1
|
Reuben DY. A Prolonged Response and Characteristics of Trabectedin Treatment of Metastatic Soft Tissue Sarcoma. J Med Cases 2021; 12:160-163. [PMID: 34434451 PMCID: PMC8383654 DOI: 10.14740/jmc3655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 01/25/2021] [Indexed: 11/26/2022] Open
Abstract
Unique features and treatment effects of trabectedin are presented in consideration of soft tissue sarcoma management. A prolonged time on trabectedin through 59 cycles is shown. This is one of the longer reported uses of trabectedin successfully to control disease. Adjunctive cytoreduction options with surgery, radiation or ablation are presented. Future studies would be helpful to investigate treatment holidays, the impact of multi-modality care and assessment of genetics of clonal metastases. This may assist in guiding and selecting patients for priority treatment with trabectedin.
Collapse
Affiliation(s)
- Daniel Y Reuben
- Division of Hematology and Oncology, Hollings Cancer Center, Medical University of South Carolina, MSC# 635, 39 Sabin Street, Charleston, SC 29425, USA.
| |
Collapse
|
2
|
Fan PW, Huang L, Chang XM, Feng YN, Yao X, Peng YC, Dong T, Wang RZ. Human Leukocyte Antigen-A Allele Distribution in Nasopharyngeal Carcinoma Patients Showing Anti-Melanoma-Associated Antigen A or Synovial Sarcoma X-2 T Cell Response in Blood. Chin Med J (Engl) 2018; 131:1289-1295. [PMID: 29786040 PMCID: PMC5987498 DOI: 10.4103/0366-6999.232791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Background: Development of innovative immunotherapy is imperative to improve the poor survival of the nasopharyngeal carcinoma (NPC) patients. In this study, we evaluated the T cell response to melanoma-associated antigen (MAGE)-A1, MAGE-A3, or synovial sarcoma X-2 (SSX-2) in the peripheral blood of treatment-naive NPC patients. The relationship of responses among the three proteins and the human leukocyte antigen (HLA)-A types were analyzed to provide evidence of designing novel therapy. Methods: Sixty-one NPC patients admitted into the Tumor Hospital affiliated to the Xinjiang Medical University between March 2015 and July 2016 were enrolled. Mononuclear cells were isolated from the peripheral blood before any treatment. HLA-A alleles were typed with Sanger sequence-based typing technique. The T cell response to the MAGE-A1, MAGE-A3, or SSX-2 was evaluated with the Enzyme-Linked ImmunoSpot assay. Mann-Whitney U-test was used to compare the T cell responses from different groups. Spearman's rank correlation was used to analyze the relationship of T cell responses. Results: HLA-A*02:01, A*02:07, and A*24:02 were the three most frequent alleles (18.9%, 12.3%, and 11.5%, respectively) among the 22 detected alleles. 31.1%, 19.7%, and 16.4% of the patients displayed MAGE-A1, MAGE-A3, or SSX-2-specific T cell response, respectively. The magnitudes of response to the three proteins were 32.5, 38.0, and 28.7 SFC/106 peripheral blood mononuclear cells, respectively. The T cell response against the three proteins correlated with each other to different extent. The percentage of A*02:01 and A*24:02 carriers were significantly higher in patients responding to any of the three proteins compared to the nonresponders. Conclusion: MAGE-A1, MAGE-A3, or SSX-2-specific T cell responses were detectable in a subgroup of NPC patients, the frequency and magnitude of which were correlated.
