1
|
da Nobrega Oliveira REN, Passos FS, Pessoa BM. Extracorporeal membrane oxygenation vs cardiopulmonary bypass in lung transplantation: an updated meta-analysis. Gen Thorac Cardiovasc Surg 2025; 73:137-146. [PMID: 39708283 DOI: 10.1007/s11748-024-02114-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024]
Abstract
AIM This meta-analysis aimed to compare the outcomes of extracorporeal membrane oxygenation (ECMO) and cardiopulmonary bypass (CPB) in lung transplantation. METHODS We searched PubMed, Embase, and Cochrane databases for studies comparing ECMO to CPB in lung transplantation. Odds ratios (ORs) for binary endpoints and mean differences (MDs) for continuous outcomes were calculated with 95% confidence intervals (CIs). DerSimonian and Laird random-effects model was applied for all endpoints. I2 statistics was used to assess heterogeneity. RESULTS Fourteen studies with a total of 1797 patients were included. ECMO was associated with significant reductions in hepatic dysfunction (OR 0.47, 95% CI 0.25-0.90), hemodialysis (OR 0.62, 95% CI 0.43-0.88), severe graft rejection (OR 0.43, 95% CI 0.23-0.78), one-year mortality (OR 0.70; 95% CI 0.51 to 0.98; p = 0.04; I2 = 13%) and tracheostomy rates (OR 0.62, 95% CI 0.46-0.86). Additionally, ECMO reduced the length of hospital stay (MD - 5.69 days, 95% CI - 9.31 to - 2.08) and ICU stay (MD - 6.02 days, 95% CI - 8.32 to - 3.71). However, ECMO was associated with longer total ischemic time (MD 61.07 min, 95% CI 3.51 to 118.62). No significant differences were observed for stroke, thromboembolic events, atrial fibrillation, or 30-day and 3-year mortality. CONCLUSIONS ECMO offers perioperative advantages in lung transplantation, reducing postoperative complications, one-year mortality, and recovery time compared to CPB. However, the longer total ischemic time with ECMO warrants further investigation into its long-term outcomes. TRIAL REGISTRY International Prospective Register of Systematic Reviews; N°: CRD42024604049; URL: https://www.crd.york.ac.uk/prospero/ .
Collapse
Affiliation(s)
| | - Felipe S Passos
- Department of Thoracic Surgery, INCAR Hospital, Santo Antônio de Jesus, Brazil
| | | |
Collapse
|
2
|
Pettenuzzo T, Ocagli H, Sella N, De Cassai A, Zarantonello F, Congedi S, Chiaruttini MV, Pistollato E, Nardelli M, Biscaro M, Bassi M, Coniglio G, Faccioli E, Rea F, Gregori D, Navalesi P, Boscolo A. Intraoperative extracorporeal support for lung transplant: a systematic review and network meta-analysis. JOURNAL OF ANESTHESIA, ANALGESIA AND CRITICAL CARE 2024; 4:81. [PMID: 39695889 DOI: 10.1186/s44158-024-00214-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/21/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND In the last decades, veno-arterial extracorporeal membrane oxygenation (V-A ECMO) has been gaining in popularity for intraoperative support during lung transplant (LT), being advocated for routinely use also in uncomplicated cases. Compared to off-pump strategy and, secondarily, to traditional cardiopulmonary bypass (CPB), V-A ECMO seems to offer a better hemodynamic stability and oxygenation, while data regarding blood product transfusions, postoperative recovery, and mortality remain unclear. This systematic review and network meta-analysis aims to evaluate the comparative efficacy and safety of V-A ECMO and CPB as compared to OffPump strategy during LT. METHODS A comprehensive literature search was conducted across multiple databases (PubMed Embase, Cochrane, Scopus) and was updated in February 2024. A Bayesian network meta-analysis (NMA), with a fixed-effect approach, was performed to