1
|
Naveed M, Mohammad IS, Xue L, Khan S, Gang W, Cao Y, Cheng Y, Cui X, DingDing C, Feng Y, Zhijie W, Xiaohui Z. The promising future of ventricular restraint therapy for the management of end-stage heart failure. Biomed Pharmacother 2018; 99:25-32. [PMID: 29324309 DOI: 10.1016/j.biopha.2018.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/19/2017] [Accepted: 01/03/2018] [Indexed: 01/31/2023] Open
Abstract
Complicated pathophysiological syndrome associated with irregular functioning of the heart leading to insufficient blood supply to the organs is linked to congestive heart failure (CHF) which is the leading cause of death in developed countries. Numerous factors can add to heart failure (HF) pathogenesis, including myocardial infarction (MI), genetic factors, coronary artery disease (CAD), ischemia or hypertension. Presently, most of the therapies against CHF cause modest symptom relief but incapable of giving significant recovery for long-term survival outcomes. Unfortunately, there is no effective treatment of HF except cardiac transplantation but genetic variations, tissue mismatch, differences in certain immune response and socioeconomic crisis are some major concern with cardiac transplantation, suggested an alternate bridge to transplant (BTT) or destination therapies (DT). Ventricular restraint therapy (VRT) is a promising, non-transplant surgical treatment wherein the overall goal is to wrap the dilated heart with prosthetic material to mechanically restrain the heart at end-diastole, stop extra remodeling, and thereby ultimately improve patient symptoms, ventricular function and survival. Ventricular restraint devices (VRDs) are developed to treat end-stage HF and BTT, including the CorCap cardiac support device (CSD) (CSD; Acorn Cardiovascular Inc, St Paul, Minn), Paracor HeartNet (Paracor Medical, Sunnyvale, Calif), QVR (Polyzen Inc, Apex, NC) and ASD (ASD, X. Zhou). An overview of 4 restraint devices, with their precise advantages and disadvantages, will be presented. The accessible peer-reviewed literature summarized with an important considerations on the mechanism of restraint therapy and how this acquaintance can be accustomed to optimize and improve its effectiveness.
Collapse
Affiliation(s)
- Muhammad Naveed
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy China Pharmaceutical University, School of Pharmacy, Jiangsu Province, Nanjing 211198, PR China
| | - Imran Shair Mohammad
- Department of Pharmaceutics, China Pharmaceutical University, School of Pharmacy, Jiangsu Province, Nanjing 211198, PR China
| | - Li Xue
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy China Pharmaceutical University, School of Pharmacy, Jiangsu Province, Nanjing 211198, PR China
| | - Sara Khan
- Department of Pharmaceutical Chemistry, University College of Pharmacy, University of the Punjab, Lahore 5400, Pakistan
| | - Wang Gang
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy China Pharmaceutical University, School of Pharmacy, Jiangsu Province, Nanjing 211198, PR China
| | - Yanfang Cao
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy China Pharmaceutical University, School of Pharmacy, Jiangsu Province, Nanjing 211198, PR China
| | - Yijie Cheng
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy China Pharmaceutical University, School of Pharmacy, Jiangsu Province, Nanjing 211198, PR China
| | - Xingxing Cui
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy China Pharmaceutical University, School of Pharmacy, Jiangsu Province, Nanjing 211198, PR China
| | - Chen DingDing
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy China Pharmaceutical University, School of Pharmacy, Jiangsu Province, Nanjing 211198, PR China.
| | - Yu Feng
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy China Pharmaceutical University, School of Pharmacy, Jiangsu Province, Nanjing 211198, PR China.
| | - Wang Zhijie
- Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, PR China.
| | - Zhou Xiaohui
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy China Pharmaceutical University, School of Pharmacy, Jiangsu Province, Nanjing 211198, PR China; Department of Heart Surgery, Nanjing Shuiximen Hospital, Jiangsu Province, Nanjing 210017, PR China; Department of Cardiothoracic Surgery, Zhongda Hospital affiliated to Southeast University, Jiangsu Province, Nanjing 210017, PR China.
