1
|
Pitoulis F, Tauber K, Atluri P, Szeto W, Anwarruddin S, Kobayashi T, Desai N, Cevasco M, Bermudez C, Acker M, Williams M, Ibrahim M. The Challenges of Aortic Valve Management After Left Ventricular Assist Device Implantation. ANNALS OF THORACIC SURGERY SHORT REPORTS 2024; 2:567-572. [PMID: 39790404 PMCID: PMC11708590 DOI: 10.1016/j.atssr.2024.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 04/08/2024] [Indexed: 01/12/2025]
Abstract
Background Continuous retrograde flow across the aortic valve from left ventricular assist device (LVAD) therapy can result in cusp damage and progressive aortic regurgitation, potentially triggering recurrent heart and multiorgan failure. The management of aortic regurgitation after LVAD implantation has not been well defined. Methods This study retrospectively reviewed the investigators' experience with the management of de novo aortic regurgitation requiring intervention in patients with continuous-flow LVAD. Results Six patients who had undergone LVAD implantation and who required intervention were identified. Two patients underwent redo sternotomy with bioprosthetic aortic valve replacement, and 4 patients underwent percutaneous management, including Amplatzer device (Abbott) placement and transcatheter aortic valve replacement. All patients had resolution of aortic regurgitation with improved hemodynamics and relief from heart failure. One early and 2 late deaths occurred. Valve function was intact, with all valves opening intermittently without greater than trivial aortic regurgitation. Conclusions Multiple treatment modalities exist for LVAD-induced aortic valve regurgitation, including open surgical and percutaneous strategies. With a tailored risk-adjusted approach, acceptable results may be achieved.
Collapse
Affiliation(s)
- Fotios Pitoulis
- Division of Cardiovascular Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Karissa Tauber
- Division of Cardiovascular Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Pavan Atluri
- Division of Cardiovascular Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Wilson Szeto
- Division of Cardiovascular Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Saif Anwarruddin
- Division of Cardiovascular Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Taisei Kobayashi
- Division of Cardiovascular Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nimesh Desai
- Division of Cardiovascular Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Marisa Cevasco
- Division of Cardiovascular Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Christian Bermudez
- Division of Cardiovascular Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael Acker
- Division of Cardiovascular Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Matthew Williams
- Division of Cardiovascular Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael Ibrahim
- Division of Cardiovascular Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
2
|
Galeone A, Buccoliero C, Barile B, Nicchia GP, Onorati F, Luciani GB, Brunetti G. Cellular and Molecular Mechanisms Activated by a Left Ventricular Assist Device. Int J Mol Sci 2023; 25:288. [PMID: 38203459 PMCID: PMC10779015 DOI: 10.3390/ijms25010288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Left ventricular assist devices (LVADs) represent the final treatment for patients with end-stage heart failure (HF) not eligible for transplantation. Although LVAD design has been further improved in the last decade, their use is associated with different complications. Specifically, inflammation, fibrosis, bleeding events, right ventricular failure, and aortic valve regurgitation may occur. In addition, reverse remodeling is associated with substantial cellular and molecular changes of the failing myocardium during LVAD support with positive effects on patients' health. All these processes also lead to the identification of biomarkers identifying LVAD patients as having an augmented risk of developing associated adverse events, thus highlighting the possibility of identifying new therapeutic targets. Additionally, it has been reported that LVAD complications could cause or exacerbate a state of malnutrition, suggesting that, with an adjustment in nutrition, the general health of these patients could be improved.
Collapse
Affiliation(s)
- Antonella Galeone
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Division of Cardiac Surgery, University of Verona, 37129 Verona, Italy; (A.G.); (F.O.); (G.B.L.)
| | - Cinzia Buccoliero
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (C.B.); (B.B.); (G.P.N.)
| | - Barbara Barile
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (C.B.); (B.B.); (G.P.N.)
| | - Grazia Paola Nicchia
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (C.B.); (B.B.); (G.P.N.)
| | - Francesco Onorati
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Division of Cardiac Surgery, University of Verona, 37129 Verona, Italy; (A.G.); (F.O.); (G.B.L.)
| | - Giovanni Battista Luciani
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Division of Cardiac Surgery, University of Verona, 37129 Verona, Italy; (A.G.); (F.O.); (G.B.L.)
| | - Giacomina Brunetti
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (C.B.); (B.B.); (G.P.N.)