compare outcomes, such as intraoperative needing of blood products, invasive mechanical ventilation (IMV) duration, intensive care unit (ICU) length of stay (LOS), surgical duration, needing of postoperative ECMO, and mortality, across different supports (i.e., intraoperative V-A (default (d) or rescue (r)) ECMO, CPB, or OffPump). FINDINGS Twenty-seven observational studies (6113 patients) were included. As compared to OffPump surgery, V-A ECMOd, V-A ECMOr, and CPB recorded a higher consumption of all blood products, longer IMV durations, prolonged ICU LOS, surgical duration, and higher mortalities. Comparing different extracorporeal supports, V-A ECMOd and, secondarily, V-A ECMOr overperformed CPB in nearly all above mentioned outcomes, except for RBC transfusions. The lowest rate of postoperative ECMO was recorded after OffPump surgery, while no differences were found comparing different extracorporeal supports. Finally, older age, male gender, and body mass index ≥ 25 kg/m2 negatively impacted on RBC transfusions, ICU LOS, surgical duration, need of postoperative ECMO, and mortality, regardless of the intraoperative extracorporeal support investigated. INTERPRETATION This comparative network meta-analysis highlights that OffPump overperformed ECMO and CPB in all outcomes of interest, while, comparing different extracorporeal supports, V-A ECMOd and, secondarily, V-A ECMOr overperformed CPB in nearly all above mentioned outcomes, except for RBC transfusions. Older age, male gender, and higher BMI negatively affect several outcomes across different intraoperative strategies, regardless of the intraoperative extracorporeal support investigated. Future prospective studies are necessary to optimize and standardize the intraoperative management of LT.
Collapse
Affiliation(s)
- Tommaso Pettenuzzo
- Institute of Anaesthesia and Intensive Care, Padua University Hospital, Padua, Italy
| | - Honoria Ocagli
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padua, Italy
| | - Nicolò Sella
- Institute of Anaesthesia and Intensive Care, Padua University Hospital, Padua, Italy
| | - Alessandro De Cassai
- Institute of Anaesthesia and Intensive Care, Padua University Hospital, Padua, Italy
| | | | - Sabrina Congedi
- Department of Medicine (DIMED), Section of Anaesthesiology and Intensive Care, University of Padua, Padua, Italy
| | - Maria Vittoria Chiaruttini
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padua, Italy
| | - Elisa Pistollato
- Department of Medicine (DIMED), Section of Anaesthesiology and Intensive Care, University of Padua, Padua, Italy
| | - Marco Nardelli
- Department of Medicine (DIMED), Section of Anaesthesiology and Intensive Care, University of Padua, Padua, Italy
| | - Martina Biscaro
- Department of Medicine (DIMED), Section of Anaesthesiology and Intensive Care, University of Padua, Padua, Italy
| | - Mara Bassi
- Department of Medicine (DIMED), Section of Anaesthesiology and Intensive Care, University of Padua, Padua, Italy
| | - Giordana Coniglio
- Department of Medicine (DIMED), Section of Anaesthesiology and Intensive Care, University of Padua, Padua, Italy
| | - Eleonora Faccioli
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padova, Italy
| | - Federico Rea
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padova, Italy
| | - Dario Gregori
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padua, Italy
| | - Paolo Navalesi
- Institute of Anaesthesia and Intensive Care, Padua University Hospital, Padua, Italy.
- Department of Medicine (DIMED), Section of Anaesthesiology and Intensive Care, University of Padua, Padua, Italy.
