1
|
Carré J, Kerforne T, Hauet T, Macchi L. Tissue Injury Protection: The Other Face of Anticoagulant Treatments in the Context of Ischemia and Reperfusion Injury with a Focus on Transplantation. Int J Mol Sci 2023; 24:17491. [PMID: 38139319 PMCID: PMC10743711 DOI: 10.3390/ijms242417491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/06/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
Organ transplantation has enhanced the length and quality of life of patients suffering from life-threatening organ failure. Donors deceased after brain death (DBDDs) have been a primary source of organs for transplantation for a long time, but the need to find new strategies to face organ shortages has led to the broadening of the criteria for selecting DBDDs and advancing utilization of donors deceased after circulatory death. These new sources of organs come with an elevated risk of procuring organs of suboptimal quality. Whatever the source of organs for transplant, one constant issue is the occurrence of ischemia-reperfusion (IR) injury. The latter results from the variation of oxygen supply during the sequence of ischemia and reperfusion, from organ procurement to the restoration of blood circulation, triggering many deleterious interdependent processes involving biochemical, immune, vascular and coagulation systems. In this review, we focus on the roles of thrombo-inflammation and coagulation as part of IR injury, and we give an overview of the state of the art and perspectives on anticoagulant therapies in the field of transplantation, discussing benefits and risks and proposing a strategic guide to their use during transplantation procedures.
Collapse
Affiliation(s)
- Julie Carré
- Service D’Hématologie Biologique, Centre Hospitalo-Universitaire de Poitiers, 86000 Poitiers, France;
- INSERM 1313 Ischémie Reperfusion, Métabolisme, Inflammation Stérile en Transplantation (IRMETIST), Université de Poitiers, 86000 Poitiers, France; (T.K.); (T.H.)
| | - Thomas Kerforne
- INSERM 1313 Ischémie Reperfusion, Métabolisme, Inflammation Stérile en Transplantation (IRMETIST), Université de Poitiers, 86000 Poitiers, France; (T.K.); (T.H.)
- Service D’Anesthésie-Réanimation et Médecine Péri-Opératoire, Centre Hospitalo-Universitaire de Poitiers, 86000 Poitiers, France
- FHU Survival Optimization in Organ Transplantation (SUPORT), 86000 Poitiers, France
| | - Thierry Hauet
- INSERM 1313 Ischémie Reperfusion, Métabolisme, Inflammation Stérile en Transplantation (IRMETIST), Université de Poitiers, 86000 Poitiers, France; (T.K.); (T.H.)
- FHU Survival Optimization in Organ Transplantation (SUPORT), 86000 Poitiers, France
- Service de Biochimie, Centre Hospitalo-Universitaire de Poitiers, 86000 Poitiers, France
| | - Laurent Macchi
- Service D’Hématologie Biologique, Centre Hospitalo-Universitaire de Poitiers, 86000 Poitiers, France;
- INSERM 1313 Ischémie Reperfusion, Métabolisme, Inflammation Stérile en Transplantation (IRMETIST), Université de Poitiers, 86000 Poitiers, France; (T.K.); (T.H.)