Collapse
Affiliation(s)
- Pei-Wen Fan
- Xinjiang Key Laboratory of Oncology, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830000, China
| | - Li Huang
- Department of Radiation Oncology, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830000, China
| | - Xue-Mei Chang
- Xinjiang Key Laboratory of Oncology, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830000, China
| | - Ya-Ning Feng
- Xinjiang Key Laboratory of Oncology, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830000, China
| | - Xuan Yao
- CAMS Oxford Center for Translation Immunology, Chinese Academy of Medical Science Oxford Institute, Nuffield Department of Medicine; MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, UK
| | - Yan-Chun Peng
- CAMS Oxford Center for Translation Immunology, Chinese Academy of Medical Science Oxford Institute, Nuffield Department of Medicine; MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, UK
| | - Tao Dong
- CAMS Oxford Center for Translation Immunology, Chinese Academy of Medical Science Oxford Institute, Nuffield Department of Medicine; MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, UK
| | - Ruo-Zheng Wang
- Xinjiang Key Laboratory of Oncology, The Affiliated Tumor Hospital of Xinjiang Medical University; Department of Radiation Oncology, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830000, China
| |
Collapse
|
3
|
Chüeh AC, Liew MS, Russell PA, Walkiewicz M, Jayachandran A, Starmans MH, Boutros PC, Wright G, Barnett SA, Mariadason JM, John T. Promoter hypomethylation of NY-ESO-1, association with clinicopathological features and PD-L1 expression in non-small cell lung cancer. Oncotarget 2017; 8:74036-74048. [PMID: 29088766 PMCID: PMC5650321 DOI: 10.18632/oncotarget.18198] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/01/2017] [Indexed: 12/15/2022] Open
Abstract
Cancer-Testis antigens (CTA) are immunogenic molecules with normal tissue expression restricted to testes but with aberrant expression in up to 30% of non-small cell lung cancers (NSCLCs). Regulation of CTA expression is mediated in part through promoter DNA methylation. Recently, immunotherapy has altered treatment paradigms in NSCLC. Given its immunogenicity and ability to be re-expressed through demethylation, NY-ESO-1 promoter methylation, protein expression and its association with programmed death receptor ligand-1 (PD-L1) expression and clinicopathological features were investigated. Lung cancer cell line demethylation resulting from 5-Aza-2'-deoxycytidine treatment was associated with both NY-ESO-1 and PD-L1 re-expression in vitro but not increased chemosensitivity. NY-ESO-1 hypomethylation was observed in 15/94 (16%) of patient samples and associated with positive protein expression (P < 0.0001). In contrast, PD-L1 expression was observed in 50/91 (55%) but strong expression in only 12/91 (13%) cases. There was no association between NY-ESO-1 and PD-L1 expression, despite resultant re-expression of both by 5-Aza-2'-deoxycytidine. Importantly, NY-ESO-1 hypomethylation was found to be an independent marker of poor prognosis in patients not treated with chemotherapy (HR 3.59, P = 0.003) in multivariate analysis. In patients treated with chemotherapy there were no differences in survival associated with NY-ESO-1 hypomethylation. Collectively, these results provided supporting evidence for the potential use of NY-ESO-1 hypomethylation as a prognostic biomarker in stage 3 NSCLCs. In addition, these data highlight the potential to incorporate demethylating agents to enhance immune activation, in tumours currently devoid of immune infiltrates and expression of immune checkpoint genes.