| | - Annalisa Boscolo
- Institute of Anaesthesia and Intensive Care, Padua University Hospital, Padua, Italy
- Department of Medicine (DIMED), Section of Anaesthesiology and Intensive Care, University of Padua, Padua, Italy
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padova, Italy
| |
Collapse
|
3
|
Martin AK, Mercier O, Fritz AV, Gelzinis TA, Hoetzenecker K, Lindstedt S, Marczin N, Wilkey BJ, Schecter M, Lyster H, Sanchez M, Walsh J, Morrissey O, Levvey B, Landry C, Saatee S, Kotecha S, Behr J, Kukreja J, Dellgren G, Fessler J, Bottiger B, Wille K, Dave K, Nasir BS, Gomez-De-Antonio D, Cypel M, Reed AK. ISHLT consensus statement on the perioperative use of ECLS in lung transplantation: Part II: Intraoperative considerations. J Heart Lung Transplant 2024:S1053-2498(24)01830-8. [PMID: 39453286 DOI: 10.1016/j.healun.2024.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 10/26/2024] Open
Abstract
The use of extracorporeal life support (ECLS) throughout the perioperative phase of lung transplantation requires nuanced planning and execution by an integrated team of multidisciplinary experts. To date, no multidisciplinary consensus document has examined the perioperative considerations of how to best manage these patients. To address this challenge, this perioperative utilization of ECLS in lung transplantation consensus statement was approved for development by the International Society for Heart and Lung Transplantation Standards and Guidelines Committee. International experts across multiple disciplines, including cardiothoracic surgery, anesthesiology, critical care, pediatric pulmonology, adult pulmonology, pharmacy, psychology, physical therapy, nursing, and perfusion, were selected based on expertise and divided into subgroups examining the preoperative, intraoperative, and postoperative periods. Following a comprehensive literature review, each subgroup developed recommendations to examine via a structured Delphi methodology. Following 2 rounds of Delphi consensus, a total of 39 recommendations regarding intraoperative considerations for ECLS in lung transplantation met consensus criteria. These recommendations focus on the planning, implementation, management, and monitoring of ECLS throughout the entire intraoperative period.
Collapse
Affiliation(s)
- Archer Kilbourne Martin
- Division of Cardiovascular and Thoracic Anesthesiology, Mayo Clinic Florida, Jacksonville, Florida.
| | - Olaf Mercier
- Department of Thoracic Surgery and Heart-Lung Transplantation, Marie Lannelongue Hospital, Universite' Paris-Saclay, Le Plessis-Robinson, France
| | - Ashley Virginia Fritz
- Division of Cardiovascular and Thoracic Anesthesiology, Mayo Clinic Florida, Jacksonville, Florida
| | - Theresa A Gelzinis
- Division of Cardiovascular and Thoracic Anesthesiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Konrad Hoetzenecker
- Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Sandra Lindstedt
- Department of Cardiothoracic Surgery and Transplantation, Lund University, Lund, Sweden
| | - Nandor Marczin
- Department of Anaesthesia and Critical Care, Royal Brompton & Harefield Hospitals, Part of Guy's and St Thomas' NHS Foundation Trust and Imperial College London, London, United Kingdom
| | - Barbara J Wilkey
- Department of Anesthesiology, University of Colorado, Aurora, Colorado
| | - Marc Schecter
- Division of Pulmonary Medicine, University of Florida, Gainesville, Florida
| | - Haifa Lyster
- Department of Cardiothoracic Transplantation & Mechanical Circulatory Support, Royal Brompton & Harefield Hospitals, Part of Guy's and St Thomas' NHS Foundation Trust and King's College London, London, United Kingdom
| | - Melissa Sanchez
- Department of Clinical Health Psychology, Kensington & Chelsea, West Middlesex Hospitals, London, United Kingdom
| | - James Walsh
- Department of Physiotherapy, The Prince Charles Hospital, Brisbane, Australia
| | - Orla Morrissey
- Division of Infectious Disease, Alfred Health and Monash University, Melbourne, Australia
| | - Bronwyn Levvey
- Faculty of Nursing & Health Sciences, The Alfred Hospital, Monah University, Melbourne, Australia
| | - Caroline Landry
- Division of Perfusion Services, Universite' de Montreal, Montreal, Quebec, Canada
| | - Siavosh Saatee
- Division of Cardiovascular and Thoracic Anesthesiology and Critical Care, University of Texas-Southwestern, Dallas, Texas
| | - Sakhee Kotecha