- FHU Survival Optimization in Organ Transplantation (SUPORT), 86000 Poitiers, France
| |
Collapse
|
2
|
Belhaj A, Dewachter L, Hupkens E, Remmelink M, Galanti L, Rorive S, Melot C, Naeije R, Rondelet B. Tacrolimus Prevents Mechanical and Humoral Alterations in Brain Death-Induced Lung Injury in Pigs. Am J Respir Crit Care Med 2022; 206:584-595. [PMID: 35549669 DOI: 10.1164/rccm.202201-0033oc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Donor brain death-induced lung injury may compromise graft function after transplantation. Establishing strategies to attenuate lung damage remains a challenge because the underlying mechanisms remain uncertain. OBJECTIVES The effects of tacrolimus pretreatment were evaluated in an experimental model of brain death-induced lung injury. METHODS Brain death was induced by slow intracranial infusion of blood in anesthetized pigs after randomization to tacrolimus (orally administered at 0.25 mg. kg-1 BID the day before the experiment and intravenously at 0.05 mg. kg-1 one hour before the experiment; n=8) or placebo (n=9) pretreatment. Hemodynamic measurements were performed 1, 3, 5 and 7 hours after brain death. After euthanasia of the animals, lung tissue was sampled for pathobiological and histological analysis, including lung injury scoring (LIS). MEASUREMENTS AND MAIN RESULTS Tacrolimus pretreatment prevented increases in pulmonary artery pressure, pulmonary vascular resistance and pulmonary capillary pressure and decreases in systemic artery pressure and thermodilution cardiac output associated with brain death. After brain death, the ratio of the partial arterial O2 pressure to the inspired O2 fraction (PaO2/FiO2) decreased, which was prevented by tacrolimus. Tacrolimus pretreatment prevented increases in the interleukin (IL)-6-to-IL-10 ratio, vascular cell adhesion molecule-1, circulating levels of IL-1β, IL-6-to-IL-10 ratio and glycocalyx-derived molecules. Tacrolimus partially decreased apoptosis [Bax-to-Bcl2 ratio (p=0.07) and the number of apoptotic cells in the lungs (p<0.05)] but failed to improve LIS. CONCLUSIONS Immunomodulation through tacrolimus pretreatment prevented pulmonary capillary hypertension as well as the activation of inflammatory and apoptotic processes in the lungs after brain death; however, LIS did not improve.
Collapse
Affiliation(s)
- Asmae Belhaj
- CHU UCL Namur, 82470, cardiovascular, thoracic surgery and lung transplantation, Yvoir, Belgium.,Université Libre de Bruxelles, 26659, Laboratory of Physiology and Pharmacology, Faculty of Medicine, Bruxelles, Belgium;
| | - Laurence Dewachter
- Université Libre de Bruxelles, 26659, Laboratory of Physiology and Pharmacology, Faculty of Medicine, Bruxelles, Belgium
| | - Emeline Hupkens
- Université Libre de Bruxelles, 26659, Laboratory of Physiology and Pharmacology, Faculty of Medicine, Bruxelles, Belgium
| | - Myriam Remmelink
- Université Libre de Bruxelles, 26659, Department of Pathology, Hôpital Erasme, Brussels, Belgium
| | - Laurence Galanti
- CHU UCL Namur, 82470, Department of Clinical Biology, Yvoir, Belgium
| | - Sandrine Rorive
- Université Libre de Bruxelles, 26659, Department of Pathology, Hôpital Erasme, Brussels, Belgium
| | - Christian Melot
- Université Libre de Bruxelles, 26659, Laboratory of Physiology and Pharmacology, Faculty of Medicine, Bruxelles, Belgium
| | - Robert Naeije
- Department of Pathophysiology, Free University of Brussels, Brussels, Belgium
| | - Benoît Rondelet
- CHU UCL Namur, 82470, cardiovascular, thoracic surgery and lung transplantation, Yvoir, Belgium.,Université Libre de Bruxelles, 26659, Laboratory of Physiology and Pharmacology, Faculty of Medicine, Bruxelles, Belgium
| |
Collapse
|
3
|
Pacheco S, Kanou T, Fung SY, Chen K, Lee D, Bai X, Keshavjee S, Liu M. Formulation of hydrophobic therapeutics with self-assembling peptide and amino acid: A new platform for intravenous drug delivery. J Control Release 2016; 239:211-22. [DOI: 10.1016/j.jconrel.2016.08.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 08/27/2016] [Indexed: 01/21/2023]
|
4
|
Rotter D, Grinsfelder DB, Parra V, Pedrozo Z, Singh S, Sachan N, Rothermel BA. Calcineurin and its regulator, RCAN1, confer time-of-day changes in susceptibility of the heart to ischemia/reperfusion. J Mol Cell Cardiol 2014; 74:103-11. [PMID: 24838101 DOI: 10.1016/j.yjmcc.2014.05.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 04/25/2014] [Accepted: 05/06/2014] [Indexed: 12/01/2022]
Abstract
