1
|
Visvanathan R, Houghton MJ, Williamson G. Impact of Glucose, Inflammation and Phytochemicals on ACE2, TMPRSS2 and Glucose Transporter Gene Expression in Human Intestinal Cells. Antioxidants (Basel) 2025; 14:253. [PMID: 40227199 PMCID: PMC11939507 DOI: 10.3390/antiox14030253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/05/2025] [Accepted: 02/18/2025] [Indexed: 04/15/2025] Open
Abstract
Inflammation is associated with the pathophysiology of type 2 diabetes and COVID-19. Phytochemicals have the potential to modulate inflammation, expression of SARS-CoV-2 viral entry receptors (angiotensin-converting enzyme 2 (ACE2) and transmembrane protease, serine 2 (TMPRSS2)) and glucose transport in the gut. This study assessed the impact of phytochemicals on these processes. We screened 12 phytochemicals alongside 10 pharmaceuticals and three plant extracts, selected for known or hypothesised effects on the SARS-CoV-2 receptors and COVID-19 risk, for their effects on the expression of ACE2 or TMPRSS2 in differentiated Caco-2/TC7 human intestinal epithelial cells. Genistein, apigenin, artemisinin and sulforaphane were the most promising ones, as assessed by the downregulation of TMPRSS2, and thus they were used in subsequent experiments. The cells were then co-stimulated with pro-inflammatory cytokines interleukin-1 beta (IL-1β) and tumour necrosis factor-alpha (TNF-α) for ≤168 h to induce inflammation, which are known to induce multiple pathways, including the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. Target gene expression (ACE2, TMPRSS2, SGLT1 (sodium-dependent glucose transporter 1) and GLUT2 (glucose transporter 2)) was measured by droplet digital PCR, while interleukin-1 (IL-6), interleukin-1 (IL-8) and ACE2 proteins were assessed using ELISA in both normal and inflamed cells. IL-1β and TNF-α treatment upregulated ACE2, TMPRSS2 and SGLT1 gene expression. ACE2 increased with the duration of cytokine exposure, coupled with a significant decrease in IL-8, SGLT1 and TMPRSS2 over time. Pearson correlation analysis revealed that the increase in ACE2 was strongly associated with a decrease in IL-8 (r = -0.77, p < 0.01). The regulation of SGLT1 gene expression followed the same pattern as TMPRSS2, implying a common mechanism. Although none of the phytochemicals decreased inflammation-induced IL-8 secretion, genistein normalised inflammation-induced increases in SGLT1 and TMPRSS2. The association between TMPRSS2 and SGLT1 gene expression, which is particularly evident in inflammatory conditions, suggests a common regulatory pathway. Genistein downregulated the inflammation-induced increase in SGLT1 and TMPRSS2, which may help lower the postprandial glycaemic response and COVID-19 risk or severity in healthy individuals and those with metabolic disorders.
Collapse
Affiliation(s)
- Rizliya Visvanathan
- Department of Nutrition, Dietetics and Food, BASE Facility, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia
- Victorian Heart Institute, Monash University, Level 2, Victorian Heart Hospital, 631 Blackburn Road, Clayton, VIC 3168, Australia
| | - Michael J. Houghton
- Department of Nutrition, Dietetics and Food, BASE Facility, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia
- Victorian Heart Institute, Monash University, Level 2, Victorian Heart Hospital, 631 Blackburn Road, Clayton, VIC 3168, Australia
| | - Gary Williamson
- Department of Nutrition, Dietetics and Food, BASE Facility, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia
- Victorian Heart Institute, Monash University, Level 2, Victorian Heart Hospital, 631 Blackburn Road, Clayton, VIC 3168, Australia
| |
Collapse
|
2
|
Li Q, Nie H. Advances in lung ischemia/reperfusion injury: unraveling the role of innate immunity. Inflamm Res 2024; 73:393-405. [PMID: 38265687 DOI: 10.1007/s00011-023-01844-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/03/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Lung ischemia/reperfusion injury (LIRI) is a common occurrence in clinical practice and represents a significant complication following pulmonary transplantation and various diseases. At the core of pulmonary ischemia/reperfusion injury lies sterile inflammation, where the innate immune response plays a pivotal role. This review aims to investigate recent advancements in comprehending the role of innate immunity in LIRI. METHODS A computer-based online search was performed using the PubMed database and Web of Science database for published articles concerning lung ischemia/reperfusion injury, cell death, damage-associated molecular pattern molecules (DAMPs), innate immune cells, innate immunity, inflammation. RESULTS During the process of lung ischemia/reperfusion, cellular injury even death can occur. When cells are injured or undergo cell death, endogenous ligands known as DAMPs are released. These molecules can be recognized and bound by pattern recognition receptors (PRRs), leading to the recruitment and activation of innate immune cells. Subsequently, a cascade of inflammatory responses is triggered, ultimately exacerbating pulmonary injury. These steps are complex and interrelated rather than being in a linear relationship. In recent years, significant progress has been made in understanding the immunological mechanisms of LIRI, involving novel types of cell death, the ability of receptors other than PRRs to recognize DAMPs, and a more detailed mechanism of action of innate immune cells in ischemia/reperfusion injury (IRI), laying the groundwork for the development of novel diagnostic and therapeutic approaches. CONCLUSIONS Various immune components of the innate immune system play critical roles in lung injury after ischemia/reperfusion. Preventing cell death and the release of DAMPs, interrupting DAMPs receptor interactions, disrupting intracellular inflammatory signaling pathways, and minimizing immune cell recruitment are essential for lung protection in LIRI.