- Lung Transplant Service, Alfred Hospital and Monash University, Melbourne, Australia
| | - Juergen Behr
- Department of Medicine V, German Center for Lung Research, LMU University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Jasleen Kukreja
- Division of Cardiothoracic Surgery, Department of Surgery, University of California, San Francisco, California
| | - Göran Dellgren
- Department of Cardiothoracic Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Julien Fessler
- Department of Anesthesiology and Pain Medicine, Hopital Foch, Universite' Versailles-Saint-Quentin-en-Yvelines, Suresnes, France
| | - Brandi Bottiger
- Division of Cardiothoracic Anesthesiology, Duke University School of Medicine, Durham, North Carolina
| | - Keith Wille
- Division of Pulmonary and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kavita Dave
- Department of Cardiothoracic Transplantation & Mechanical Circulatory Support, Royal Brompton & Harefield Hospitals, Part of Guy's and St Thomas' NHS Foundation Trust and King's College London, London, United Kingdom
| | - Basil S Nasir
- Division of Thoracic Surgery, Centre Hospitalier de l'Universite de Montreal (CHUM), Montreal, Quebec, Canada
| | - David Gomez-De-Antonio
- Department of Thoracic Surgery and Lung Transplantation, Hospital Universitario Puerta de Hierro-Majadahonda, Universidad Autonoma de Madria, Madrid, Spain
| | - Marcelo Cypel
- Toronto Lung Transplant Program, Ajmera Transplant Center, University Health Network, Toronto, Ontario, Canada
| | - Anna K Reed
- Respiratory & Transplant Medicine, Royal Brompton and Harefield Hospitals, Part of Guy's and St Thomas' NHS Foundation Trust and Imperial College London, London, United Kingdom
| |
Collapse
|
4
|
Hartwig M, van Berkel V, Bharat A, Cypel M, Date H, Erasmus M, Hoetzenecker K, Klepetko W, Kon Z, Kukreja J, Machuca T, McCurry K, Mercier O, Opitz I, Puri V, Van Raemdonck D. The American Association for Thoracic Surgery (AATS) 2022 Expert Consensus Document: The use of mechanical circulatory support in lung transplantation. J Thorac Cardiovasc Surg 2023; 165:301-326. [PMID: 36517135 DOI: 10.1016/j.jtcvs.2022.06.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 06/26/2022] [Indexed: 11/05/2022]
Abstract
OBJECTIVE The use of mechanical circulatory support (MCS) in lung transplantation has been steadily increasing over the prior decade, with evolving strategies for incorporating support in the preoperative, intraoperative, and postoperative settings. There is significant practice variability in the use of these techniques, however, and relatively limited data to help establish institutional protocols. The objective of the AATS Clinical Practice Standards Committee (CPSC) expert panel was to review the existing literature and establish recommendations about the use of MCS before, during, and after lung transplantation. METHODS The AATS CPSC assembled an expert panel of 16 lung transplantation physicians who developed a consensus document of recommendations. The panel was broken into subgroups focused on preoperative, intraoperative, and postoperative support, and each subgroup performed a focused literature review. These subgroups formulated recommendation statements for each subtopic, which were evaluated by the entire group. The statements were then developed via discussion among the panel and refined until consensus was achieved on each statement. RESULTS The expert panel achieved consensus on 36 recommendations for how and when to use MCS in lung transplantation. These recommendations included the use of veno-venous extracorporeal membrane oxygenation (ECMO) as a bridging strategy in the preoperative setting, a preference for central veno-arterial ECMO over traditional cardiopulmonary bypass during the transplantation procedure, and the benefit of supporting selected patients with MCS postoperatively. CONCLUSIONS Achieving optimal results in lung transplantation requires the use of a wide range of strategies. MCS provides an important mechanism for helping these critically ill patients through the peritransplantation period. Despite the complex nature of the decision making process in the treatment of these patients, the expert panel was able to achieve consensus on 36 recommendations. These recommendations should provide guidance for professionals involved in the care of end-stage lung disease patients considered for transplantation.
