1
|
Hoenemann JN, Moestl S, Diedrich A, Mulder E, Frett T, Petrat G, Pustowalow W, Arz M, Schmitz MT, Heusser K, Lee SMC, Jordan J, Tank J, Hoffmann F. Impact of daily artificial gravity on autonomic cardiovascular control following 60-day head-down tilt bed rest. Front Cardiovasc Med 2023; 10:1250727. [PMID: 37953766 PMCID: PMC10634666 DOI: 10.3389/fcvm.2023.1250727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/04/2023] [Indexed: 11/14/2023] Open
Abstract
Impaired cardiovascular autonomic control following space flight or immobilization may limit the ability to cope with additional hemodynamic stimuli. Head-down tilt bedrest is an established terrestrial analog for space flight and offers the opportunity to test potential countermeasures for autonomic cardiovascular deconditioning. Previous studies revealed a possible benefit of daily artificial gravity on cardiovascular autonomic control following head-down tilt bedrest, but there is a need for efficiency in a long-term study before an artificial gravity facility would be brought to space. We hypothesized that artificial gravity through short-arm centrifugation attenuates functional adaptions of autonomic function during head-down tilt bed rest. 24 healthy persons (8 women, 33.4 ± 9.3 years, 24.3 ± 2.1 kg/m2) participated in the 60-day head-down tilt bed rest (AGBRESA) study. They were assigned to three groups, 30 min/day continuous, or 6(5 min intermittent short-arm centrifugation, or a control group. We assessed autonomic cardiovascular control in the supine position and in 5 minutes 80° head-up tilt position before and immediately after bed rest. We computed heart rate variability (HRV) in the time (rmssd) and frequency domain, blood pressure variability, and baroreflex sensitivity (BRS). RR interval corrected rmssd was reduced supine (p = 0.0358) and during HUT (p = 0.0161). Heart rate variability in the high-frequency band (hf-RRI; p = 0.0004) and BRS (p < 0.0001) decreased, whereas blood pressure variability in the low-frequency band (lf-SBP, p = 0.0008) increased following bedrest in all groups. We did not detect significant interactions between bedrest and interventions. We conclude that up to daily 30 min of artificial gravity on a short-arm centrifuge with 1Gz at the center of mass do not suffice to prevent changes in autonomic cardiovascular control following 60-day of 6° head-down tilt bed rest. Clinical Trial Registration: https://drks.de/search/en/trial/DRKS00015677, identifier, DRKS00015677.
Collapse
Affiliation(s)
- J.-N. Hoenemann
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
- Department of Internal Medicine III, Division of Cardiology, Pneumology, Angiology, and Intensive Care, University of Cologne, Cologne, Germany
| | - S. Moestl
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - A. Diedrich
- Department of Medicine, Division of Clinical Pharmacology, Autonomic Dysfunction Service, Vanderbilt University, Nashville, TN, United States
| | - E. Mulder
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - T. Frett
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - G. Petrat
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - W. Pustowalow
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - M. Arz
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - M.-T. Schmitz
- Institute of Medical Biometry, Informatics and Epidemiology (IMBIE), University Hospital Bonn, Bonn, Germany
| | - K. Heusser
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - S. M. C. Lee
- Wyle Laboratories, Life Sciences and Systems Division, Houston, TX, United States
| | - J. Jordan
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
- Head of Aerospace Medicine, University of Cologne, Germany, Cologne
| | - J. Tank
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - F. Hoffmann
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
- Department of Internal Medicine III, Division of Cardiology, Pneumology, Angiology, and Intensive Care, University of Cologne, Cologne, Germany
| |
Collapse
|
2
|
Hoffmann F, Rabineau J, Mehrkens D, Gerlach DA, Moestl S, Johannes BW, Caiani EG, Migeotte PF, Jordan J, Tank J. Cardiac adaptations to 60 day head-down-tilt bed rest deconditioning. Findings from the AGBRESA study. ESC Heart Fail 2020; 8:729-744. [PMID: 33191629 PMCID: PMC7835618 DOI: 10.1002/ehf2.13103] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/01/2020] [Accepted: 10/22/2020] [Indexed: 01/01/2023] Open