Collapse
Affiliation(s)
- Qingqing Li
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Hanxiang Nie
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, China.
| |
Collapse
|
3
|
Zheng XY, Huang H, Wei ZT, Yan HJ, Wang XW, Xu L, Li CH, Tang HT, Wang JJ, Yu ZW, Tian D. Genetic effect of ischemia-reperfusion injury upon primary graft dysfunction and chronic lung allograft dysfunction in lung transplantation: evidence based on transcriptome data. Transpl Immunol 2022; 71:101556. [PMID: 35202801 DOI: 10.1016/j.trim.2022.101556] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 12/13/2022]
Abstract
The unclear mechanism that ischemia-reperfusion injury (IRI) contributes to the development of primary graft dysfunction (PGD) and chronic lung allograft dysfunction (CLAD) remains a major issue in lung transplantation. Differentially expressed PGD-related genes and CLAD-related genes during IRI (IRI-PGD common genes and IRI-CLAD common genes) were identified using GEO datasets (GSE127003, GSE8021, GSE9102) and GeneCards datasets. Enrichment analysis and four network analyses, namely, protein-protein interaction, microRNA (miRNA)-gene, transcription factor (TF)-gene, and drug-gene networks, were then performed. Moreover, GSE161520 was analyzed to identify the differentially expressed core miRNAs during IRI in rats. Finally, Pearson correlation analysis and ROC analysis were performed. Eight IRI-PGD common genes (IL6, TNF, IL1A, IL1B, CSF3, CXCL8, SERPINE1, and PADI4) and 10 IRI-CLAD common genes (IL1A, ICAM1, CCL20, CCL2, IL1B, TNF, PADI4, CXCL8, GZMB, and IL6) were identified. Enrichment analysis showed that both IRI-PGD and IRI-CLAD common genes were significantly enriched in "AGE-RAGE signaling pathway in diabetic complication" and "IL-17 signaling pathway". Among the core miRNAs, miR-1-3p and miR-335 were differentially expressed in IRI rats. Among core TFs, CEBPB expression had a significant negative correlation with P/F ratio (r = -0.33, P = 0.021). In the reperfused lung allografts, the strongest positive correlation was exhibited between PADI4 expression and neutrophil proportion (r = 0.76, P < 0.001), and the strongest negative correlation was between PADI4 expression and M2 macrophage proportion (r = -0.74, P < 0.001). In lung allografts of PGD recipients, IL6 expression correlated with activated dendritic cells proportion (r = 0.86, P < 0.01), and IL1B expression correlated with the neutrophils proportion(r = 0.84, P < 0.01). In whole blood of CLAD recipients, GZMB expression correlated with activated CD4+ memory T cells proportion (r = 0.76, P < 0.001).Our study provides the novel insights into the molecular mechanisms by which IRI contributes to PGD and CLAD and potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Xiang-Yun Zheng
- Heart and Lung Transplant Research Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Heng Huang
- Heart and Lung Transplant Research Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Zhen-Ting Wei
- Heart and Lung Transplant Research Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Hao-Ji Yan
- Heart and Lung Transplant Research Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Xiao-Wen Wang
- Heart and Lung Transplant Research Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Lin Xu
- Heart and Lung Transplant Research Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Cai-Han Li
- Heart and Lung Transplant Research Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Hong-Tao Tang
- Heart and Lung Transplant Research Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Jun-Jie Wang
- Heart and Lung Transplant Research Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Zeng-Wei Yu
- Heart and Lung Transplant Research Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Dong Tian
- Heart and Lung Transplant Research Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China.
| |
Collapse
|
4
|
Van Slambrouck J, Van Raemdonck D, Vos R, Vanluyten C, Vanstapel A, Prisciandaro E, Willems L, Orlitová M, Kaes J, Jin X, Jansen Y, Verleden GM, Neyrinck AP, Vanaudenaerde BM, Ceulemans LJ. A Focused Review on Primary Graft Dysfunction after Clinical Lung Transplantation: A Multilevel Syndrome. Cells 2022; 11:cells11040745. [PMID: 35203392 PMCID: PMC8870290 DOI: 10.3390/cells11040745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 02/01/2023] Open
Abstract
Primary graft dysfunction (PGD) is the clinical syndrome of acute lung injury after lung transplantation (LTx). However, PGD is an umbrella term that encompasses the ongoing pathophysiological and -biological mechanisms occurring in the lung grafts. Therefore, we aim to provide a focused review on the clinical, physiological, radiological, histological and cellular level of PGD. PGD is graded based on hypoxemia and chest X-ray (CXR) infiltrates. High-grade PGD is associated with inferior outcome after LTx. Lung edema is the main characteristic of PGD and alters pulmonary compliance, gas exchange and circulation. A conventional CXR provides a rough estimate of lung edema, while a chest computed tomography (CT) results in a more in-depth analysis. Macroscopically, interstitial and alveolar edema can be distinguished below the visceral lung surface. On the histological level, PGD correlates to a pattern of diffuse alveolar damage (DAD). At the cellular level, ischemia-reperfusion injury (IRI) is the main trigger for the disruption of the endothelial-epithelial alveolar barrier and inflammatory cascade. The multilevel approach integrating all PGD-related aspects results in a better understanding of acute lung failure after LTx, providing novel insights for future therapies.