Collapse
Affiliation(s)
- Matthew Hartwig
- Division of Thoracic Surgery, Duke University Medical Center, Durham, NC.
| | | | | | | | - Hiroshi Date
- Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Michiel Erasmus
- University Academic Center Groningen, Groningen, The Netherlands
| | | | | | | | - Jasleen Kukreja
- University of California San Francisco, San Francisco, Calif
| | - Tiago Machuca
- University of Florida College of Medicine, Gainesville, Fla
| | | | - Olaf Mercier
- Université Paris-Saclay and Marie Lannelongue Hospital, Le Plessis-Robinson, France
| | | | - Varun Puri
- Washington University School of Medicine, St Louis, Mo
| | | |
Collapse
|
5
|
Fessler J, Finet M, Fischler M, Le Guen M. New Aspects of Lung Transplantation: A Narrative Overview Covering Important Aspects of Perioperative Management. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010092. [PMID: 36676041 PMCID: PMC9865529 DOI: 10.3390/life13010092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/26/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022]
Abstract
The management of lung transplant patients has continued to evolve in recent years. The year 2021 was marked by the publication of the International Consensus Recommendations for Anesthetic and Intensive Care Management of Lung Transplantation. There have been major changes in lung transplant programs over the last few years. This review will summarize the knowledge in anesthesia management of lung transplantation with the most recent data. It will highlight the following aspects which concern anesthesiologists more specifically: (1) impact of COVID-19, (2) future of transplantation for cystic fibrosis patients, (3) hemostasis management, (4) extracorporeal membrane oxygenation management, (5) early prediction of primary graft dysfunction, and (6) pain management.
Collapse
Affiliation(s)
- Julien Fessler
- Department of Anesthesiology and Pain Management, Hospital Foch, 92150 Suresnes, France
| | - Michaël Finet
- Department of Anesthesiology and Pain Management, Hospital Foch, 92150 Suresnes, France
| | - Marc Fischler
- Department of Anesthesiology and Pain Management, Hospital Foch, 92150 Suresnes, France
- Correspondence:
| | - Morgan Le Guen
- Department of Anesthesiology and Pain Management, Hospital Foch, 92150 Suresnes, France
- University Versailles-Saint-Quentin-en-Yvelines, 78000 Versailles, France
| |
Collapse
|
6
|
Jiao G, Huang J, Wu B, Hu C, Gao C, Chen W, Huang M, Chen J. Association of Pulmonary Artery Pressure Change With Post-Lung Transplantation Survival: Retrospective Analysis of China Registry. JACC. ASIA 2022; 2:819-828. [PMID: 36713754 PMCID: PMC9877213 DOI: 10.1016/j.jacasi.2022.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/16/2022] [Accepted: 09/12/2022] [Indexed: 12/23/2022]
Abstract
Background Extracorporeal membrane oxygenation (ECMO) has been used as intraoperative hemodynamic support in patients with end-stage lung diseases and pulmonary hypertension undergoing lung transplantation (LT). Objectives The aim of this study was to identify the association of pulmonary artery pressure change during ECMO and post-LT survival. Methods The study investigators collected and analyzed the data from Chinese Lung Transplantation Registry. Patients who have severe pulmonary hypertension with intraoperative ECMO support were enrolled. Post-LT mortality and morbidity were further collected and compared. Results A total of 208 recipients were included in the study, during which 53 deaths occurred post-LT. All the patients had severe pulmonary hypertension and were supported by intraoperative ECMO. Using eXtreme Gradient Boosting, or XGboost, model method, 20 variables were selected and ranked. Changes of mean pulmonary artery pressure at the time of ECMO support and ECMO wean-off (ΔmPAP) were related to post-LT survival, after adjusting for potential confounders (recipient age, New York Heart Association functional class status before LT, body mass index, pre-LT hypertension, pre-LT steroids, and pre-LT ECMO bridging). A nonlinear relationship was detected between ΔmPAP and post-LT survival, which had an inflection point of 35 mm Hg. Recipients with ΔmPAP ≦35 mm Hg had higher mortality rate calculated through the Kaplan-Meier estimator (P = 0.041). Interaction analysis showed that recipients admitted in LT center with high case volume (≥50 cases/year) and ΔmPAP >35 mm Hg had better long-term survival. The trend was reversed in recipients who were admitted in LT center with low case volume (<50 cases/year). Conclusions The relationship between ΔmPAP and post-LT survival was nonlinear. Optimal perioperative ECMO management strategy with experienced team is further warranted.