| |
Collapse
|
3
|
Lim HS, Yim IHW. De novo aortic regurgitation related to left ventricular assist device therapy: the difficult questions in need of new perspectives. Eur J Heart Fail 2023; 25:295-298. [PMID: 36567269 DOI: 10.1002/ejhf.2761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022] Open
Affiliation(s)
- Hoong Sern Lim
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Ivan H W Yim
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
4
|
Drakos SG, Badolia R, Makaju A, Kyriakopoulos CP, Wever-Pinzon O, Tracy CM, Bakhtina A, Bia R, Parnell T, Taleb I, Ramadurai DKA, Navankasattusas S, Dranow E, Hanff TC, Tseliou E, Shankar TS, Visker J, Hamouche R, Stauder EL, Caine WT, Alharethi R, Selzman CH, Franklin S. Distinct Transcriptomic and Proteomic Profile Specifies Patients Who Have Heart Failure With Potential of Myocardial Recovery on Mechanical Unloading and Circulatory Support. Circulation 2023; 147:409-424. [PMID: 36448446 PMCID: PMC10062458 DOI: 10.1161/circulationaha.121.056600] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/25/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Extensive evidence from single-center studies indicates that a subset of patients with chronic advanced heart failure (HF) undergoing left ventricular assist device (LVAD) support show significantly improved heart function and reverse structural remodeling (ie, termed "responders"). Furthermore, we recently published a multicenter prospective study, RESTAGE-HF (Remission from Stage D Heart Failure), demonstrating that LVAD support combined with standard HF medications induced remarkable cardiac structural and functional improvement, leading to high rates of LVAD weaning and excellent long-term outcomes. This intriguing phenomenon provides great translational and clinical promise, although the underlying molecular mechanisms driving this recovery are largely unknown. METHODS To identify changes in signaling pathways operative in the normal and failing human heart and to molecularly characterize patients who respond favorably to LVAD unloading, we performed global RNA sequencing and phosphopeptide profiling of left ventricular tissue from 93 patients with HF undergoing LVAD implantation (25 responders and 68 nonresponders) and 12 nonfailing donor hearts. Patients were prospectively monitored through echocardiography to characterize their myocardial structure and function and identify responders and nonresponders. RESULTS These analyses identified 1341 transcripts and 288 phosphopeptides that are differentially regulated in cardiac tissue from nonfailing control samples and patients with HF. In addition, these unbiased molecular profiles identified a unique signature of 29 transcripts and 93 phosphopeptides in patients with HF that distinguished responders after LVAD unloading. Further analyses of these macromolecules highlighted differential regulation in 2 key pathways: cell cycle regulation and extracellular matrix/focal adhesions. CONCLUSIONS This is the first study to characterize changes in the nonfailing and failing human heart by integrating multiple -omics platforms to identify molecular indices defining patients capable of myocardial recovery. These findings may guide patient selection for advanced HF therapies and identify new HF therapeutic targets.
Collapse
Affiliation(s)
- Stavros G. Drakos
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
- Utah Transplantation Affiliated Hospitals (U.T.A.H.) Cardiac Transplant Program (University of Utah, Intermountain Medical Center, Salt Lake VA Medical Center), Salt Lake City, Utah, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Rachit Badolia
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - Aman Makaju
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - Christos P. Kyriakopoulos
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
- Utah Transplantation Affiliated Hospitals (U.T.A.H.) Cardiac Transplant Program (University of Utah, Intermountain Medical Center, Salt Lake VA Medical Center), Salt Lake City, Utah, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Omar Wever-Pinzon
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
- Utah Transplantation Affiliated Hospitals (U.T.A.H.) Cardiac Transplant Program (University of Utah, Intermountain Medical Center, Salt Lake VA Medical Center), Salt Lake City, Utah, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Christopher M. Tracy
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - Anna Bakhtina
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - Ryan Bia
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - Timothy Parnell
- Bioinformatics Core, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States
| | - Iosif Taleb
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
- Utah Transplantation Affiliated Hospitals (U.T.A.H.) Cardiac Transplant Program (University of Utah, Intermountain Medical Center, Salt Lake VA Medical Center), Salt Lake City, Utah, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Dinesh K. A. Ramadurai
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - Sutip Navankasattusas
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - Elizabeth Dranow
- Utah Transplantation Affiliated Hospitals (U.T.A.H.) Cardiac Transplant Program (University of Utah, Intermountain Medical Center, Salt Lake VA Medical Center), Salt Lake City, Utah, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Thomas C. Hanff
- Utah Transplantation Affiliated Hospitals (U.T.A.H.) Cardiac Transplant Program (University of Utah, Intermountain Medical Center, Salt Lake VA Medical Center), Salt Lake City, Utah, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Eleni Tseliou
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
- Utah Transplantation Affiliated Hospitals (U.T.A.H.) Cardiac Transplant Program (University of Utah, Intermountain Medical Center, Salt Lake VA Medical Center), Salt Lake City, Utah, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Thirupura S. Shankar
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - Joseph Visker
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - Rana Hamouche
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - Elizabeth L. Stauder
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
- Utah Transplantation Affiliated Hospitals (U.T.A.H.) Cardiac Transplant Program (University of Utah, Intermountain Medical Center, Salt Lake VA Medical Center), Salt Lake City, Utah, United States
| | - William T. Caine
- Utah Transplantation Affiliated Hospitals (U.T.A.H.) Cardiac Transplant Program (University of Utah, Intermountain Medical Center, Salt Lake VA Medical Center), Salt Lake City, Utah, United States
| | - Rami Alharethi
- Utah Transplantation Affiliated Hospitals (U.T.A.H.) Cardiac Transplant Program (University of Utah, Intermountain Medical Center, Salt Lake VA Medical Center), Salt Lake City, Utah, United States
| | - Craig H. Selzman
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
- Utah Transplantation Affiliated Hospitals (U.T.A.H.) Cardiac Transplant Program (University of Utah, Intermountain Medical Center, Salt Lake VA Medical Center), Salt Lake City, Utah, United States
| | - Sarah Franklin
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States
| |
Collapse
|
5
|
Si MS, Sood V, Biniwale R, Peng D. Considerations of valvular heart disease in children with ventricular assist devices. Front Cardiovasc Med 2023; 10:1056663. [PMID: 37034354 PMCID: PMC10075362 DOI: 10.3389/fcvm.2023.1056663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/01/2023] [Indexed: 04/11/2023] Open
Abstract
Ventricular assist devices have become a valuable tool in the treatment of heart failure in children. The use of ventricular assist devices has decreased mortality in children with end-stage heart failure awaiting transplant. It is not uncommon for children with end-stage heart failure associated with cardiomyopathy or congenital heart disease to have significant systemic semilunar and atrioventricular valve regurgitation, which can impact the efficiency and efficacy of hemodynamic support provided by a ventricular assist device. Therefore, implanting clinicians should carefully assess for valve abnormalities that may need repair and impact device selection and cannulation strategy to effectively support this diverse population. The purpose of this review is to provide an overview of this important and relevant topic and to discuss strategies for managing these patients.
