegia, hyposmotic stress, or metabolic inhibition resulted in significant human myocyte swelling (8%, 7%, and 6%, respectively; all P<0.05 vs control). In all groups, the swelling was eliminated or lessened by DZX. The addition of channel inhibitors did not significantly alter results. Conclusions DZX maintains human myocyte volume homeostasis during stress via an unknown mechanism. DZX may prove to be clinically useful following the elucidation of its specific mechanism of action. (J Am Heart Assoc. 2012;1:jah3-e000778 doi: 10.1161/JAHA.112.000778.)
Collapse
Affiliation(s)
- Sara K Maffit
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO
| | | | | | | | | | | |
Collapse
|
14
|
Sellitto AD, Al-Dadah AS, Schuessler RB, Nichols CG, Lawton JS. An open sarcolemmal adenosine triphosphate-sensitive potassium channel is necessary for detrimental myocyte swelling secondary to stress. Circulation 2011; 124:S70-4. [PMID: 21911821 DOI: 10.1161/circulationaha.110.012039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Stress (exposure to hyperkalemic cardioplegia, metabolic inhibition, or osmotic) results in significant myocyte swelling and reduced contractility. In contrast to wild-type mice, these detrimental consequences are not observed in mice lacking the Kir6.2 subunit of the sarcolemmal ATP-sensitive potassium (sK(ATP)) channel after exposure to hyperkalemic cardioplegia. The hypothesis for this study was that an open sK(ATP) channel (Kir6.2 and SUR2A subunits) is necessary for detrimental myocyte swelling to occur in response to stress. METHODS AND RESULTS To investigate the role of the sK(ATP) channel in stress-induced myocyte swelling, high-dose pharmacological sK(ATP) channel blockade and genetic deletion (knockout of Kir6.2 subunit) were used. Myocytes were exposed sequentially to Tyrode control (20 minutes), test (stress) solution (20 minutes), and Tyrode control (20 minutes). To evaluate pharmacological channel blockade, myocytes were exposed to hyperkalemic cardioplegia (stress) with and without a K(ATP) channel blocker. To evaluate the effects of genetic deletion, wild-type and sK(ATP) knockout [Kir6.2(-/-)] myocytes were exposed to metabolic inhibition (stress). Myocyte volume was recorded using image-grabbing software. Detrimental myocyte swelling was prevented by high-dose sK(ATP) channel blockade (glibenclamide or HMR 1098) but not mitochondrial K(ATP) channel blockade (5-hydroxydecanoate) during exposure to hyperkalemic cardioplegia. Genetic deletion of the sK(ATP) channel prevented significant myocyte swelling in response to metabolic inhibition. CONCLUSIONS K(ATP) channel openers prevent detrimental myocyte swelling and reduce contractility in response to stress through an unknown mechanism. Paradoxically, the present data support a role for sK(ATP) channel activation in myocyte volume derangement in response to stress.
Collapse
Affiliation(s)
- Angela D Sellitto
- Division of Cardiothoracic Surgery, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
15
|
Shalaby A, Mennander A, Rinne T, Oksala N, Aanismaa R, Narkilahti S, Paavonen T, Laurikka J, Tarkka M. Aquaporin-7 expression during coronary artery bypass grafting with Diazoxide. SCAND CARDIOVASC J 2011; 45:354-9. [DOI: 10.3109/14017431.2011.583357] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
Sellitto AD, Maffit SK, Al-Dadah AS, Zhang H, Schuessler RB, Nichols CG, Lawton JS. Diazoxide maintenance of myocyte volume and contractility during stress: evidence for a non-sarcolemmal K(ATP) channel location. J Thorac Cardiovasc Surg 2010; 140:1153-9. [PMID: 20804990 PMCID: PMC3041172 DOI: 10.1016/j.jtcvs.2010.07.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 07/12/2010] [Accepted: 07/16/2010] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Animal and human myocytes demonstrate significant swelling and reduced contractility during exposure to stress (metabolic inhibition, hyposmotic stress, or hyperkalemic cardioplegia), and these detrimental consequences may be inhibited by the addition of diazoxide (adenosine triphosphate-sensitive potassium channel opener) via an unknown mechanism. Both SUR1 and SUR2A subunits have been localized to the heart, and mouse sarcolemmal adenosine triphosphate-sensitive potassium channels are composed of SUR2A/Kir6.2 subunits in the ventricle and SUR1/Kir6.2 subunits in the atria. This study was performed to localize the mechanism of diazoxide by direct probing of sarcolemmal adenosine triphosphate-sensitive potassium channel current and by genetic deletion of channel subunits. METHODS Sarcolemmal adenosine triphosphate-sensitive potassium channel current was recorded in isolated wild-type ventricular mouse myocytes during exposure to Tyrode's solution, Tyrode's + 100 μmol/L diazoxide, hyperkalemic cardioplegia, cardioplegia + diazoxide, cardioplegia + 100 μmol/L pinacidil, or metabolic inhibition using whole-cell voltage clamp (N = 7-12 cells per group). Ventricular myocyte volume was measured from SUR1(-/-) and wild-type mice during exposure to control solution, hyperkalemic cardioplegia, or cardioplegia + 100 μmol/L diazoxide (N = 7-10 cells per group). RESULTS Diazoxide did not increase sarcolemmal adenosine triphosphate-sensitive potassium current in wild-type myocytes, although they demonstrated significant swelling during exposure to cardioplegia that was prevented by diazoxide. SUR1(-/-) myocytes also demonstrated significant swelling during exposure to cardioplegia, but this was not altered by diazoxide. CONCLUSIONS Diazoxide does not open the ventricular sarcolemmal adenosine triphosphate-sensitive potassium channel but provides volume homeostasis via an SUR1-dependent pathway in mouse ventricular myocytes, supporting a mechanism of action distinct from sarcolemmal adenosine triphosphate-sensitive potassium channel activation.