Many important components of the cardiovascular system display circadian rhythmicity. In both humans and mice, cardiac damage from ischemia/reperfusion (I/R) is greatest at the transition from sleep to activity. The causes of this window of susceptibility are not fully understood. In the murine heart we have reported high amplitude circadian oscillations in the expression of the cardioprotective protein regulator of calcineurin 1 (Rcan1). This study was designed to test whether Rcan1 contributes to the circadian rhythm in cardiac protection from I/R damage. Wild type (WT), Rcan1 KO, and Rcan1-Tg mice, with cardiomyocyte-specific overexpression of Rcan1, were subjected to 45min of myocardial ischemia followed by 24h of reperfusion. Surgeries were performed either during the first 2h (AM) or during the last 2h (PM) of the animal's light phase. The area at risk was the same for all genotypes at either time point; however, in WT mice, PM-generated infarcts were 78% larger than AM-generated infarcts. Plasma cardiac troponin I levels were likewise greater in PM-operated animals. In Rcan1 KO mice there was no significant difference between the AM- and PM-operated hearts, which displayed greater indices of damage similar to that of PM-operated WT animals. Mice with cardiomyocyte-specific overexpression of human RCAN1, likewise, showed no time-of-day difference, but had smaller infarcts comparable to those of AM-operated WT mice. In vitro, cardiomyocytes depleted of RCAN1 were more sensitive to simulated I/R and the calcineurin inhibitor, FK506, restored protection. FK506 also conferred protection to PM-infarcted WT animals. Importantly, transcription of core circadian clock genes was not altered in Rcan1 KO hearts. These studies identify the calcineurin/Rcan1-signaling cascade as a potential therapeutic target through which to benefit from innate circadian changes in cardiac protection without disrupting core circadian oscillations that are essential to cardiovascular, metabolic, and mental health.
Collapse
Affiliation(s)
- David Rotter
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| | - D Bennett Grinsfelder
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| | - Valentina Parra
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| | - Zully Pedrozo
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| | - Sarvjeet Singh
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| | - Nita Sachan
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| | - Beverly A Rothermel
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
5
|
Stone GW, Clayton T, Deliargyris EN, Prats J, Mehran R, Pocock SJ. Reduction in Cardiac Mortality With Bivalirudin in Patients With and Without Major Bleeding. J Am Coll Cardiol 2014; 63:15-20. [DOI: 10.1016/j.jacc.2013.09.027] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/03/2013] [Accepted: 09/10/2013] [Indexed: 10/26/2022]
|
6
|
Gao W, Zhao J, Kim H, Xu S, Chen M, Bai X, Toba H, Cho HR, Zhang H, Keshavjeel S, Liu M. α1-Antitrypsin inhibits ischemia reperfusion-induced lung injury by reducing inflammatory response and cell death. J Heart Lung Transplant 2013; 33:309-15. [PMID: 24365768 DOI: 10.1016/j.healun.2013.10.031] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/31/2013] [Accepted: 10/18/2013] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Pulmonary ischemia-reperfusion (IR)-induced lung injury is a severe complication that increases the likelihood of primary graft dysfunction and early death after lung transplantation. Inflammatory cytokine release and cell death play a critical role in the development of IR-induced lung injury. α1-Antitrypsin (A1AT) is a protease inhibitor clinically used for the treatment of A1AT-deficiency emphysema. On the basis of a literature review, we hypothesize that A1AT may have the potential to reduce IR-induced lung injury through its anti-inflammatory and anti-apoptotic effects. METHODS A human pulmonary cell culture model was used to simulate IR processes in lung transplantation. Effects of A1AT on cell death and cytokine production were examined. A rat pulmonary IR model, in which the left pulmonary hilum was clamped for 90 minutes, followed by reperfusion for 2 hours, was used to determine the effects of A1AT on acute lung injury, function, cell death, and inflammatory response. RESULTS A1AT significantly inhibited cell death and inflammatory cytokine release dose-dependently in vitro and significantly improved lung oxygenation and lung mechanics and reduced pulmonary edema in vivo. Moreover, A1AT inhibited neutrophil infiltration in the lung and reduced cell death and significantly reduced IR-induced inflammatory mediators in plasma, including interleukin (IL)-1α, IL-4, IL-12p70, monocyte chemotactic protein 1, and tumor necrosis factor-α. CONCLUSIONS Considering its current clinical use, our findings indicate that administration of A1AT may be an effective and safe therapy for the treatment of IR injury in human lung transplantation.