Collapse
Affiliation(s)
- Ming-Sing Si
- Department of Pediatrics, Division of Pediatric Cardiology, University of Michigan, C.S. Mott Children’s Hospital, Ann Arbor, MI, United States
- Correspondence: Ming-Sing Si
| | - Vikram Sood
- Department of Cardiac Surgery, C.S. Mott Children's Hospital, University of Michigan, Ann Arbor, MI, United States
| | - Reshma Biniwale
- Department of Pediatrics, Division of Pediatric Cardiology, University of Michigan, C.S. Mott Children’s Hospital, Ann Arbor, MI, United States
| | - David Peng
- Department of Cardiac Surgery, C.S. Mott Children's Hospital, University of Michigan, Ann Arbor, MI, United States
- Department of Surgery, Division of Cardiac Surgery, University of California, Los Angeles, Mattel Children’s Hospital, Los Angeles, CA, United States
| |
Collapse
|
6
|
Correlation between aortic valve protein levels and vector flow mapping of wall shear stress and oscillatory shear index in patients supported with continuous-flow left ventricular assist devices. J Heart Lung Transplant 2023; 42:64-75. [PMID: 36400676 DOI: 10.1016/j.healun.2022.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 09/16/2022] [Accepted: 09/23/2022] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Continuous-flow left ventricular assist devices commonly lead to aortic regurgitation, which results in decreased pump efficiency and worsening heart failure. We hypothesized that non-physiological wall shear stress and oscillatory shear index alter the abundance of structural proteins in aortic valves of left ventricular assist device (LVAD) patients. METHODS Doppler images of aortic valves of patients undergoing heart transplants were obtained. Eight patients had been supported with LVADs, whereas 10 were not. Aortic valve tissue was collected and protein levels were analyzed using mass spectrometry. Echocardiographic images were analyzed and wall shear stress and oscillatory shear index were calculated. The relationship between normalized levels of individual proteins and in vivo echocardiographic measurements was evaluated. RESULTS Of the 57 proteins of interest, there was a strong negative correlation between levels of 15 proteins and the wall shear stress (R < -0.500, p ≤ 0.05), and a moderate negative correlation between 16 proteins and wall shear stress (R -0.500 to -0.300, p ≤ 0.05). Gene ontology analysis demonstrated clusters of proteins involved in cellular structure. Proteins negatively correlated with WSS included those with cytoskeletal, actin/myosin, cell-cell junction and extracellular functions. C: In aortic valve tissue, 31 proteins were identified involved in cellular structure and extracellular junctions with a negative correlation between their levels and wall shear stress. These findings suggest an association between the forces acting on the aortic valve (AV) and leaflet protein abundance, and may form a mechanical basis for the increased risk of aortic leaflet degeneration in LVAD patients.