Collapse
Affiliation(s)
- Jan Van Slambrouck
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Lung Transplant Unit, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.V.S.); (D.V.R.); (R.V.); (C.V.); (A.V.); (E.P.); (J.K.); (X.J.); (Y.J.); (G.M.V.); (B.M.V.)
- Department of Thoracic Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Dirk Van Raemdonck
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Lung Transplant Unit, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.V.S.); (D.V.R.); (R.V.); (C.V.); (A.V.); (E.P.); (J.K.); (X.J.); (Y.J.); (G.M.V.); (B.M.V.)
- Department of Thoracic Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Robin Vos
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Lung Transplant Unit, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.V.S.); (D.V.R.); (R.V.); (C.V.); (A.V.); (E.P.); (J.K.); (X.J.); (Y.J.); (G.M.V.); (B.M.V.)
- Department of Respiratory Diseases, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Cedric Vanluyten
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Lung Transplant Unit, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.V.S.); (D.V.R.); (R.V.); (C.V.); (A.V.); (E.P.); (J.K.); (X.J.); (Y.J.); (G.M.V.); (B.M.V.)
- Department of Thoracic Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Arno Vanstapel
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Lung Transplant Unit, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.V.S.); (D.V.R.); (R.V.); (C.V.); (A.V.); (E.P.); (J.K.); (X.J.); (Y.J.); (G.M.V.); (B.M.V.)
- Department of Pathology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Elena Prisciandaro
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Lung Transplant Unit, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.V.S.); (D.V.R.); (R.V.); (C.V.); (A.V.); (E.P.); (J.K.); (X.J.); (Y.J.); (G.M.V.); (B.M.V.)
- Department of Thoracic Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Lynn Willems
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Pulmonary Circulation Unit, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium;
| | - Michaela Orlitová
- Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium; (M.O.); (A.P.N.)
| | - Janne Kaes
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Lung Transplant Unit, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.V.S.); (D.V.R.); (R.V.); (C.V.); (A.V.); (E.P.); (J.K.); (X.J.); (Y.J.); (G.M.V.); (B.M.V.)
| | - Xin Jin
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Lung Transplant Unit, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.V.S.); (D.V.R.); (R.V.); (C.V.); (A.V.); (E.P.); (J.K.); (X.J.); (Y.J.); (G.M.V.); (B.M.V.)
- Department of Thoracic Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Yanina Jansen
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Lung Transplant Unit, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.V.S.); (D.V.R.); (R.V.); (C.V.); (A.V.); (E.P.); (J.K.); (X.J.); (Y.J.); (G.M.V.); (B.M.V.)
- Department of Thoracic Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Geert M. Verleden
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Lung Transplant Unit, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.V.S.); (D.V.R.); (R.V.); (C.V.); (A.V.); (E.P.); (J.K.); (X.J.); (Y.J.); (G.M.V.); (B.M.V.)
- Department of Respiratory Diseases, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Arne P. Neyrinck
- Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium; (M.O.); (A.P.N.)
- Department of Anesthesiology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Bart M. Vanaudenaerde
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Lung Transplant Unit, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.V.S.); (D.V.R.); (R.V.); (C.V.); (A.V.); (E.P.); (J.K.); (X.J.); (Y.J.); (G.M.V.); (B.M.V.)
| | - Laurens J. Ceulemans
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Lung Transplant Unit, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.V.S.); (D.V.R.); (R.V.); (C.V.); (A.V.); (E.P.); (J.K.); (X.J.); (Y.J.); (G.M.V.); (B.M.V.)
- Department of Thoracic Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
- Correspondence:
| |
Collapse
|
5
|
Miao J, Zhang L, Gao P, Zhao H, Xie X, Wang J. Chitosan-Based Glycolipid Conjugated siRNA Delivery System for Improving Radiosensitivity of Laryngocarcinoma. Polymers (Basel) 2021; 13:2929. [PMID: 34502969 PMCID: PMC8434167 DOI: 10.3390/polym13172929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 11/16/2022] Open
Abstract
Glucose Transporter-1 (GLUT-1) is considered to be a possible intrinsic marker of hypoxia in malignant tumors, which is an important factor in radioresistance of laryngocarcinoma. We speculated that the inhibition of GLUT-1 expression might improve the radiosensitivity of laryngocarcinoma. GLUT-1 siRNA was designed to inhibit the GLUT-1 expression, but the high molecular weight and difficult drug delivery limited the application. Herein, we constructed a glycolipid polymer chitosan oligosaccharide grafted stearic acid (CSSA) to conjugate siRNA via electrostatic interaction. The characteristics of CSSA and CSSA/siRNA were studied, as well as the radiosensitization effect of siRNA on human laryngocarcinoma epithelial (Hep-2) cells. Compared with the traditional commercial vector LipofectamineTM2000 (Lipo), CSSA exhibited lower cytotoxicity, more efficiently cellular uptake. Incubating with CSSA/siRNA, the survival rates of Hep-2 cells were significantly decreased comparing with either the group before transfection or Lipo/siRNA. CSSA is a promising carrier for efficient siRNA delivery and radiosensitization of laryngocarcinoma.