Collapse
Affiliation(s)
- Wenxi Gao
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network; Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Jinbo Zhao
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network; Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Shaanxi, China
| | - Hyunhee Kim
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network; Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Shuyun Xu
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network
| | - Manyin Chen
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network
| | - Xiaohui Bai
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network
| | - Hiroaki Toba
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network
| | - Hae-Ra Cho
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network; Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Haibo Zhang
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, Faculty of Medicine
| | - Shaf Keshavjeel
- Institute of Medical Science, Faculty of Medicine; Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network; Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, Faculty of Medicine; Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
7
|
Bayer J, Das NA, Baisden CE, Rani M, DeArmond DT, Peters JI, Johnson SB. Effect of inhaled tacrolimus on ischemia reperfusion injury in rat lung transplant model. J Thorac Cardiovasc Surg 2013; 146:1213-9; discussion 1219. [PMID: 24029291 DOI: 10.1016/j.jtcvs.2013.07.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 07/07/2013] [Accepted: 07/11/2013] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Systemic tacrolimus therapy has been shown to protect against lung ischemia-reperfusion injury in animal models. We sought to investigate on a functional and cellular level if inhaled nanoparticle tacrolimus administered to the donor lung before procurement could similarly attenuate ischemia-reperfusion injury after lung transplant. METHODS An isogenic orthotopic rat model of single left lung transplant was used. Donor animals were pretreated with inhaled tacrolimus (treatment group) or inhaled lactose (controls) before lung procurement. Lung grafts were subjected to 3 hours of cold ischemia followed by 4 hours of reperfusion after graft implantation. Recipient animal arterial blood gas measurement and isograft wet to dry weight ratios were obtained. Macrophage, neutrophil, and T-cell accumulation and activation in lung isografts, including γδ T-cell, T-helper, and cytotoxic T-cell subtypes were analyzed by flow cytometry. Tacrolimus levels were measured in the lung isograft using liquid chromatography/mass spectrometry. Isograft cytokine levels were measured with commercial enzyme-linked immunosorbent assay and microbead array kits. RESULTS Oxygenation in treatment group animals was significantly higher than in controls. The presence of macrophages, neutrophils, and all T-cell subtypes in the isografts as well as isograft levels of inflammatory cytokines were all less in the treatment group versus controls, although no single variable achieved statistical significance. CONCLUSIONS Inhaled nanoparticle tacrolimus treatment of lung donors is associated with an attenuation of ischemia-reperfusion injury on a functional and cellular level in lung transplant.
Collapse
Affiliation(s)
- Johanna Bayer
- Department of Cardiothoracic Surgery, University of Texas Health Science Center in San Antonio, San Antonio, Tex.
| | | | | | | | | | | | | |
Collapse
|
8
|
de Pinho-Apezzato ML, Maksoud-Filho JG, Valinetti EA, Santos MM, Tannuri ACA, Mello ES, Silva LF, de Mendonça Coelho MC, Gibelli NEM, Rocha RM, Nonogaki S, Guimarães RRN, Tannuri U. The role of interleukin-6, endothelins, and apoptotic genes in small bowel transplantation, in a swine model of ischemia and reperfusion injury. Pediatr Transplant 2011; 15:617-27. [PMID: 21884347 DOI: 10.1111/j.1399-3046.2011.01538.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IRI is closely related to sepsis in ITx setting. Complete understanding of the mechanisms involved in IRI development may improve outcomes. Ortothopic ITx without immunosuppression was performed in order to characterize IRI-associated mucosal damage. Twenty pigs underwent ITx. Two groups were assigned to different CI times: G1: 90 min and, G2: 180 min. Euro-Collins was used as preservation solution. Jejunal fragments were collected at donor laparotomy, 30 min, and 3 days after reperfusion. IRI assessment involved: histopathologic analysis, quantification of MPO-positive cells through immunohistochemical studies, quantification of epithelial apoptotic cells using TUNEL staining, and quantification of IL-6, ET-1, Bak, and Bcl-XL genes expression by RT-PCR. Neutrophilic infiltration increased in a similar fashion in both groups, but lasted longer in G2. Apoptosis detected by TUNEL staining increased and anti-apoptotic gene Bcl-XL expression decreased significantly in G1, 3 days after surgery. Endothelin-1 and IL-6 genes expression increased 30 min after the procedure and returned to baseline 3 days after surgery. In conclusion, IL-6 and ET-1 are involved precociously in the development of intestinal IRI. Apoptosis was more frequently detected in G1 grafts by TUNEL-staining and by RT-PCR.