Collapse
|
7
|
Selig JI, Krug HV, Küppers C, Ouwens DM, Kraft FA, Adler E, Bauer SJ, Lichtenberg A, Akhyari P, Barth M. Interactive contribution of hyperinsulinemia, hyperglycemia, and mammalian target of rapamycin signaling to valvular interstitial cell differentiation and matrix remodeling. Front Cardiovasc Med 2022; 9:942430. [PMID: 36386326 PMCID: PMC9661395 DOI: 10.3389/fcvm.2022.942430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/12/2022] [Indexed: 11/30/2022] Open
Abstract
Diabetes and its major key determinants insulin resistance and hyperglycemia are known risk factors for calcific aortic valve disease (CAVD). The processes leading to molecular and structural alterations of the aortic valve are yet not fully understood. In previous studies, we could show that valvular interstitial cells (VIC) display canonical elements of classical insulin signaling and develop insulin resistance upon hyperinsulinemia and hyperglycemia accompanied by impaired glucose metabolism. Analyses of cultured VIC and aortic valve tissue revealed extracellular matrix remodeling and degenerative processes. Since PI3K signaling through mammalian target of rapamycin (mTOR) is involved in fibrotic processes of the heart, we aim at further functional investigation of this particular Akt-downstream signaling pathway in the context of diabetes-induced CAVD. Primary cultures of VIC were treated with hyperinsulinemia and hyperglycemia. Phosphorylation of mTOR(Ser2448) was determined by Western blot analysis after acute insulin stimulus. Inhibition of mTOR phosphorylation was performed by rapamycin. Phosphorylation of mTOR complex 1 (MTORC1) downstream substrates 4E-BP1(Thr37/46) and P70S6K(Thr389), and MTORC2 downstream substrate Akt(Ser473) as well as the PDK1-dependent phosphorylation of Akt(Thr308) was investigated. Markers for extracellular matrix remodeling, cell differentiation and degenerative changes were analyzed by Western blot analysis, semi-quantitative real-time PCR and colorimetric assays. Hyperinsulinemia and hyperglycemia lead to alterations of VIC activation, differentiation and matrix remodeling as well as to an abrogation of mTOR phosphorylation. Inhibition of mTOR signaling by rapamycin leads to a general downregulation of matrix molecules, but to an upregulation of α-smooth muscle actin expression and alkaline phosphatase activity. Comparison of expression patterns upon diabetic conditions and rapamycin treatment reveal a possible regulation of particular matrix components and key degeneration markers by MTORC1 downstream signaling. The present findings broaden the understanding of mitogenic signaling pathways in VIC triggered by hyperinsulinemia and hyperglycemia, supporting the quest for developing strategies of prevention and tailored treatment of CAVD in diabetic patients.
Collapse
Affiliation(s)
- Jessica I. Selig
- Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - H. Viviana Krug
- Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Caroline Küppers
- Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - D. Margriet Ouwens
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
- Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| | - Felix A. Kraft
- Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Elena Adler
- Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sebastian J. Bauer
- Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Artur Lichtenberg
- Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Payam Akhyari
- Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- *Correspondence: Payam Akhyari,
| | - Mareike Barth
- Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
8
|
Barth M, Mrozek L, Niazy N, Selig JI, Boeken U, Sugimura Y, Kalampokas N, Horn P, Westenfeld R, Kröpil P, Aubin H, Lichtenberg A, Akhyari P. Degenerative changes of the aortic valve during left ventricular assist device support. ESC Heart Fail 2021; 9:270-282. [PMID: 34935306 PMCID: PMC8788006 DOI: 10.1002/ehf2.13767] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/30/2021] [Accepted: 12/01/2021] [Indexed: 12/13/2022] Open
Abstract
AIMS Donor heart shortage leads to increasing use of left ventricular assist device (LVAD) as bridge-to-transplant or destination therapy. Prolonged LVAD support is associated with aortic valve insufficiency, representing a relevant clinical problem in LVAD patients. Nevertheless, the impact of LVAD support on inflammation, remodelling, and chondro-osteogenic differentiation of the aortic valve is still not clearly understood. The aim of the study is to evaluate the impact of LVAD support on structural and molecular alterations of the aortic valve. METHODS AND RESULTS During heart transplantation, aortic valves of 63 heart failure patients without (n = 22) and with LVAD support (n = 41) were collected and used for analysis. Data on clinical course as well as echocardiographic data were analysed. Calcification and markers of remodelling, chondro-osteogenic differentiation, and inflammation were evaluated by computed tomography, by mRNA analysis and by histology and immunohistochemistry. Expression of inflammation markers of the LVAD group was analysed with regard to levels of C-reactive protein and driveline infections. Calcium accumulation and mRNA expression of determined markers were correlated with duration of LVAD support. Data were also analysed relating to aortic valve opening and aortic valve insufficiency. There was no difference in the frequency of cardiovascular risk factors or comorbidities between the patient groups. Expression of matrix metalloproteinase-9 (P = 0.007), alpha-smooth muscle actin (P = 0.045), and osteopontin (P = 0.003) were up-regulated in aortic valves of LVAD patients. Histological appearance of the aortic valve was similar in patients with or without LVAD, and computed tomography-based analysis not yet revealed significant difference in tissue calcification. Expression of interferon gamma (P = 0.004), interleukin-1 beta (P < 0.0001), and tumour necrosis factor alpha (P = 0.04) was up-regulated in aortic valves of LVAD patients without concomitant inflammatory cell infiltration and independent from unspecific inflammation. Expression of matrix metalloproteinase-2 (P = 0.038) and transforming growth factor beta (P = 0.0504) correlated negatively with duration of LVAD support. Presence of aortic valve insufficiency led to a significantly higher expression of interferon gamma (P = 0.007) in LVAD patients. There was no alteration in the determined markers in relation to aortic valve opening in LVAD patients. CONCLUSIONS Left ventricular assist device support leads to signs of early aortic valve degeneration independent of support duration. Thus, the aortic valve of patients with LVAD support should be closely monitored, particularly in patients receiving destination therapy as well as in the prospect of using aortic valves of LVAD patients as homografts in case of bridge-to-transplant therapy.