Collapse
MESH Headings
- ATP-Binding Cassette Transporters/agonists
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Animals
- Cardioplegic Solutions/pharmacology
- Cardiotonic Agents/pharmacology
- Cell Size/drug effects
- Diazoxide/pharmacology
- Female
- Homeostasis
- Hyperkalemia/metabolism
- KATP Channels/agonists
- KATP Channels/deficiency
- KATP Channels/genetics
- KATP Channels/metabolism
- Male
- Membrane Potentials
- Mice
- Mice, Knockout
- Myocardial Contraction/drug effects
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Osmotic Pressure
- Patch-Clamp Techniques
- Pinacidil/pharmacology
- Potassium Channels, Inwardly Rectifying/agonists
- Potassium Channels, Inwardly Rectifying/deficiency
- Potassium Channels, Inwardly Rectifying/genetics
- Potassium Channels, Inwardly Rectifying/metabolism
- Receptors, Drug/agonists
- Receptors, Drug/deficiency
- Receptors, Drug/genetics
- Receptors, Drug/metabolism
- Sarcolemma/drug effects
- Sarcolemma/metabolism
- Sulfonylurea Receptors
Collapse
Affiliation(s)
- Angela D. Sellitto
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO
| | - Sarah K. Maffit
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO
| | - Ashraf S. Al-Dadah
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO
| | - Haixia Zhang
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO
| | - Richard B. Schuessler
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO
| | - Colin G. Nichols
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO
| | - Jennifer S. Lawton
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
17
|
Al-Dadah AS, Voeller RK, Schuessler RB, Damiano RJ, Lawton JS. Maintenance of myocyte volume homeostasis during stress by diazoxide is cardioprotective. Ann Thorac Surg 2007; 84:857-62. [PMID: 17720390 DOI: 10.1016/j.athoracsur.2007.04.103] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 04/20/2007] [Accepted: 04/24/2007] [Indexed: 11/16/2022]
Abstract
BACKGROUND We previously demonstrated that myocyte swelling and reduced contractility secondary to hyperkalemic cardioplegia and hyposmotic stress are attenuated by the addition of diazoxide, an adenosine triphosphate-sensitive potassium channel (K(ATP)) opener. The goal of this study was to investigate the effect of diazoxide on myocyte swelling and reduced contractility after metabolic inhibition and to attempt to summarize the potential mechanisms involved. METHODS Isolated rabbit myocytes were perfused with Tyrode's control solution for 20 minutes, followed by test solution for 20 minutes. Test solutions included (1) Tyrode's control, (2) a metabolic inhibition solution containing sodium cyanide and 2-deoxyglucose, (3) metabolic inhibition plus diazoxide, (4) metabolic inhibition plus diazoxide plus HMR1098 (a sarcolemmal K(ATP)-channel blocker), or (5) metabolic inhibition plus diazoxide plus 5-hydroxydeconoate (a mitochondrial K(ATP)-channel blocker). Myocytes were then reexposed to Tyrode's solution for 20 minutes. Volume measurements were taken every 5 minutes. Contractility was recorded using edge-detection software at baseline and at 10 and 20 minutes of reexposure to Tyrode's solution. RESULTS Simulated ischemia (metabolic inhibition) caused significant myocyte swelling and associated reduced contractility. The addition of diazoxide abolished myocyte swelling and attenuated the associated reduced contractility. Observations with diazoxide were unchanged by the addition of HMR 1098 or 5-hydroxydeconoate. CONCLUSIONS Diazoxide, with or without either K(ATP)-channel blocker, attenuated the significant myocyte swelling and reduced contractility secondary to metabolic inhibition. These data suggest a role for diazoxide, independent of the K(ATP) channel, in myocyte volume homeostasis. In addition, the prevention of myocyte swelling resulted in improved contractility, consistent with previous data and the hypothesis that myocyte swelling may participate in the phenomenon of myocardial stunning.
Collapse
Affiliation(s)
- Ashraf S Al-Dadah
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|