| |
Collapse
|
2
|
Payne CJ, Wamala I, Bautista-Salinas D, Saeed M, Van Story D, Thalhofer T, Horvath MA, Abah C, Del Nido PJ, Walsh CJ, Vasilyev NV. Soft robotic ventricular assist device with septal bracing for therapy of heart failure. Sci Robot 2017; 2:2/12/eaan6736. [PMID: 33157903 DOI: 10.1126/scirobotics.aan6736] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 10/30/2017] [Indexed: 01/25/2023]
Abstract
Previous soft robotic ventricular assist devices have generally targeted biventricular heart failure and have not engaged the interventricular septum that plays a critical role in blood ejection from the ventricle. We propose implantable soft robotic devices to augment cardiac function in isolated left or right heart failure by applying rhythmic loading to either ventricle. Our devices anchor to the interventricular septum and apply forces to the free wall of the ventricle to cause approximation of the septum and free wall in systole and assist with recoil in diastole. Physiological sensing of the native hemodynamics enables organ-in-the-loop control of these robotic implants for fully autonomous augmentation of heart function. The devices are implanted on the beating heart under echocardiography guidance. We demonstrate the concept on both the right and the left ventricles through in vivo studies in a porcine model. Different heart failure models were used to demonstrate device function across a spectrum of hemodynamic conditions associated with right and left heart failure. These acute in vivo studies demonstrate recovery of blood flow and pressure from the baseline heart failure conditions. Significant reductions in diastolic ventricle pressure were also observed, demonstrating improved filling of the ventricles during diastole, which enables sustainable cardiac output.
Collapse
Affiliation(s)
- Christopher J Payne
- Wyss Institute for Biologically Inspired Engineering, 3 Blackfan Circle, Longwood, Boston, MA 02115, USA.,Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA 02138, USA
| | - Isaac Wamala
- Department of Cardiac Surgery, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA.,Department of Cardiovascular Surgery, Deutsches Herzzentrum Berlin, Berlin, Germany
| | - Daniel Bautista-Salinas
- Department of Cardiac Surgery, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Mossab Saeed
- Department of Cardiac Surgery, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - David Van Story
- Wyss Institute for Biologically Inspired Engineering, 3 Blackfan Circle, Longwood, Boston, MA 02115, USA.,Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA 02138, USA.,Department of Cardiac Surgery, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Thomas Thalhofer
- Wyss Institute for Biologically Inspired Engineering, 3 Blackfan Circle, Longwood, Boston, MA 02115, USA.,Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA 02138, USA.,Department of Mechanical Engineering, Technical University of Munich, Munich, Germany
| | - Markus A Horvath
- Wyss Institute for Biologically Inspired Engineering, 3 Blackfan Circle, Longwood, Boston, MA 02115, USA.,Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA 02138, USA.,Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Colette Abah
- Wyss Institute for Biologically Inspired Engineering, 3 Blackfan Circle, Longwood, Boston, MA 02115, USA.,Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA 02138, USA
| | - Pedro J Del Nido
- Department of Cardiac Surgery, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Conor J Walsh
- Wyss Institute for Biologically Inspired Engineering, 3 Blackfan Circle, Longwood, Boston, MA 02115, USA. .,Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA 02138, USA
| | - Nikolay V Vasilyev
- Department of Cardiac Surgery, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Vasopressors induce passive pulmonary hypertension by blood redistribution from systemic to pulmonary circulation. Basic Res Cardiol 2017; 112:21. [PMID: 28258299 DOI: 10.1007/s00395-017-0611-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 02/28/2017] [Indexed: 02/05/2023]
Abstract
Vasopressors are widely used in resuscitation, ventricular failure, and sepsis, and often induce pulmonary hypertension with undefined mechanisms. We hypothesize that vasopressor-induced pulmonary hypertension is caused by increased pulmonary blood volume and tested this hypothesis in dogs under general anesthesia. In normal hearts (model 1), phenylephrine (2.5 μg/kg/min) transiently increased right but decreased left cardiac output, associated with increased pulmonary blood volume (63% ± 11.8, P = 0.007) and pressures in the left atrium, pulmonary capillary, and pulmonary artery. However, the trans-pulmonary gradient and pulmonary vascular resistance remained stable. These changes were absent after decreasing blood volume or during right cardiac dysfunction to reduce pulmonary blood volume (model 2). During double-ventricle bypass (model 3), phenylephrine (1, 2.5 and 10 μg/kg/min) only slightly induced pulmonary vasoconstriction. Vasopressin (1U and 2U) dose-dependently increased pulmonary artery pressure (52 ± 8.4 and 71 ± 10.3%), but did not cause pulmonary vasoconstriction in normally beating hearts (model 1). Pulmonary artery and left atrial pressures increased during left ventricle dysfunction (model 4), and further increased after phenylephrine injection by 31 ± 5.6 and 43 ± 7.5%, respectively. In conclusion, vasopressors increased blood volume in the lung with minimal pulmonary vasoconstriction. Thus, this pulmonary hypertension is similar to the hemodynamic pattern observed in left heart diseases and is passive, due to redistribution of blood from systemic to pulmonary circulation. Understanding the underlying mechanisms may improve clinical management of patients who are taking vasopressors, especially those with coexisting heart disease.
Collapse
|