Collapse
|
9
|
Ma Y, Jiang W, Liu Q, Ryuko S, Kuno T. Genome-wide screening for genes associated with FK506 sensitivity in fission yeast. PLoS One 2011; 6:e23422. [PMID: 21850271 PMCID: PMC3151288 DOI: 10.1371/journal.pone.0023422] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 07/17/2011] [Indexed: 01/05/2023] Open
Abstract
We have been studying calcineurin signal transduction pathway in fission yeast Schizosaccharomyces pombe (S. pombe) by developing a genetic screen for mutants that show hypersensitivity to the immunosuppressive calcineurin inhibitor FK506 (tacrolimus). In the present study, to identify nonessential genes that are functionally related to the calcineurin signaling pathway, we performed a genome-wide screen of 3004 haploid deletion strains and confirmed 72 deletion strains to be FK506 sensitive. These 72 genes are classified into nine functional groups to include membrane trafficking (16 genes), signal transduction (10 genes), ubiquitination (8 genes), chromatin remodeling (6 genes), cytokinesis (4 genes), ribosomal protein (3 genes), RNA binding protein (3 genes), and a variety of other known functions (17 genes) or still unknown functions (5 genes) in the biological system. In our previous screening of FK506-sensitive mutants we isolated several membrane-trafficking mutants showing defective cell wall integrity. Here, we further examined the vacuolar fusion, the v-SNARE synaptobrevin Syb1 localization, and the sensitivity to the β-glucan synthase inhibitor micafungin in these 72 FK506-sensitive strains. Results showed that 25 deletion strains exhibited abnormal vacuole fusion, 19 deletion strains exhibited Syb1 mislocalization, and 14 deletion strains exhibited both abnormal vacuole fusion and Syb1 mislocalization, while 42 deletion strains showed both normal vacuole fusion and Syb1 localization. Likewise, 16 deletion strains showed sensitivity to micafungin. Altogether, our present study indicates that calcineurin mediates a plethora of physiological processes in fission yeast, and that calcineurin is extensively involved in cross-talk between signaling pathways.
Collapse
Affiliation(s)
- Yan Ma
- Division of Molecular Pharmacology and Pharmacogenomics, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan.
| | | | | | | | | |
Collapse
|
10
|
López-Sánchez A, Sáenz A, Casals C. Surfactant protein A (SP-A)-tacrolimus complexes have a greater anti-inflammatory effect than either SP-A or tacrolimus alone on human macrophage-like U937 cells. Eur J Pharm Biopharm 2010; 77:384-91. [PMID: 21172435 DOI: 10.1016/j.ejpb.2010.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Revised: 12/08/2010] [Accepted: 12/13/2010] [Indexed: 01/24/2023]
Abstract
Intratracheal administration of immunosuppressive agents to the lung is a novel treatment after lung transplantation. Nanoparticles of tacrolimus (FK506) might interact with human SP-A, which is the most abundant lipoprotein in the alveolar fluid. This study was undertaken to determine whether the formation of FK506/SP-A complexes interferes with FK506 immunosuppressive actions on stimulated human macrophage-like U937 cells. We found that SP-A was avidly bound to FK506 (K(d) = 35 ± 4nM), as determined by solid phase-binding assays and dynamic light scattering. Free FK506, at concentrations ≤ 1 μM, had no effect on the inflammatory response of LPS-stimulated U937 macrophages. However, coincubation of FK506 and SP-A, at concentrations where each component alone did not affect LPS-stimulated macrophage response, significantly inhibited LPS-induced NF-κB activation and TNF-alpha secretion. Free FK506, but not FK506/SP-A, functioned as substrate for the efflux transporter P-glycoprotein. FK506 bound to SP-A was delivered to macrophages by endocytosis, since several endocytosis inhibitors blocked FK506/SP-A anti-inflammatory effects. This process depended partly on SP-A binding to its receptor, SP-R210. These results indicate that FK506/SP-A complexes have a greater anti-inflammatory effect than either FK506 or SP-A alone and suggest that SP-A strengthened FK506 anti-inflammatory activity by facilitating FK506 entrance into the cell, overcoming P-glycoprotein.