Collapse
Affiliation(s)
- Jing Miao
- Department of Pharmacy, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China; (J.M.); (L.Z.); (P.G.); (H.Z.)
| | - Liwen Zhang
- Department of Pharmacy, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China; (J.M.); (L.Z.); (P.G.); (H.Z.)
| | - Peng Gao
- Department of Pharmacy, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China; (J.M.); (L.Z.); (P.G.); (H.Z.)
| | - Huawei Zhao
- Department of Pharmacy, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China; (J.M.); (L.Z.); (P.G.); (H.Z.)
| | - Xianji Xie
- Department of Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Junyan Wang
- Department of Pharmacy, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China; (J.M.); (L.Z.); (P.G.); (H.Z.)
| |
Collapse
|
6
|
Ischemia-reperfusion Injury in the Transplanted Lung: A Literature Review. Transplant Direct 2021; 7:e652. [PMID: 33437867 PMCID: PMC7793349 DOI: 10.1097/txd.0000000000001104] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023] Open
Abstract
Lung ischemia-reperfusion injury (LIRI) and primary graft dysfunction are leading causes of morbidity and mortality among lung transplant recipients. Although extensive research endeavors have been undertaken, few preventative and therapeutic treatments have emerged for clinical use. Novel strategies are still needed to improve outcomes after lung transplantation. In this review, we discuss the underlying mechanisms of transplanted LIRI, potential modifiable targets, current practices, and areas of ongoing investigation to reduce LIRI and primary graft dysfunction in lung transplant recipients.
Collapse
|
7
|
Almeida FM, Battochio AS, Napoli JP, Alves KA, Balbin GS, Oliveira-Junior M, Moriya HT, Pego-Fernandes PM, Vieira RP, Pazetti R. Creatine Supply Attenuates Ischemia-Reperfusion Injury in Lung Transplantation in Rats. Nutrients 2020; 12:2765. [PMID: 32927837 PMCID: PMC7551831 DOI: 10.3390/nu12092765] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/01/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
Ischemia-reperfusion injury (IRI) is one of the factors limiting the success of lung transplantation (LTx). IRI increases death risk after transplantation through innate immune system activation and inflammation induction. Some studies have shown that creatine (Cr) protects tissues from ischemic damage by its antioxidant action. We evaluated the effects of Cr supplementation on IRI after unilateral LTx in rats. Sixty-four rats were divided into four groups: water + 90 min of ischemia; Cr + 90 min of ischemia; water + 180 min of ischemia; and Cr + 180 min of ischemia. Donor animals received oral Cr supplementation (0.5 g/kg/day) or vehicle (water) for five days prior to LTx. The left lung was exposed to cold ischemia for 90 or 180 min, followed by reperfusion for 2 h. We evaluated the ventilatory mechanics and inflammatory responses of the graft. Cr-treated animals showed a significant decrease in exhaled nitric oxide levels and inflammatory cells in blood, bronchoalveolar lavage fluid and lung tissue. Moreover, edema, cell proliferation and apoptosis in lung parenchyma were reduced in Cr groups. Finally, TLR-4, IL-6 and CINC-1 levels were lower in Cr-treated animals. We concluded that Cr caused a significant decrease in the majority of inflammation parameters evaluated and had a protective effect on the IRI after LTx in rats.
Collapse
Affiliation(s)
- Francine M. Almeida
- Instituto do Coraçao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05508-060, Brazil; (F.M.A.); (A.S.B.); (P.M.P.-F.)
| | - Angela S. Battochio
- Instituto do Coraçao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05508-060, Brazil; (F.M.A.); (A.S.B.); (P.M.P.-F.)
| | - João P. Napoli
- Laboratorio de Pesquisa em Cirurgia Toracica-LIM61, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05508-060, Brazil; (J.P.N.); (K.A.A.); (G.S.B.)
| | - Katiusa A. Alves
- Laboratorio de Pesquisa em Cirurgia Toracica-LIM61, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05508-060, Brazil; (J.P.N.); (K.A.A.); (G.S.B.)
| | - Grace S. Balbin
- Laboratorio de Pesquisa em Cirurgia Toracica-LIM61, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05508-060, Brazil; (J.P.N.); (K.A.A.); (G.S.B.)
| | - Manoel Oliveira-Junior
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), Sao Jose dos Campos 04372-020, Brazil; (M.O.-J.); (R.P.V.)
| | - Henrique T. Moriya
- Biomedical Engineering Laboratory-LEB, University of Sao Paulo, Sao Paulo 05508-060, Brazil;
| | - Paulo M. Pego-Fernandes
- Instituto do Coraçao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05508-060, Brazil; (F.M.A.); (A.S.B.); (P.M.P.-F.)
| | - Rodolfo P. Vieira
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), Sao Jose dos Campos 04372-020, Brazil; (M.O.-J.); (R.P.V.)