Collapse
Affiliation(s)
- Guohui Jiao
- Wuxi Lung Transplant Center, Wuxi People’s Hospital affiliated to Nanjing Medical University, Wuxi, China
| | - Jian Huang
- The Second Affiliated Hospital of Hainan Medical University, Hainan, China
| | - Bo Wu
- Wuxi Lung Transplant Center, Wuxi People’s Hospital affiliated to Nanjing Medical University, Wuxi, China
| | - Chunxiao Hu
- Wuxi Lung Transplant Center, Wuxi People’s Hospital affiliated to Nanjing Medical University, Wuxi, China
| | - Chenyang Gao
- General Intensive Care Unit, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenhui Chen
- Center for Lung Transplantation, China-Japan Friendship Hospital, Beijing, China
| | - Man Huang
- General Intensive Care Unit, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,Address for correspondence: Dr Man Huang, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China.
| | - Jingyu Chen
- Wuxi Lung Transplant Center, Wuxi People’s Hospital affiliated to Nanjing Medical University, Wuxi, China,Center for Lung Transplantation, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,Dr Jingyu Chen, QingYang Road, No 299#, Wuxi Lung Transplant Center, Wuxi People’s Hospital affiliated to Nanjing Medical University, Wuxi 214023, China.
| |
Collapse
|
7
|
Calabrese F, Pezzuto F, Fortarezza F, Lunardi F, Faccioli E, Lorenzoni G, Boscolo A, Sella N, Gregori D, Schiavon M, Navalesi P, Dell’Amore A, Rea F. Evaluation of Tissue Ischemia/Reperfusion Injury in Lung Recipients Supported by Intraoperative Extracorporeal Membrane Oxygenation: A Single-Center Pilot Study. Cells 2022; 11:3681. [PMID: 36429108 PMCID: PMC9688824 DOI: 10.3390/cells11223681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Intraoperative veno-arterial (VA) extracorporeal membrane oxygenation (ECMO) as intraoperative hemodynamic support during lung transplantation is becoming a standard practice due to promising clinical results. Nevertheless, studies on tissue/molecular pathways investigating ischemia/reperfusion injury are still lacking. Patients receiving a bilateral lung transplantation between January 2012 and December 2018 at the University Hospital of Padova were included in this retrospective single-center observational study. The present study aimed to investigate ischemia/reperfusion injury in 51 tissue specimens obtained from 13 recipients supported by intraoperative VA-ECMO and 38 who were not. Several tissue analyses, including apoptosis evaluation and inducible nitric oxide synthase expression, were performed on the biopsies at the time of transplantation. Lung samples from the ECMO group (both pre- and post-reperfusion) were comparable, or for some parameters better, than samples from the non-ECMO group. Leukocyte margination was significantly lower in the ECMO group than in the non-ECMO group. Primary graft dysfunction, mainly at 24 and 48 h, was correlated with the tissue injury score of the post-reperfusion biopsy. The interquartile ranges for all morphological parameters showed high grade variability between pre- and post-reperfusion in the non-ECMO group. These preliminary data support the use of intraoperative ECMO based on lower lung tissue ischemia/reperfusion injury. Larger case series are mandatory to confirm our findings.
