1
|
Markovic MD, Panic VV, Pjanovic RV. Polymeric Nanosystems: A Breakthrough Approach to Treating Inflammation and Inflammation Related Diseases. Biopolymers 2025; 116:e70012. [PMID: 40104970 DOI: 10.1002/bip.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 02/17/2025] [Accepted: 03/02/2025] [Indexed: 03/20/2025]
Abstract
Inflammation processes can cause mild to severe damage in the human body and can lead to a large number of inflammation-related diseases (IRD) such as cancer, neural, vascular, and pulmonary diseases. Limitations of anti-inflammatory drugs (AID) application are reflected in high therapeutic doses, toxicity, low bioavailability and solubility, side effects, etc. Polymeric nanosystems (PS) have been recognized as a safe and effective technology that is able to overcome these limitations by AID encapsulation and is able to answer to the specific demands of the IRD treatment. PS are attracting great attention due to their versatility, biocompatibility, low toxicity, fine-tuned properties, functionality, and ability for precise delivery of anti-inflammatory drugs to the targeted sites in the human body. This article offers an overview of three classes of polymeric nanosystems: a) dendrimers, b) polymeric micelles and polymeric nanoparticles, and c) polymeric filomicelles, as well as their properties, preparation, and application in IRD treatment. In the future, the number of PS formulations in clinical practice will certainly increase.
Collapse
Affiliation(s)
- Maja D Markovic
- Innovation Center of Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Vesna V Panic
- Innovation Center of Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Rada V Pjanovic
- Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
2
|
Farag A, Elfadadny A, Mandour AS, Ngeun SK, Aboubakr M, Kaneda M, Tanaka R. Potential protective effects of L-carnitine against myocardial ischemia/reperfusion injury in a rat model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:18813-18825. [PMID: 38349499 DOI: 10.1007/s11356-024-32212-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 01/22/2024] [Indexed: 03/09/2024]
Abstract
Myocardial ischemia/reperfusion (I/R) injury is a growing concern for global public health. This study seeks to explore the potential protective effects of L-carnitine (LC) against heart ischemia-reperfusion injury in rats. To induce I/R injury, the rat hearts underwent a 30-min ligation of the left anterior descending coronary artery, followed by 24 h of reperfusion. We evaluated cardiac function through electrocardiography and heart rate variability (HRV) and conducted pathological examinations of myocardial structure. Additionally, the study investigated the influence of LC on myocardial apoptosis, inflammation, and oxidative stress in the context of I/R injury. The results show that pretreatment with LC led to improvements in the observed alterations in ECG waveforms and HRV parameters in the nontreated ischemic reperfusion model group, although most of these changes did not reach statistical significance. Similarly, although without a significant difference, LC reduced the levels of proinflammatory cytokines when compared to the values in the nontreated ischemic rat group. Furthermore, LC restored the reduced expressions of SOD1, SOD2, and SOD3. Additionally, LC significantly reduced the elevated Bax expressions and showed a nonsignificant increase in Bcl-2 expression, resulting in a favorable adjustment of the Bcl-2/Bax ratio. We also observed a significant enhancement in the histological appearance of cardiac muscles, a substantial reduction in myocardial fibrosis, and suppressed CD3 + cell proliferation in the ischemic myocardium. This small-scale, experimental, in vivo study indicates that LC was associated with enhancements in the pathological findings in the ischemic myocardium in the context of ischemia/reperfusion injury in this rat model. Although statistical significance was not achieved, LC exhibits potential and beneficial protective effects against I/R injury. It does so by modulating the expression of antioxidative and antiapoptotic genes, inhibiting the inflammatory response, and enhancing autonomic balance, particularly by increasing vagal tone in the heart. Further studies are necessary to confirm and elaborate on these findings.
Collapse
Affiliation(s)
- Ahmed Farag
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan.