- Post-Graduation Program in Bioengineering, Universidade Brasil, Sao Paulo 05403-000, Brazil
- Post-Graduation Program in Sciences of Human Movement and Rehabilitation, Federal University of Sao Paulo (UNIFESP), Santos 04021-001, Brazil
| | - Rogerio Pazetti
- Laboratorio de Pesquisa em Cirurgia Toracica-LIM61, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05508-060, Brazil; (J.P.N.); (K.A.A.); (G.S.B.)
| |
Collapse
|
8
|
Chen YC, Hsu PY, Su MC, Chin CH, Liou CW, Wang TY, Lin YY, Lee CP, Lin MC, Hsiao CC. miR-21-5p Under-Expression in Patients with Obstructive Sleep Apnea Modulates Intermittent Hypoxia with Re-Oxygenation-Induced-Cell Apoptosis and Cytotoxicity by Targeting Pro-Inflammatory TNF-α-TLR4 Signaling. Int J Mol Sci 2020; 21:ijms21030999. [PMID: 32028672 PMCID: PMC7037842 DOI: 10.3390/ijms21030999] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 02/07/2023] Open
Abstract
The purpose of this study is to explore the anti-inflammatory role of microRNAs (miR)-21 and miR-23 targeting the TLR/TNF-α pathway in response to chronic intermittent hypoxia with re-oxygenation (IHR) injury in patients with obstructive sleep apnea (OSA). Gene expression levels of the miR-21/23a, and their predicted target genes were assessed in peripheral blood mononuclear cells from 40 treatment-naive severe OSA patients, and 20 matched subjects with primary snoring (PS). Human monocytic THP-1 cell lines were induced to undergo apoptosis under IHR exposures, and transfected with miR-21-5p mimic. Both miR-21-5p and miR-23-3p gene expressions were decreased in OSA patients as compared with that in PS subjects, while TNF-α gene expression was increased. Both miR-21-5p and miR-23-3p gene expressions were negatively correlated with apnea hypopnea index and oxygen desaturation index, while TNF-α gene expression positively correlated with apnea hypopnea index. In vitro IHR treatment resulted in decreased miR-21-5p and miR-23-3p expressions. Apoptosis, cytotoxicity, and gene expressions of their predicted target genes—including TNF-α, ELF2, NFAT5, HIF-2α, IL6, IL6R, EDNRB, and TLR4—were all increased in response to IHR, while all were reversed with miR-21-5p mimic transfection under IHR condition. The findings provide biological insight into mechanisms by which IHR-suppressed miRs protect cell apoptosis via inhibit inflammation, and indicate that over-expression of the miR-21-5p may be a new therapy for OSA.
Collapse
Affiliation(s)
- Yung-Che Chen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (Y.-C.C.); (P.-Y.H.); (M.-C.S.); (C.-H.C.); (T.-Y.W.); (Y.-Y.L.); (C.P.L.)
- Sleep Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Department of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Po-Yuan Hsu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (Y.-C.C.); (P.-Y.H.); (M.-C.S.); (C.-H.C.); (T.-Y.W.); (Y.-Y.L.); (C.P.L.)
| | - Mao-Chang Su
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (Y.-C.C.); (P.-Y.H.); (M.-C.S.); (C.-H.C.); (T.-Y.W.); (Y.-Y.L.); (C.P.L.)
- Sleep Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Department of Respiratory Therapy, Chang Gung University of Science and Technology, Chia-Yi 61363, Taiwan
| | - Chien-Hung Chin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (Y.-C.C.); (P.-Y.H.); (M.-C.S.); (C.-H.C.); (T.-Y.W.); (Y.-Y.L.); (C.P.L.)
- Sleep Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Department of Medicine, Chung Shan Medical University School of Medicine, Taichung 40201, Taiwan
| | - Chia-Wei Liou
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
| | - Ting-Ya Wang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (Y.-C.C.); (P.-Y.H.); (M.-C.S.); (C.-H.C.); (T.-Y.W.); (Y.-Y.L.); (C.P.L.)
| | - Yong-Yong Lin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (Y.-C.C.); (P.-Y.H.); (M.-C.S.); (C.-H.C.); (T.-Y.W.); (Y.-Y.L.); (C.P.L.)
| | - Chiu Ping Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (Y.-C.C.); (P.-Y.H.); (M.-C.S.); (C.-H.C.); (T.-Y.W.); (Y.-Y.L.); (C.P.L.)
| | - Meng-Chih Lin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (Y.-C.C.); (P.-Y.H.); (M.-C.S.); (C.-H.C.); (T.-Y.W.); (Y.-Y.L.); (C.P.L.)
- Sleep Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Correspondence: (M.-C.L.); (C.-C.H.); Tel.: +886-7-731-7123 (ext 8199) (M.-C.L.); +886-7-731-7123 (ext. 8979) (C.-C.H.)
| | - Chang-Chun Hsiao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (Y.-C.C.); (P.-Y.H.); (M.-C.S.); (C.-H.C.); (T.-Y.W.); (Y.-Y.L.); (C.P.L.)
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Correspondence: (M.-C.L.); (C.-C.H.); Tel.: +886-7-731-7123 (ext 8199) (M.-C.L.); +886-7-731-7123 (ext. 8979) (C.-C.H.)