Collapse
Affiliation(s)
- Mareike Barth
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, Düsseldorf, 40225, Germany
| | - Linus Mrozek
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, Düsseldorf, 40225, Germany
| | - Naima Niazy
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, Düsseldorf, 40225, Germany
| | - Jessica Isabel Selig
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, Düsseldorf, 40225, Germany
| | - Udo Boeken
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, Düsseldorf, 40225, Germany
| | - Yukiharu Sugimura
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, Düsseldorf, 40225, Germany
| | - Nikolaos Kalampokas
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, Düsseldorf, 40225, Germany
| | - Patrick Horn
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Ralf Westenfeld
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Patric Kröpil
- Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.,Department of Radiology, BG Klinikum Duisburg, Duisburg, Germany
| | - Hug Aubin
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, Düsseldorf, 40225, Germany
| | - Artur Lichtenberg
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, Düsseldorf, 40225, Germany
| | - Payam Akhyari
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, Düsseldorf, 40225, Germany
| |
Collapse
|
9
|
Left Ventricular Assist Device Support-Induced Alteration of Mechanical Stress on Aortic Valve and Aortic Wall. ASAIO J 2021; 68:516-523. [PMID: 34261872 DOI: 10.1097/mat.0000000000001522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
The aim of this study was to evaluate the fluid dynamics in the aortic valve and proximal aorta during continuous-flow left ventricular assist device (LVAD) support using epiaortic echocardiography and vector flow mapping technology. A total of 12 patients who underwent HeartMate 3 implantation between December 2018 and February 2020 were prospectively examined. The wall shear stress (WSS) on the ascending aorta, aortic root, and aortic valve was evaluated before and after LVAD implantation. The median age of the cohort was 62 years and 17% were women. The peak WSS on the ascending aorta (Pre 1.48 [0.86-1.69] [Pascal {Pa}] vs. Post 0.33 [0.21-0.58] [Pa]; p = 0.002), aortic root (Pre 0.46 [0.31-0.58] (Pa) vs. Post 0.18 [0.12-0.25] (Pa); p = 0.001), and ventricularis of the aortic valve (Pre 1.76 [1.59-2.30] (Pa) vs. Post 0.30 [0.10-0.61] (Pa); p = 0.001) was significantly lower after LVAD implantation. No difference in WSS was observed on the fibrosa of the aortic valve (Pre 0.36 [0.22-0.53] (Pa) vs. Post 0.38 [0.38-0.52] (Pa); p = 0.850) before and after implantation. The WSS on the ascending aorta, aortic root, and ventricularis of the aortic valve leaflets was significantly altered by LVAD implantation, providing preliminary data on the potential contribution of fluid dynamics to LVAD-induced aortic insufficiency and root thrombus.
Collapse
|
10
|
Collins HE, Kane MS, Litovsky SH, Darley-Usmar VM, Young ME, Chatham JC, Zhang J. Mitochondrial Morphology and Mitophagy in Heart Diseases: Qualitative and Quantitative Analyses Using Transmission Electron Microscopy. FRONTIERS IN AGING 2021; 2:670267. [PMID: 35822027 PMCID: PMC9261312 DOI: 10.3389/fragi.2021.670267] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 03/26/2021] [Indexed: 01/21/2023]
Abstract
Transmission electron microscopy (TEM) has long been an important technique, capable of high degree resolution and visualization of subcellular structures and organization. Over the last 20 years, TEM has gained popularity in the cardiovascular field to visualize changes at the nanometer scale in cardiac ultrastructure during cardiovascular development, aging, and a broad range of pathologies. Recently, the cardiovascular TEM enabled the studying of several signaling processes impacting mitochondrial function, such as mitochondrial fission/fusion, autophagy, mitophagy, lysosomal degradation, and lipophagy. The goals of this review are to provide an overview of the current usage of TEM to study cardiac ultrastructural changes; to understand how TEM aided the visualization of mitochondria, autophagy, and mitophagy under normal and cardiovascular disease conditions; and to discuss the overall advantages and disadvantages of TEM and potential future capabilities and advancements in the field.