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
| | - Ahmed Elfadadny
- Department of Animal Internal Medicine, Faculty of Veterinary Medicine, Damanhur University, Damanhur, Egypt
| | - Ahmed S Mandour
- Department of Animal Medicine (Internal Medicine), Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Sai Koung Ngeun
- Laboratory of Veterinary Diagnostic Imaging, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Mohamed Aboubakr
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Qaliobiya, Egypt
| | - Masahiro Kaneda
- Laboratory of Veterinary Anatomy, Division of Animal Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Ryou Tanaka
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan
| |
Collapse
|
3
|
Akhtar S, Babiker F, Akhtar UA, Benter IF. Mitigating Cardiotoxicity of Dendrimers: Angiotensin-(1-7) via Its Mas Receptor Ameliorates PAMAM-Induced Cardiac Dysfunction in the Isolated Mammalian Heart. Pharmaceutics 2022; 14:pharmaceutics14122673. [PMID: 36559167 PMCID: PMC9781033 DOI: 10.3390/pharmaceutics14122673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022] Open
Abstract
AIM The influence of the physiochemical properties of dendrimer nanoparticles on cardiac contractility and hemodynamics are not known. Herein, we investigated (a) the effect of polyamidoamine (PAMAM) dendrimer generation (G7, G6, G5, G4 and G3) and surface chemistry (-NH2, -COOH and -OH) on cardiac function in mammalian hearts following ischemia-reperfusion (I/R) injury, and (b) determined if any PAMAM-induced cardiotoxicity could be mitigated by Angiotensin-(1-7) (Ang-(1-7), a cardioprotective agent. METHODS Hearts isolated from male Wistar rats underwent regional I/R and/or treatment with different PAMAM dendrimers, Ang-(1-7) or its MAS receptors antagonists. Thirty minutes of regional ischemia through ligation of the left anterior descending coronary artery was followed by 30 min of reperfusion. All treatments were initiated 5 min prior to reperfusion and maintained during the first 10 min of reperfusion. Cardiac function parameters for left ventricular contractility, hemodynamics and vascular dynamics data were acquired digitally, whereas cardiac enzymes and infarct size were used as measures of cardiac injury. RESULTS Treatment of isolated hearts with increasing doses of G7 PAMAM dendrimer progressively exacerbated recovery of cardiac contractility and hemodynamic parameters post-I/R injury. Impairment of cardiac function was progressively less on decreasing dendrimer generation with G3 exhibiting little or no cardiotoxicity. Cationic PAMAMs (-NH2) were more toxic than anionic (-COOH), with neutral PAMAMs (-OH) exhibiting the least cardiotoxicity. Cationic G7 PAMAM-induced cardiac dysfunction was significantly reversed by Ang-(1-7) administration. These cardioprotective effects of Ang-(1-7) were significantly revoked by administration of the MAS receptor antagonists, A779 and D-Pro7-Ang-(1-7). CONCLUSIONS PAMAM dendrimers can impair the recovery of hearts from I/R injury in a dose-, dendrimer-generation-(size) and surface-charge dependent manner. Importantly, PAMAM-induced cardiotoxicity could be mitigated by Ang-(1-7) acting through its MAS receptor. Thus, this study highlights the activation of Ang-(1-7)/Mas receptor axis as a novel strategy to overcome dendrimer-induced cardiotoxicity.
Collapse
Affiliation(s)
- Saghir Akhtar
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
- Correspondence: (S.A.); (F.B.)
| | - Fawzi Babiker
- Departments of Physiology, Faculty of Medicine, Health Science Center, Kuwait University, Safat P.O. Box 24923, Kuwait
- Correspondence: (S.A.); (F.B.)
| | - Usman A. Akhtar
- Department of Mechanical and Chemical Engineering, College of Engineering, Qatar University, Doha P.O. Box 2713, Qatar
| | - Ibrahim F. Benter
- Faculty of Medicine, Eastern Mediterranean University, Famagusta 99628, North Cyprus, Turkey
| |
Collapse
|
4
|
Karam M, Fahs D, Maatouk B, Safi B, Jaffa AA, Mhanna R. Polymeric nanoparticles in the diagnosis and treatment of myocardial infarction: Challenges and future prospects. Mater Today Bio 2022; 14:100249. [PMID: 35434594 PMCID: PMC9006854 DOI: 10.1016/j.mtbio.2022.100249] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 11/26/2022] Open
Abstract
Myocardial infarction (MI) is the leading cause of morbidity and mortality worldwide. Despite extensive efforts to provide early diagnosis and adequate treatment regimens, detection of MI still faces major limitations and pathological MI complications continue to threaten the recovery of survivors. Polymeric nanoparticles (NPs) represent novel noninvasive drug delivery systems for the diagnosis and treatment of MI and subsequent prevention of fatal heart failure. In this review, we cover the recent advances in polymeric NP-based diagnostic and therapeutic approaches for MI and their application as multifunctional theranostic tools. We also discuss the in vivo behavior and toxicity profile of polymeric NPs, their application in noninvasive imaging, passive, and active drug delivery, and use in cardiac regenerative therapy. We conclude with the challenges faced with polymeric nanosystems and suggest future efforts needed for clinical translation.