Collapse
Affiliation(s)
- Fiorella Calabrese
- Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padova, 35128 Padova, Italy
| | - Federica Pezzuto
- Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padova, 35128 Padova, Italy
| | - Francesco Fortarezza
- Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padova, 35128 Padova, Italy
| | - Francesca Lunardi
- Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padova, 35128 Padova, Italy
| | - Eleonora Faccioli
- Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padova, 35128 Padova, Italy
| | - Giulia Lorenzoni
- Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padova, 35128 Padova, Italy
| | - Annalisa Boscolo
- Institute of Anesthesia and Intensive Care, Padova University Hospital, 35128 Padova, Italy
- Department of Medicine, University of Padova, 35128 Padova, Italy
| | - Nicolò Sella
- Institute of Anesthesia and Intensive Care, Padova University Hospital, 35128 Padova, Italy
| | - Dario Gregori
- Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padova, 35128 Padova, Italy
| | - Marco Schiavon
- Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padova, 35128 Padova, Italy
| | - Paolo Navalesi
- Institute of Anesthesia and Intensive Care, Padova University Hospital, 35128 Padova, Italy
- Department of Medicine, University of Padova, 35128 Padova, Italy
| | - Andrea Dell’Amore
- Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padova, 35128 Padova, Italy
| | - Federico Rea
- Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padova, 35128 Padova, Italy
| |
Collapse
|
8
|
Different Acute Kidney Injury Patterns after Renal Ischemia Reperfusion Injury and Extracorporeal Membrane Oxygenation in Mice. Int J Mol Sci 2022; 23:ijms231911000. [PMID: 36232304 PMCID: PMC9570202 DOI: 10.3390/ijms231911000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/03/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
The use of extracorporeal membrane oxygenation (ECMO) is associated with acute kidney injury (AKI) in thoracic organ transplantation. However, multiple other factors contribute to AKI development after these procedures such as renal ischemia-reperfusion injury (IRI) due to hypo-perfusion of the kidney during surgery. In this study, we aimed to explore the kidney injury patterns in mouse models of ECMO and renal IRI. Kidneys of C57BL/6 mice were examined after moderate (35 min) and severe (45 min) unilateral transient renal pedicle clamping and 2 h of veno-venous ECMO. Renal injury markers, neutrophil infiltration, tubular transport function, pro-inflammatory cytokines, and renal heme oxygenase-1 (HO-1) expression were determined by immunofluorescence and qPCR. Both procedures caused AKI, but with different injury patterns. Severe neutrophil infiltration of the kidney was evident after renal IRI, but not following ECMO. Tubular transport function was severely impaired after renal IRI, but preserved in the ECMO group. Both procedures caused upregulation of pro-inflammatory cytokines in the renal tissue, but with different time kinetics. After ECMO, but not IRI, HO-1 was strongly induced in tubular cells indicating contact with hemolysis-derived proteins. After IRI, HO-1 was expressed on infiltrating myeloid cells in the tubulo-interstitial space. In conclusion, renal IRI and ECMO both caused AKI, but kidney damage after renal IRI was more pronounced including severe neutrophil infiltration and tubular transport impairment. Enhanced HO-1 expression in tubular cells after ECMO encourages limitation of hemolysis as a therapeutic approach to reduce ECMO-associated AKI.
Collapse
|
9
|
Reck Dos Santos P, D'Cunha J. Intraoperative support during lung transplantation. J Thorac Dis 2022; 13:6576-6586. [PMID: 34992836 PMCID: PMC8662508 DOI: 10.21037/jtd-21-1166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 07/30/2021] [Indexed: 12/29/2022]
Abstract
The role of intraoperative mechanical support during lung transplantation (LTx) is essential to provide a safe hemodynamic and ventilatory status during critical intraoperative events. This hemodynamic and ventilatory stability is vital to minimize the odds of suboptimal outcomes, especially considering that, due to the scarcity of donors and the fact that more and more patients with significant comorbidities are being considered for this therapy, a more aggressive approach is often needed by the transplant centers. Hence, the attenuation of any potential injury that can happen during this complex event is paramount. While a thorough assessment of the donor and optimization of postoperative care is pursued, certainly protective intraoperative management would also contribute to better outcomes. Understanding each patient’s underlying anatomy and cardiopulmonary physiology, associated with awareness of critical events during a complicated procedure like LTx, is essential for a precise indication and safe use of support. Cardiopulmonary bypass (CPB) and veno-arterial extracorporeal membrane oxygenation (VA ECMO) have been the most common approaches used, with the latter gaining popularity more recently and we have used VA ECMO exclusively for the last decade. New technologies certainly contributed to more liberal use of VA ECMO intraoperatively, enabling a protecting and physiologic environment for the newly implanted grafts. In this setting, potential prophylactic use for lung protection during a critical period is also considered.
Collapse
Affiliation(s)
| | - Jonathan D'Cunha
- Department of Cardiothoracic Surgery, Mayo Clinic Arizona, Phoenix, AZ, USA
| |
Collapse
|