| |
Collapse
|
9
|
Beller JP, Byler MR, Money DT, Chancellor WZ, Zhang A, Zhao Y, Stoler MH, Narahari AK, Shannon A, Mehaffey JH, Tribble CG, Laubach VE, Kron IL, Roeser ME. Reduced-flow ex vivo lung perfusion to rehabilitate lungs donated after circulatory death. J Heart Lung Transplant 2019; 39:74-82. [PMID: 31761511 DOI: 10.1016/j.healun.2019.09.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Current ex vivo lung perfusion (EVLP) protocols aim to achieve perfusion flows of 40% of cardiac output or more. We hypothesized that a lower target flow rate during EVLP would improve graft function and decrease inflammation of donation after circulatory death (DCD) lungs. METHODS A porcine DCD and EVLP model was utilized. Two groups (n = 4 per group) of DCD lungs were randomized to target EVLP flows of 40% (high-flow) or 20% (low-flow) predicted cardiac output based on 100 ml/min/kg. At the completion of 4 hours of normothermic EVLP using Steen solution, left lung transplantation was performed, and lungs were monitored during 4 hours of reperfusion. RESULTS After transplant, left lung-specific pulmonary vein partial pressure of oxygen was significantly higher in the low-flow group at 3 and 4 hours of reperfusion (3-hour: 496.0 ± 87.7 mm Hg vs. 252.7 ± 166.0 mm Hg, p = 0.017; 4-hour: 429.7 ± 93.6 mm Hg vs. 231.5 ± 178 mm Hg, p = 0.048). Compliance was significantly improved at 1 hour of reperfusion (20.8 ± 9.4 ml/cm H2O vs. 10.2 ± 3.5 ml/cm H2O, p = 0.022) and throughout all subsequent time points in the low-flow group. After reperfusion, lung wet-to-dry weight ratio (7.1 ± 0.7 vs. 8.8 ± 1.1, p = 0.040) and interleukin-1β expression (927 ± 300 pg/ng protein vs. 2,070 ± 874 pg/ng protein, p = 0.048) were significantly reduced in the low-flow group. CONCLUSIONS EVLP of DCD lungs with low-flow targets of 20% predicted cardiac output improves lung function, reduces edema, and attenuates inflammation after transplant. Therefore, EVLP for lung rehabilitation should use reduced flow rates of 20% predicted cardiac output.
Collapse
Affiliation(s)
- Jared P Beller
- Departments of Surgery, University of Virginia, Charlottesville, Virginia
| | - Matthew R Byler
- Departments of Surgery, University of Virginia, Charlottesville, Virginia
| | - Dustin T Money
- Departments of Surgery, University of Virginia, Charlottesville, Virginia
| | | | - Aimee Zhang
- Departments of Surgery, University of Virginia, Charlottesville, Virginia
| | - Yunge Zhao
- Departments of Surgery, University of Virginia, Charlottesville, Virginia
| | - Mark H Stoler
- Departments of Pathology, University of Virginia, Charlottesville, Virginia
| | | | - Alexander Shannon
- Departments of Surgery, University of Virginia, Charlottesville, Virginia
| | - J Hunter Mehaffey
- Departments of Surgery, University of Virginia, Charlottesville, Virginia
| | - Curtis G Tribble
- Departments of Surgery, University of Virginia, Charlottesville, Virginia
| | - Victor E Laubach
- Departments of Surgery, University of Virginia, Charlottesville, Virginia
| | - Irving L Kron
- Departments of Surgery, University of Virginia, Charlottesville, Virginia; Department of Surgery, University of Arizona Department of Health Sciences, Tuscon, Arizona
| | - Mark E Roeser
- Departments of Surgery, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
10
|
Penehyclidine hydrochloride preconditioning provides pulmonary and systemic protection in a rat model of lung ischaemia reperfusion injury. Eur J Pharmacol 2018; 839:1-11. [PMID: 30201378 DOI: 10.1016/j.ejphar.2018.09.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 11/23/2022]
Abstract
Penehyclidine hydrochloride (PHC) is a new anticholinergic agent that provides protective effects in experimental models of heart and brain ischaemia as well as reperfusion (I/R) injury. In this study, we tested the hypothesis that PHC can alleviate lung ischaemia-reperfusion injury and improve pulmonary and systemic function in rats. PHC was administered intravenously at various doses (d= 0.1, 0.3, 1, 3 mg/kg) to I/R rats. We used six indicators, including lung function, histologic examination, pulmonary oedema, oxidative stress, inflammatory responses, and apoptosis staining to quantify the pulmonary and systemic protective effects of PHC. Haematoxylin and eosin staining was used for pulmonary histologic examination. The expression of Toll-like receptor (TLR) 4, phospho-inhibitor of NF-κB (p-IκB) and nuclear factor-kappa B (NF-κB) was analysed using western blotting. ELISA was conducted to detect inflammatory mediators. Oxidative stress markers as well as myeloperoxidase (MPO) were determined using an assay kit. PHC preconditioning (with concentrations ranging from 0.3 mg/kg to 3 mg/kg 30 min before the onset of I/R) significantly reduced lung histopathological changes, down regulated TLR4, p-IκB and NF-κB expression, and decreased inflammatory mediators as well as the total number of leukocytes and neutrophils in bronchoalveolar lavage (BAL) fluid and plasma. The lung tissue contents of reactive oxygen species (ROS), malondialdehyde (MDA), and MPO as well as pulmonary oedema formation decreased, while SOD (superoxide dismutase) activity was significantly upregulated. PHC preconditioning (with concentrations ranging from 1 mg/kg to 3 mg/kg) significantly improved the lung function and attenuated the apoptotic rate. The probable mechanism for this finding is the inhibition of proinflammatory mediators via the suppression of reactive oxygen species production and the TLR4/NF-κB signalling pathway.