Collapse
Affiliation(s)
- Helen E. Collins
- Division of Environmental Medicine, Department of Medicine, University of Louisville, KY, United States
| | - Mariame Selma Kane
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Silvio H. Litovsky
- Division of Anatomic Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Victor M. Darley-Usmar
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Martin E. Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - John C. Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jianhua Zhang
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
11
|
Briasoulis A, Yokoyama Y, Kuno T, Ueyama H, Shetty S, Alvarez P, Malik AΗ. In-Hospital Outcomes of Left Ventricular Assist Device Implantation and Concomitant Valvular Surgery. Am J Cardiol 2020; 132:87-92. [PMID: 32753267 DOI: 10.1016/j.amjcard.2020.06.067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 10/23/2022]
Abstract
Valvular heart disease is common among left ventricular assist device (LVAD) recipients. However, its management at the time of LVAD implantation remains controversial. Patients who underwent LVAD implantation and concomitant aortic (AVR), mitral (MVR), or tricuspid valve (TVR) repair or replacement from 2010 to 2017 were identified using the national inpatient sample. End points were in-hospital outcomes, length of stay, and cost. Procedure-related complications were identified via ICD-9 and ICD-10 coding and analysis was performed via mixed effect models. A total of 25,171 weighted adults underwent LVAD implantation without valvular surgery, 1,329 had isolated TVR, 1,021 AVR, 377 MVR, and 615 had combined valvular surgery (411 had TVR + AVR, 115 TVR + MVR, 62 AVR + MVR, 25 AVR + MVR + TVR). During the study period, rates of AVR decreased and combined valvular surgeries increased. Patients who underwent TVR or combined valvular surgery had overall higher burden of co-morbidities than LVAD recipients with or without other valvular procedures. Postoperative bleeding was higher with AVR whereas acute kidney injury requiring dialysis was higher with TVR or combined valvular surgery. In-hospital mortality was higher with AVR, MVR, or combined surgery without differences in the rates of stroke. Length of stay did not differ significantly among groups but cost of hospitalization and nonroutine discharge rates were higher for cases of TVR and combined surgery. Approximately 1 in 9 LVAD recipients underwent concomitant valvular surgery and TVR was the most frequently performed procedure. In-hospital mortality and cost were lower among those who did not undergo valvular surgery.
Collapse
|
12
|
Gao B, Zhang Q. Biomechanical effects of the working modes of LVADs on the aortic valve: A primary numerical study. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 193:105512. [PMID: 32344270 DOI: 10.1016/j.cmpb.2020.105512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/08/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
Aortic valve diseases caused by the support from left ventricular assist devices (LVADs) have attracted increasing attention due to the wide application of the LVADs. However, the biomechanical effects of the working modes of LVADs on the aortic valve are still poorly understood. Hence, in this study, these biomechanical effects are investigated using a novel fluid-structure interaction method, which combines the lattice Boltzmann and the finite element methods. On the basis of the clinical practice, three working modes of LVADs, namely, the constant flow, co-pulse, and counter pulse modes, are chosen. Results demonstrate that the working mode of LVADs is an important factor as it can change the biomechanical states of the aortic valve and the hemodynamic environment in the aortic root directly. Compared with the constant flow mode, the two other working modes can provide better biomechanical effects on the aortic valve. However, the advantages of the co-pulse and the counter pulse modes on the aortic valve are not the same. The LVADs in the co-pulse mode can remarkable reduce the pressure load of the leaflets during the diastolic phase (maximum stress: co-pulse mode, 0.85 MPa; constant flow mode, 1.23 MPa; counter pulse mode, 1.50 MPa). By contrast, the LVADs in the counter pulse mode can achieve the highest effective orifice area of the aortic valve (co-pulse mode: 0.12 cm2, constant flow mode: 0.17 cm2, counter pulse mode: 0.25 cm2). In sum, the co-pulse mode is suitable for patients with certain cardiac function, because this mode keeps the valve open intermittently and reduces the pressure load on the aortic leaflets during the diastolic phase to prevent valve remodeling. By contrast, the counter pulse mode is suitable for patients with severely impaired cardiac function, because this mode keeps the valve open as much as possible and provides high blood perfusion.
Collapse
Affiliation(s)
- Bin Gao
- School of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, PR China.
| | - Qi Zhang
- National Energy Conservation Center, Beijing, PR China
| |
Collapse
|
13
|
Michelhaugh SA, Camacho A, Ibrahim NE, Gaggin H, D’Alessandro D, Coglianese E, Lewis GD, Januzzi JL. Proteomic Signatures During Treatment in Different Stages of Heart Failure. Circ Heart Fail 2020; 13:e006794. [DOI: 10.1161/circheartfailure.119.006794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background:
Proteomics have already provided novel insights into the pathophysiology of heart failure (HF) with reduced ejection fraction. Previous studies have evaluated cross-sectional protein signatures of HF, but few have characterized proteomic changes following HF with reduced ejection fraction treatment with ARNI (angiotensin receptor/neprilysin inhibitor) therapy or left ventricular assist devices.
Methods:
In this retrospective omics study, we performed targeted proteomics (N=625) of whole blood sera from patients with American College of Cardiology/American Heart Association stage D (N=29) and stage C (N=12) HF using proximity extension assays. Samples were obtained before and after (median=82 days) left ventricular assist device implantation (stage D; primary analysis) and ARNI therapy initiation (stage C; matched reference). Oblique principal component analysis and point biserial correlations were used for feature extraction and selection; standardized mean differences were used to assess within and between-group differences; and enrichment analysis was used to generate and cluster Gene Ontology terms.