Collapse
Affiliation(s)
- Mia Karam
- Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, Lebanon
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon
| | - Duaa Fahs
- Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, Lebanon
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon
| | - Batoul Maatouk
- Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, Lebanon
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon
| | - Brouna Safi
- Department of Chemical Engineering, Maroun Semaan Faculty of Engineering and Architecture, Lebanon
| | - Ayad A. Jaffa
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon
| | - Rami Mhanna
- Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, Lebanon
| |
Collapse
|
5
|
Yu Q, Wu LB, Zhang F, Wei XT, Chen PP, Wang SY, Cai MY, Shu Q, Li LY, Wu ZJ, Cai RL, Hu L. Mechanisms of Electroacupuncture Pretreatment in Alleviating Myocardial Ischemia Reperfusion Injury: Interactions between the Cerebellar Fastigial Nucleus and Lateral Hypothalamic Area. J Acupunct Meridian Stud 2021; 14:207-218. [DOI: 10.51507/j.jams.2021.14.6.207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/04/2021] [Accepted: 12/10/2021] [Indexed: 11/03/2022] Open
Affiliation(s)
- Qing Yu
- College of Acupuncture and Moxibustion, Anhui University of Chinese Medicine, Hefei, China
- Acupuncture and Meridian Research Institute, Anhui Academy of Chinese Medicine, Hefei, China
| | - Li-bin Wu
- College of Acupuncture and Moxibustion, Anhui University of Chinese Medicine, Hefei, China
| | - Fan Zhang
- College of Acupuncture and Moxibustion, Anhui University of Chinese Medicine, Hefei, China
| | - Xiao-tong Wei
- College of Acupuncture and Moxibustion, Anhui University of Chinese Medicine, Hefei, China
| | - Pian-pian Chen
- College of Acupuncture and Moxibustion, Anhui University of Chinese Medicine, Hefei, China
| | - Shuai-ya Wang
- College of Acupuncture and Moxibustion, Anhui University of Chinese Medicine, Hefei, China
| | - Mei-yi Cai
- College of Acupuncture and Moxibustion, Anhui University of Chinese Medicine, Hefei, China
| | - Qi Shu
- College of Acupuncture and Moxibustion, Anhui University of Chinese Medicine, Hefei, China
| | - Liao-yuan Li
- College of Acupuncture and Moxibustion, Anhui University of Chinese Medicine, Hefei, China
| | - Zi-jian Wu
- Acupuncture and Meridian Research Institute, Anhui Academy of Chinese Medicine, Hefei, China
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Rong-lin Cai
- Acupuncture and Meridian Research Institute, Anhui Academy of Chinese Medicine, Hefei, China
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Ling Hu
- Acupuncture and Meridian Research Institute, Anhui Academy of Chinese Medicine, Hefei, China
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
6
|
Sahoo RK, Singh H, Thakur K, Gupta U, Goyal AK. Theranostic Applications of Nanomaterials in the Field of Cardiovascular Diseases. Curr Pharm Des 2021; 28:91-103. [PMID: 34218771 DOI: 10.2174/1381612827666210701154305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/27/2021] [Indexed: 11/22/2022]
Abstract
A large percentage of people are being exposed to mortality due to cardiovascular diseases. Convention approaches have not provided satisfactory outcomes in the management of these diseases. To overcome the limitations of conventional approaches, nanomaterials like nanoparticles, nanotubes, micelles, lipid based nanocarriers, dendrimers, carbon based nano-formulations represent the new aspect of diagnosis and treatment of cardiovascular diseases. The unique inherent properties of the nanomaterials are the major reasons for their rapidly growing demand in the field of medicine. Profound knowledge in the field of nanotechnology and biomedicine is needed for the notable translation of nanomaterials into theranostic cardiovascular applications. In this review, the authors have summarized different nanomaterials which are being extensively used to diagnose and treat the diseases such as coronary heart disease, myocardial infarction, atherosclerosis, stroke and thrombosis.