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Lungs are extremely susceptible to injury, and despite advances in surgical management and immunosuppression, outcomes for lung transplantation are the worst of any solid organ transplant. The success of lung transplantation is limited by high rates of primary graft dysfunction because of ischemia-reperfusion injury characterized by robust inflammation, alveolar damage, and vascular permeability. This review will summarize major mechanisms of lung ischemia-reperfusion injury with a focus on the most recent findings in this area. RECENT FINDINGS Over the past 18 months, numerous studies have described strategies to limit lung ischemia-reperfusion injury in experimental settings, which often reveal mechanistic insight. Many of these strategies involved the use of various antioxidants, anti-inflammatory agents, mesenchymal stem cells, and ventilation with gaseous molecules. Further advancements have been achieved in understanding mechanisms of innate immune cell activation, neutrophil infiltration, endothelial barrier dysfunction, and oxidative stress responses. SUMMARY Methods for prevention of primary graft dysfunction after lung transplant are urgently needed, and understanding mechanisms of ischemia-reperfusion injury is critical for the development of novel and effective therapeutic approaches. In doing so, both acute and chronic outcomes of lung transplant recipients will be significantly improved.
Collapse
|
12
|
Gelman AE, Fisher AJ, Huang HJ, Baz MA, Shaver CM, Egan TM, Mulligan MS. Report of the ISHLT Working Group on Primary Lung Graft Dysfunction Part III: Mechanisms: A 2016 Consensus Group Statement of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant 2017; 36:1114-1120. [PMID: 28818404 DOI: 10.1016/j.healun.2017.07.014] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/16/2017] [Indexed: 01/17/2023] Open
Affiliation(s)
- Andrew E Gelman
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA.
| | - Andrew J Fisher
- Institute of Transplantation, Freeman Hospital and Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Howard J Huang
- Annette C. and Harold C. Simmons Transplant Institute, Baylor University Medical Center, Dallas, Texas, USA
| | - Maher A Baz
- Departments of Medicine and Surgery, University of Kentucky, Lexington, Kentucky, USA
| | - Ciara M Shaver
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Thomas M Egan
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Micheal S Mulligan
- Department of Surgery, Division of Cardiothoracic Surgery, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
13
|
Andreasson ASI, Borthwick LA, Gillespie C, Jiwa K, Scott J, Henderson P, Mayes J, Romano R, Roman M, Ali S, Fildes JE, Marczin N, Dark JH, Fisher AJ. The role of interleukin-1β as a predictive biomarker and potential therapeutic target during clinical ex vivo lung perfusion. J Heart Lung Transplant 2017; 36:985-995. [PMID: 28551353 PMCID: PMC5578478 DOI: 10.1016/j.healun.2017.05.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/09/2017] [Accepted: 05/09/2017] [Indexed: 11/23/2022] Open
Abstract
Background Extended criteria donor lungs deemed unsuitable for immediate transplantation can be reconditioned using ex vivo lung perfusion (EVLP). Objective identification of which donor lungs can be successfully reconditioned and will function well post-operatively has not been established. This study assessed the predictive value of markers of inflammation and tissue injury in donor lungs undergoing EVLP as part of the DEVELOP-UK study. Methods Longitudinal samples of perfusate, bronchoalveolar lavage, and tissue from 42 human donor lungs undergoing clinical EVLP assessments were analyzed for markers of inflammation and tissue injury. Levels were compared according to EVLP success and post-transplant outcomes. Neutrophil adhesion to human pulmonary microvascular endothelial cells (HPMECs) conditioned with perfusates from EVLP assessments was investigated on a microfluidic platform. Results The most effective markers to differentiate between in-hospital survival and non-survival post-transplant were perfusate interleukin (IL)-1β (area under the curve = 1.00, p = 0.002) and tumor necrosis factor-α (area under the curve = 0.95, p = 0.006) after 30 minutes of EVLP. IL-1β levels in perfusate correlated with upregulation of intracellular adhesion molecule-1 in donor lung vasculature (R2 = 0.68, p < 0.001) and to a lesser degree upregulation of intracellular adhesion molecule-1 (R2 = 0.30, p = 0.001) and E-selectin (R2 = 0.29, p = 0.001) in conditioned HPMECs and neutrophil adhesion to conditioned HPMECs (R2 = 0.33, p < 0.001). Neutralization of IL-1β in perfusate effectively inhibited neutrophil adhesion to conditioned HPMECs (91% reduction, p = 0.002). Conclusions Donor lungs develop a detectable and discriminatory pro-inflammatory signature in perfusate during EVLP. Blocking the IL-1β pathway during EVLP may reduce endothelial activation and subsequent neutrophil adhesion on reperfusion; this requires further investigation in vivo.