Results:
Core sets of proteins were identified for stage C (N=9 proteins) and stage D (N=18) HF; additionally, a core set of 5 shared HF proteins (NT-proBNP [N-terminal pro-B type natriuretic peptide], ESM [endothelial cell-specific molecule]-1, cathepsin L1, osteopontin, and MCSF-1) was also identified. For patients with stage D HF, moderate (δ, 0.40–0.60) and moderate-to-large (δ, 0.60–0.80) sized differences were observed in 8 of their 18 core proteins after left ventricular assist devices implantation. Additionally, specific protein groups reached concentration levels equivalent (
g
<0.10) to stage C HF after initiation on ARNI therapy.
Conclusions:
HF with reduced ejection fraction severity associates with distinct proteomic signatures that reflect underlying disease attributes; these core signatures may be useful for monitoring changes in cardiac function following initiation on ARNI or left ventricular assist device implantation.
Collapse
Affiliation(s)
- Sam A. Michelhaugh
- Massachusetts General Hospital, Boston (S.A.M., A.C., N.E.I., H.G., D.D., E.C., G.D.L., J.L.J.)
| | - Alexander Camacho
- Massachusetts General Hospital, Boston (S.A.M., A.C., N.E.I., H.G., D.D., E.C., G.D.L., J.L.J.)
| | - Nasrien E. Ibrahim
- Massachusetts General Hospital, Boston (S.A.M., A.C., N.E.I., H.G., D.D., E.C., G.D.L., J.L.J.)
- Harvard Medical School, Boston, MA (N.E.I., H.G., E.G., G.D.L., J.L.J.)
| | - Hanna Gaggin
- Massachusetts General Hospital, Boston (S.A.M., A.C., N.E.I., H.G., D.D., E.C., G.D.L., J.L.J.)
- Harvard Medical School, Boston, MA (N.E.I., H.G., E.G., G.D.L., J.L.J.)
| | - David D’Alessandro
- Massachusetts General Hospital, Boston (S.A.M., A.C., N.E.I., H.G., D.D., E.C., G.D.L., J.L.J.)
| | - Erin Coglianese
- Massachusetts General Hospital, Boston (S.A.M., A.C., N.E.I., H.G., D.D., E.C., G.D.L., J.L.J.)
- Harvard Medical School, Boston, MA (N.E.I., H.G., E.G., G.D.L., J.L.J.)
| | - Gregory D. Lewis
- Massachusetts General Hospital, Boston (S.A.M., A.C., N.E.I., H.G., D.D., E.C., G.D.L., J.L.J.)
- Harvard Medical School, Boston, MA (N.E.I., H.G., E.G., G.D.L., J.L.J.)
| | - James L. Januzzi
- Massachusetts General Hospital, Boston (S.A.M., A.C., N.E.I., H.G., D.D., E.C., G.D.L., J.L.J.)
- Harvard Medical School, Boston, MA (N.E.I., H.G., E.G., G.D.L., J.L.J.)
- Baim Institute for Clinical Research, Boston, MA (J.L.J.)
| |
Collapse
|
14
|
Noly PE, Pagani FD, Noiseux N, Stulak JM, Khalpey Z, Carrier M, Maltais S. Continuous-Flow Left Ventricular Assist Devices and Valvular Heart Disease: A Comprehensive Review. Can J Cardiol 2019; 36:244-260. [PMID: 32036866 DOI: 10.1016/j.cjca.2019.11.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/17/2019] [Accepted: 11/19/2019] [Indexed: 12/15/2022] Open
Abstract
Mechanical circulatory support with implantable durable continuous-flow left ventricular assist devices (CF-LVADs) represents an established surgical treatment option for patients with advanced heart failure refractory to guideline-directed medical therapy. CF-LVAD therapy has been demonstrated to offer significant survival, functional, and quality-of-life benefits. However, nearly one-half of patients with advanced heart failure undergoing implantation of a CF-LVAD have important valvular heart disease (VHD) present at the time of device implantation or develop VHD during support that can lead to worsening right or left ventricular dysfunction and result in development of recurrent heart failure, more frequent adverse events, and higher mortality. In this review, we summarize the recent evidence related to the pathophysiology and treatment of VHD in the setting of CF-LAVD support and include a review of the specific valve pathologies of aortic insufficiency (AI), mitral regurgitation (MR), and tricuspid regurgitation (TR). Recent data demonstrate an increasing appreciation and understanding of how VHD may adversely affect the hemodynamic benefits of CF-LVAD support. This is particularly relevant for MR, where increasing evidence now demonstrates that persistent MR after CF-LVAD implantation can contribute to worsening right heart failure and recurrent heart failure symptoms. Standard surgical interventions and novel percutaneous approaches for treatment of VHD in the setting of CF-LVAD support, such as transcatheter aortic valve replacement or transcatheter mitral valve repair, are available, and indications to intervene for VHD in the setting of CF-LVAD support continue to evolve.