Collapse
Affiliation(s)
- Rakesh K Sahoo
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan 305817, India
| | - Himani Singh
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan 305817, India
| | - Kamlesh Thakur
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan 305817, India
| | - Umesh Gupta
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan 305817, India
| | - Amit K Goyal
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan 305817, India
| |
Collapse
|
7
|
Zhao T, Chen S, Wang B, Cai D. L-Carnitine Reduces Myocardial Oxidative Stress and Alleviates Myocardial Ischemia-Reperfusion Injury by Activating Nuclear Transcription-Related Factor 2 (Nrf2)/Heme Oxygenase-1 (HO-1) Signaling Pathway. Med Sci Monit 2020; 26:e923251. [PMID: 32452468 PMCID: PMC7271686 DOI: 10.12659/msm.923251] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Myocardial ischemia-reperfusion injury (IRI) is an important injury mechanism of myocardial infarction. The purpose of this study was to explore the effects of L-carnitine (LC) on myocardial IRI and its mechanism. Material/Methods The IRI model was made by ligating the left anterior descending coronary artery. Then, we injected LC intraperitoneally into the rats of the experimental group to assess the effect of LC on IRI rats by use of serum markers, Western blot, and qRT-PCR. H9c2 cells were cultured and then treated with hypoxia-reoxygenation. The effect of LC on oxidative stress, apoptosis, and nuclear transcription-related factor 2/heme oxygenase-1 (Nrf2/HO-1) signaling pathway of H9c2 cells were detected by Western blot, RT-PCR, and flow cytometry. Results LC significantly reduced malondialdehyde (MDA), creatine kinase (CK), and lactate dehydrogenase (LDH) levels in rat myocardial tissue and increased superoxide dismutase (SOD) expression. LC also increased the expression of SOD1/2 and Bcl-2 in rat myocardial tissue and H9c2 cells and decreased the expression of caspase3/8 and Bax. In addition, LC increased the expression of Nrf2/HO-1 signaling pathway-related molecules in H9c2 cells and increased the activity of the Nrf2/HO-1 signaling pathway. Moreover, inhibition of the Nrf2/HO-1 signaling pathway attenuated the protective effect of LC on H9c2 cells. Conclusions LC can activate the Nrf2/HO-1 signaling pathway and reduce oxidative stress and apoptosis in cardiomyocytes, thereby reducing myocardial IRI.
Collapse
Affiliation(s)
- Tana Zhao
- Second Department of Pediatric, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China (mainland)
| | - Shangjun Chen
- Department of Geratology, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China (mainland)
| | - Bingxin Wang
- Department of Orthopedics, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China (mainland)
| | - Dongliang Cai
- Department of Geratology, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China (mainland)
| |
Collapse
|
8
|
Vemuri SK, Nethi SK, Banala RR, Goli PVS, Annapareddy VGR, Patra CR. Europium Hydroxide Nanorods (EHNs) Ameliorate Isoproterenol-Induced Myocardial Infarction: An in Vitro and in Vivo Investigation. ACS APPLIED BIO MATERIALS 2019; 2:1078-1087. [DOI: 10.1021/acsabm.8b00669] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Susheel Kumar Nethi
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, Telangana State 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | | | | | | | - Chitta Ranjan Patra
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, Telangana State 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
9
|
Banaszak Holl MM, Dougherty CA, Vaidyanathan S. Tailoring dendrimer conjugates for biomedical applications: the impact of altering hydrophobicity. JOURNAL OF NANOPARTICLE RESEARCH 2018; 20:284. [DOI: 10.1007/s11051-018-4380-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 10/03/2018] [Indexed: 01/06/2025]
|
10
|
Arduino DM, Perocchi F. Pharmacological modulation of mitochondrial calcium homeostasis. J Physiol 2018; 596:2717-2733. [PMID: 29319185 DOI: 10.1113/jp274959] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/13/2017] [Indexed: 12/26/2022] Open
Abstract
Mitochondria are pivotal organelles in calcium (Ca2+ ) handling and signalling, constituting intracellular checkpoints for numerous processes that are vital for cell life. Alterations in mitochondrial Ca2+ homeostasis have been linked to a variety of pathological conditions and are critical in the aetiology of several human diseases. Efforts have been taken to harness mitochondrial Ca2+ transport mechanisms for therapeutic intervention, but pharmacological compounds that direct and selectively modulate mitochondrial Ca2+ homeostasis are currently lacking. New avenues have, however, emerged with the breakthrough discoveries on the genetic identification of the main players involved in mitochondrial Ca2+ influx and efflux pathways and with recent hints towards a deep understanding of the function of these molecular systems. Here, we review the current advances in the understanding of the mechanisms and regulation of mitochondrial Ca2+ homeostasis and its contribution to physiology and human disease. We also introduce and comment on the recent progress towards a systems-level pharmacological targeting of mitochondrial Ca2+ homeostasis.