Collapse
Affiliation(s)
- Anders S I Andreasson
- Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, United Kingdom; Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lee A Borthwick
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Colin Gillespie
- School of Mathematics & Statistics, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Kasim Jiwa
- Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Jonathan Scott
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Paul Henderson
- Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Jonny Mayes
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | | | - Simi Ali
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - James E Fildes
- University Hospital of South Manchester, Manchester, United Kingdom; Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom
| | | | - John H Dark
- Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, United Kingdom; Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Andrew J Fisher
- Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, United Kingdom; Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | | |
Collapse
|
14
|
Lama VN, Belperio JA, Christie JD, El-Chemaly S, Fishbein MC, Gelman AE, Hancock WW, Keshavjee S, Kreisel D, Laubach VE, Looney MR, McDyer JF, Mohanakumar T, Shilling RA, Panoskaltsis-Mortari A, Wilkes DS, Eu JP, Nicolls MR. Models of Lung Transplant Research: a consensus statement from the National Heart, Lung, and Blood Institute workshop. JCI Insight 2017; 2:93121. [PMID: 28469087 DOI: 10.1172/jci.insight.93121] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lung transplantation, a cure for a number of end-stage lung diseases, continues to have the worst long-term outcomes when compared with other solid organ transplants. Preclinical modeling of the most common and serious lung transplantation complications are essential to better understand and mitigate the pathophysiological processes that lead to these complications. Various animal and in vitro models of lung transplant complications now exist and each of these models has unique strengths. However, significant issues, such as the required technical expertise as well as the robustness and clinical usefulness of these models, remain to be overcome or clarified. The National Heart, Lung, and Blood Institute (NHLBI) convened a workshop in March 2016 to review the state of preclinical science addressing the three most important complications of lung transplantation: primary graft dysfunction (PGD), acute rejection (AR), and chronic lung allograft dysfunction (CLAD). In addition, the participants of the workshop were tasked to make consensus recommendations on the best use of these complimentary models to close our knowledge gaps in PGD, AR, and CLAD. Their reviews and recommendations are summarized in this report. Furthermore, the participants outlined opportunities to collaborate and directions to accelerate research using these preclinical models.
Collapse
Affiliation(s)
- Vibha N Lama
- Department of Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - John A Belperio
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jason D Christie
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Souheil El-Chemaly
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael C Fishbein
- Department of Pathology and Laboratory Medicine, UCLA Center for the Health Sciences, Los Angeles, California, USA
| | - Andrew E Gelman
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Wayne W Hancock
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Shaf Keshavjee
- Division of Thoracic Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Daniel Kreisel
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Victor E Laubach
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Mark R Looney
- Department of Medicine, UCSF School of Medicine, San Francisco, California, USA
| | - John F McDyer
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | - Rebecca A Shilling
- Department of Medicine, University of Illinois College of Medicine at Chicago, Illinois, USA
| | - Angela Panoskaltsis-Mortari
- Departments of Pediatrics, and Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - David S Wilkes
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Jerry P Eu
- National Heart, Lung and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Mark R Nicolls
- Department of Medicine, Stanford University School of Medicine/VA Palo Alto Health Care System, Stanford, California, USA
| |
Collapse
|
15
|
Liver X Receptor Agonist TO901317 Attenuates Paraquat-Induced Acute Lung Injury through Inhibition of NF- κB and JNK/p38 MAPK Signal Pathways. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4652695. [PMID: 28480221 PMCID: PMC5396433 DOI: 10.1155/2017/4652695] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/13/2017] [Accepted: 03/01/2017] [Indexed: 12/31/2022]
Abstract
Paraquat (PQ) is a widely used herbicide with extremely high poisoning mortality mostly from acute lung injury (ALI) or progressive pulmonary fibrosis. Toxicity mechanisms remain unclear, but a redox cycling process that generates reactive oxygen species (ROS) is involved, as are inflammation and cell apoptosis. We established an ALI mouse model by intraperitoneal injection of PQ (28 mg/kg) and then investigated the effects of a potent liver X receptor (LXR) agonist, TO901317 (5 or 20 mg/kg), injected intraperitoneally 30 min after PQ administration. Poisoned mice exhibited severe lung tissue lesions and edema, significant neutrophilic (PMNs) infiltration, and release of the proinflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). PQ administration also decreased activity of antioxidases, including superoxide dismutase (SOD), catalase (CAT), and glutathione S-transferases (GSTs), and increased lipid peroxidation as evaluated by malondialdehyde (MDA) levels. PQ exposure induced upregulation of the proapoptotic gene Bax and downregulation of the antiapoptotic gene Bcl-2, leading to marked cell apoptosis in the lung tissues. TO901317 treatment reversed all these effects through inhibition of PQ-induced nuclear factor kappa B (NF-κB) and JNK/p38 mitogen-activated protein kinase (MAPK) activation. The LXR agonist TO901317 had potent antioxidant, anti-inflammatory, and antiapoptotic effects against PQ-induced ALI.
Collapse
|
16
|
Pizzirani S. Definition, Classification, and Pathophysiology of Canine Glaucoma. Vet Clin North Am Small Anim Pract 2016; 45:1127-57, v. [PMID: 26456751 DOI: 10.1016/j.cvsm.2015.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Glaucoma is a common ocular condition in humans and dogs leading to optic nerve degeneration and irreversible blindness. Primary glaucoma is a group of spontaneous heterogeneous diseases. Multiple factors are involved in its pathogenesis and these factors vary across human ethnic groups and canine breeds, so the clinical phenotypes are numerous and their classification can be challenging and remain superficial. Aging and oxidative stress are major triggers for the manifestation of disease. Multiple, intertwined inflammatory and biochemical cascades eventually alter cellular and extracellular physiology in the optic nerve and trabecular meshwork and lead to vision loss.
Collapse
Affiliation(s)
- Stefano Pizzirani
- Ophthalmology, Department of Clinical Science, Cummings School of Veterinary Medicine, Tufts University, 200 Westboro Road, North Grafton, MA 01536, USA.
| |
Collapse
|