Collapse
Affiliation(s)
- Pierre-Emmanuel Noly
- Department of Cardiac Surgery, Montréal Heart Institute, Montréal, Québec, Canada
| | - Francis D Pagani
- Department of Cardiac Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Nicolas Noiseux
- Department of Cardiac Surgery, Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - John M Stulak
- Department of Cardiac Surgery, Mayo Clinic School of Medicine, Rochester, Minnesota, USA
| | - Zain Khalpey
- Department of Surgery, University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Michel Carrier
- Department of Cardiac Surgery, Montréal Heart Institute, Montréal, Québec, Canada
| | - Simon Maltais
- Department of Cardiac Surgery, Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
15
|
Gao B, Zhang Q, Chang Y. Hemodynamic effects of support modes of LVADs on the aortic valve. Med Biol Eng Comput 2019; 57:2657-2671. [PMID: 31707689 DOI: 10.1007/s11517-019-02058-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 11/02/2019] [Indexed: 12/11/2022]
Abstract
As the alternative treatment for heart failure, left ventricular assist devices (LVADs) have been widely applied to clinical practice. However, the effects of the support modes of LVADs on the biomechanical states of the aortic valve are still poorly understood. Hence, the present study investigates such effects and proposes a novel fluid-structure interaction (FSI) approach that combines the lattice Boltzmann method (LBM) and finite element (FE) method. Two support modes of LVADs, namely constant speed mode and constant flow mode, which have been widely applied to clinical practice, are also designed. Results demonstrate that the support modes of LVADs could significantly affect the biomechanical states of the aortic valve and the blood flow pattern of the ascending aorta. Compared with those in the constant flow mode, the leaflets in the constant speed mode could achieve better dynamic performance and lower stress during the systolic phase. The max radial displacement of the leaflets in the constant speed mode is at 8 mm, whereas that in the constant flow mode is at 0.8 mm. Furthermore, the outflow of LVADs directly impacts the aortic surfaces of the leaflets during the diastolic phase by increasing the level of wall shear stress of the leaflets. The leaflets in the constant speed mode receive less impact than those in the constant flow mode. The condition with such minimal impact is conducive to maintaining the normal structure of leaflets and benefits the reduction of the risk of valvular diseases. In sum, the support modes of LVADs exert a crucial effect on the biomechanical environment of the aortic valve. The constant speed mode is better than the constant flow mode in terms of providing a good hemodynamic environment for the aortic valve.
Collapse
Affiliation(s)
- Bin Gao
- School of Life Science and BioEngineering, Beijing University of Technology, Beijing, 100124, People's Republic of China.
| | - Qi Zhang
- School of Life Science and BioEngineering, Beijing University of Technology, Beijing, 100124, People's Republic of China
| | - Yu Chang
- School of Life Science and BioEngineering, Beijing University of Technology, Beijing, 100124, People's Republic of China
| |
Collapse
|
16
|
Purohit SN, Cornwell WK, Pal JD, Lindenfeld J, Ambardekar AV. Living Without a Pulse: The Vascular Implications of Continuous-Flow Left Ventricular Assist Devices. Circ Heart Fail 2018; 11:e004670. [PMID: 29903893 PMCID: PMC6007027 DOI: 10.1161/circheartfailure.117.004670] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pulsatility seems to have a teleological role because evolutionary hierarchy favors higher ordered animals with more complex, multichamber circulatory systems that generate higher pulse pressure compared with lower ordered animals. Yet despite years of such natural selection, the modern generation of continuous-flow left ventricular assist devices (CF-LVADs) that have been increasingly used for the last decade have created a unique physiology characterized by a nonpulsatile, nonlaminar blood flow profile with the absence of the usual large elastic artery Windkessel effect during diastole. Although outcomes and durability have improved with CF-LVADs, patients supported with CF-LVADs have a high rate of complications that were not as frequently observed with older pulsatile devices, including gastrointestinal bleeding from arteriovenous malformations, pump thrombosis, and stroke. Given the apparent fundamental biological role of the pulse, the purpose of this review is to describe the normal physiology of ventricular-arterial coupling from pulsatile flow, the effects of heart failure on this physiology and the vasculature, and to examine the effects of nonpulsatile blood flow on the vascular system and potential role in complications seen with CF-LVAD therapy. Understanding these concomitant vascular changes with CF-LVADs may be a key step in improving patient outcomes as modulation of pulsatility and flow characteristics may serve as a novel, yet simple, therapy for reducing complications.
Collapse
Affiliation(s)
- Suneet N Purohit
- Division of Cardiology, Department of Medicine (S.N.P., W.K.C, A.V.A.)
| | | | - Jay D Pal
- Division of Cardiothoracic Surgery, Department of Surgery (J.D.P.)
| | - JoAnn Lindenfeld
- University of Colorado, Aurora. Vanderbilt Heart and Vascular Institute, Nashville, TN (J.L.)
| | - Amrut V Ambardekar
- Division of Cardiology, Department of Medicine (S.N.P., W.K.C, A.V.A.)
- Consortium for Fibrosis Research and Translation (A.V.A.)
| |
Collapse
|