Collapse
Affiliation(s)
- Almudena López-Sánchez
- Departamento de Bioquímica & Biología Molecular & CIBER Enfermedades Respiratorias, Universidad Complutense de Madrid, Madrid, Spain
| | | | | |
Collapse
|
11
|
Nakayama K, Kakinoki R, Ikeguchi R, Yamakawa T, Ohta S, Fujita S, Noguchi T, Duncan SF, Hyon SH, Nakamura T. Storage and allogeneic transplantation of peripheral nerve using a green tea polyphenol solution in a canine model. J Brachial Plex Peripher Nerve Inj 2010; 5:17. [PMID: 21110896 PMCID: PMC3003657 DOI: 10.1186/1749-7221-5-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 11/28/2010] [Indexed: 12/13/2022] Open
Abstract
Background In our previous study, allogeneic-transplanted peripheral nerve segments preserved for one month in a polyphenol solution at 4°C could regenerate nerves in rodents demonstrated the same extent of nerve regeneration as isogeneic fresh nerve grafts. The present study investigated whether the same results could be obtained in a canine model. Methods A sciatic nerve was harvested from a male beagle dog, divided into fascicules of < 1.5 mm diameter, and stored in a polyphenol solution (1 mg/ml) for one month at 4°C. The nerve fascicles were transplanted into 10 female beagle dogs to bridge 3-cm right ulnar nerve gaps. In the left ulnar nerve in each dog, a 3-cm nerve segment was harvested, turned in the opposite direction, and sutured in situ. Starting one day before transplantation, the immunosuppressant FK506 was administered subcutaneously at doses of 0.1 mg/kg daily in four dogs (PA0.1 group), 0.05 mg/kg daily in four dogs (PA0.05 group), or 0.05 mg/kg every other day in two dogs (PA0.025 group). Twelve weeks after surgery, electrophysiological and morphological studies were performed to assess the regeneration of the right and left ulnar nerves. The data for the right ulnar nerve were expressed as percentages relative to the left ulnar nerve. Polymerase chain reaction (PCR) was used to identify the sex-determining region of the Y-chromosome (Sry) and β-actin to investigate whether cells of donor origin remained in the allogeneic nerve segments. FK506 concentration was measured in blood samples taken before the animals were killed. Results The total myelinated axon numbers and amplitudes of the muscle action potentials correlated significantly with the blood FK506 concentration. Few axons were observed in the allogeneic-transplanted nerve segments in the PA0.025 group. PCR showed clear Sry-specific bands in specimens from the PA0.1 and PA0.05 groups but not from the PA0.025 group. Conclusions Successful nerve regeneration was observed in the polyphenol-treated nerve allografts when transplanted in association with a therapeutic dose of FK506. The data indicate that polyphenols can protect nerve tissue from ischemic damage for one month; however, the effects of immune suppression seem insufficient to permit allogeneic transplantation of peripheral nerves in a canine model.
Collapse
Affiliation(s)
- Ken Nakayama
- Department of Orthopedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Laubach VE. Invited Commentary. Ann Thorac Surg 2010; 89:1771-2. [DOI: 10.1016/j.athoracsur.2010.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 02/26/2010] [Accepted: 03/01/2010] [Indexed: 10/19/2022]
|