Collapse
Affiliation(s)
- Daniela M Arduino
- Gene Center, Department of Biochemistry, Ludwig-Maximilians Universität München, Munich, 81377, Germany.,Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC), Helmholtz Zentrum München and German National Diabetes Center (DZD), Neuherberg, 85764, Germany
| | - Fabiana Perocchi
- Gene Center, Department of Biochemistry, Ludwig-Maximilians Universität München, Munich, 81377, Germany.,Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC), Helmholtz Zentrum München and German National Diabetes Center (DZD), Neuherberg, 85764, Germany
| |
Collapse
|
11
|
Katsuki S, Matoba T, Koga JI, Nakano K, Egashira K. Anti-inflammatory Nanomedicine for Cardiovascular Disease. Front Cardiovasc Med 2017; 4:87. [PMID: 29312961 PMCID: PMC5743792 DOI: 10.3389/fcvm.2017.00087] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/12/2017] [Indexed: 12/11/2022] Open
Abstract
Coronary artery disease, in the development of which inflammation mediated by innate immune cells plays a critical role, is one of the leading causes of death worldwide. The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) are a widely used lipid-lowering drug that has lipid-independent vasculoprotective effects, such as improvement of endothelial dysfunction, antioxidant properties, and inhibitory effects on inflammation. Despite recent advances in lipid-lowering therapy, clinical trials of statins suggest that anti-inflammatory therapy beyond lipid-lowering therapy is indispensible to further reduce cardiovascular events. One possible therapeutic option to the residual risk is to directly intervene in the inflammatory process by utilizing a nanotechnology-based drug delivery system (nano-DDS). Various nano-sized materials are currently developed as DDS, including micelles, liposomes, polymeric nanoparticles, dendrimers, carbon nanotubes, and metallic nanoparticles. The application of nano-DDS to coronary artery disease is a feasible strategy since the inflammatory milieu enhances incorporation of nano-sized materials into mononuclear phagocytic system and permeability of target lesions, which confers nano-DDS on “passive-targeting” property. Recently, we have developed a polymeric nanoparticle-incorporating statin to maximize its anti-inflammatory property. This statin nanoparticle has been tested in various disease models, including plaque destabilization and rupture, myocardial ischemia-reperfusion injury, and ventricular remodeling after acute myocardial infarction, and its clinical application is in progress. In this review, we present current development of DDS and future perspective on the application of anti-inflammatory nanomedicine to treat life-threatening cardiovascular diseases.
Collapse
Affiliation(s)
- Shunsuke Katsuki
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan.,Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Tetsuya Matoba
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Jun-Ichiro Koga
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan.,Department of Cardiovascular Research, Development, and Translational Medicine, Center for Cardiovascular Disruptive Innovation, Kyushu University, Fukuoka, Japan
| | - Kaku Nakano
- Department of Cardiovascular Research, Development, and Translational Medicine, Center for Cardiovascular Disruptive Innovation, Kyushu University, Fukuoka, Japan
| | - Kensuke Egashira
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan.,Department of Cardiovascular Research, Development, and Translational Medicine, Center for Cardiovascular Disruptive Innovation, Kyushu University, Fukuoka, Japan
| |
Collapse
|