Collapse
Affiliation(s)
- Anderly C. Chüeh
- 1 Ludwig Institute of Cancer Research, Melbourne-Austin Branch, Victoria, Australia
- 2 Department of Medicine, Austin Health, University of Melbourne, Victoria, Australia
| | - Mun-Sem Liew
- 1 Ludwig Institute of Cancer Research, Melbourne-Austin Branch, Victoria, Australia
- 2 Department of Medicine, Austin Health, University of Melbourne, Victoria, Australia
- 3 Olivia Newton-John Cancer Research Institute, Victoria, Australia
| | - Prudence A. Russell
- 4 Department of Anatomical Pathology, St Vincent’s Hospital, Victoria, Australia
| | - Marzena Walkiewicz
- 1 Ludwig Institute of Cancer Research, Melbourne-Austin Branch, Victoria, Australia
- 3 Olivia Newton-John Cancer Research Institute, Victoria, Australia
| | - Aparna Jayachandran
- 1 Ludwig Institute of Cancer Research, Melbourne-Austin Branch, Victoria, Australia
- 3 Olivia Newton-John Cancer Research Institute, Victoria, Australia
- 5 School of Cancer Medicine, La Trobe University, Victoria, Australia
| | - Maud H.W. Starmans
- 6 Informatics and Biocomputing Program, Ontario Institute for Cancer Research, Toronto, Canada
| | - Paul C. Boutros
- 6 Informatics and Biocomputing Program, Ontario Institute for Cancer Research, Toronto, Canada
- 7 Department of Medical Biophysics, University of Toronto, Toronto, Canada
- 8 Department of Pharmacology & Toxicology, University of Toronto, Toronto, Canada
| | - Gavin Wright
- 9 Department of Thoracic Oncology, St Vincent’s Hospital, Victoria, Australia
| | - Stephen A Barnett
- 10 Department of Thoracic Surgery, Austin Hospital, Melbourne, Victoria, Australia
| | - John M. Mariadason
- 1 Ludwig Institute of Cancer Research, Melbourne-Austin Branch, Victoria, Australia
- 2 Department of Medicine, Austin Health, University of Melbourne, Victoria, Australia
- 3 Olivia Newton-John Cancer Research Institute, Victoria, Australia
- 5 School of Cancer Medicine, La Trobe University, Victoria, Australia
| | - Thomas John
- 1 Ludwig Institute of Cancer Research, Melbourne-Austin Branch, Victoria, Australia
- 2 Department of Medicine, Austin Health, University of Melbourne, Victoria, Australia
- 3 Olivia Newton-John Cancer Research Institute, Victoria, Australia
| |
Collapse
|
4
|
Shiratori H, Feinweber C, Knothe C, Lötsch J, Thomas D, Geisslinger G, Parnham MJ, Resch E. High-Throughput Analysis of Global DNA Methylation Using Methyl-Sensitive Digestion. PLoS One 2016; 11:e0163184. [PMID: 27749902 PMCID: PMC5066982 DOI: 10.1371/journal.pone.0163184] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 09/02/2016] [Indexed: 11/26/2022] Open
Abstract
DNA methylation is a major regulatory process of gene transcription, and aberrant DNA methylation is associated with various diseases including cancer. Many compounds have been reported to modify DNA methylation states. Despite increasing interest in the clinical application of drugs with epigenetic effects, and the use of diagnostic markers for genome-wide hypomethylation in cancer, large-scale screening systems to measure the effects of drugs on DNA methylation are limited. In this study, we improved the previously established fluorescence polarization-based global DNA methylation assay so that it is more suitable for application to human genomic DNA. Our methyl-sensitive fluorescence polarization (MSFP) assay was highly repeatable (inter-assay coefficient of variation = 1.5%) and accurate (r2 = 0.99). According to signal linearity, only 50–80 ng human genomic DNA per reaction was necessary for the 384-well format. MSFP is a simple, rapid approach as all biochemical reactions and final detection can be performed in one well in a 384-well plate without purification steps in less than 3.5 hours. Furthermore, we demonstrated a significant correlation between MSFP and the LINE-1 pyrosequencing assay, a widely used global DNA methylation assay. MSFP can be applied for the pre-screening of compounds that influence global DNA methylation states and also for the diagnosis of certain types of cancer.
Collapse
Affiliation(s)
- Hiromi Shiratori
- Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Frankfurt am Main, Germany
- * E-mail:
| | - Carmen Feinweber
- Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Frankfurt am Main, Germany
| | - Claudia Knothe
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt am Main, Germany
| | - Jörn Lötsch
- Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Frankfurt am Main, Germany
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt am Main, Germany
| | - Dominique Thomas
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt am Main, Germany
| | - Gerd Geisslinger
- Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Frankfurt am Main, Germany
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt am Main, Germany
| | - Michael J. Parnham
- Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Frankfurt am Main, Germany
| | - Eduard Resch
- Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Frankfurt am Main, Germany
| |
Collapse
|