Abstract
Aims Reduced physical activity increases the risk of heart failure; however, non‐invasive methodologies detecting subclinical changes in myocardial function are not available. We hypothesized that myocardial, left ventricular, systolic strain measurements could capture subtle abnormalities in myocardial function secondary to physical inactivity. Methods and results In the AGBRESA study, which assessed artificial gravity through centrifugation as potential countermeasure for space travel, 24 healthy persons (eight women) were submitted to 60 day strict −6° head‐down‐tilt bed rest. Participants were assigned to three groups of eight subjects: a control group, continuous artificial gravity training on a short‐arm centrifuge (30 min/day), or intermittent centrifugation (6 × 5 min/day). We assessed cardiac morphology, function, strain, and haemodynamics by cardiac magnetic resonance imaging (MRI) and echocardiography. We observed no differences between groups and, therefore, conducted a pooled analysis. Consistent with deconditioning, resting heart rate (∆8.3 ± 6.3 b.p.m., P < 0.0001), orthostatic heart rate responses (∆22.8 ± 19.7 b.p.m., P < 0.0001), and diastolic blood pressure (∆8.8 ± 6.6 mmHg, P < 0.0001) increased, whereas cardiac output (∆−0.56 ± 0.94 L/min, P = 0.0096) decreased during bed rest. Left ventricular mass index obtained by MRI did not change. Echocardiographic left ventricular, systolic, global longitudinal strain (∆1.8 ± 1.83%, P < 0.0001) decreased, whereas left ventricular, systolic, global MRI circumferential strain increased not significantly (∆−0.68 ± 1.85%, P = 0.0843). MRI values rapidly returned to baseline during recovery. Conclusion Prolonged head‐down‐tilt bed rest provokes changes in cardiac function, particularly strain measurements, that appear functional rather than mediated through cardiac remodelling. Thus, strain measurements are of limited utility in assessing influences of physical deconditioning or exercise interventions on cardiac function.
Collapse
Affiliation(s)
- Fabian Hoffmann
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany.,Department of Internal Medicine III, University of Cologne, Cologne, Germany
| | | | - Dennis Mehrkens
- Department of Internal Medicine III, University of Cologne, Cologne, Germany
| | - Darius A Gerlach
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Stefan Moestl
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Bernd W Johannes
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Enrico G Caiani
- Department of Electronics, Information and Biomedical Engineering, Politecnico di Milano, Milan, Italy.,Consiglio Nazionale delle Ricerche, Institute of Electronics and Information and Telecommunication Engineering, Milan, Italy
| | | | - Jens Jordan
- Head of the Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Jens Tank
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| |
Collapse
|
3
|
Colombo R, Wu MA, Perotti A, Saia L, Fossali T, Ottolina D, Borghi B, Castelli A, Rech R, Cogliati C, Catena E. Tethering role of the autonomic nervous system on cardioventilatory coupling. Respir Physiol Neurobiol 2020; 279:103466. [PMID: 32454241 DOI: 10.1016/j.resp.2020.103466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 04/10/2020] [Accepted: 05/10/2020] [Indexed: 11/28/2022]
Abstract
Hypovolemia and intermittent positive pressure ventilation are conditions that frequently characterize the state of critical illness, but their interaction and resulting cardioventilatory coupling is poorly understood even in healthy humans. We explored heart rate variability, baroreflex activity, and their interaction in an experimental protocol involving twelve mildly hypovolemic healthy subjects during spontaneous breathing and noninvasive positive-pressure ventilation. In seven subjects, an echocardiographic assessment was also performed. Correction of hypovolemia, raising cardiac preload, produced an increase in high-frequency spectral power density of heart rate, left low-frequency spectral power density unchanged but enhanced baroreflex sensitivity. Cardioventilatory coupling was affected by both central blood volume and ventilatory mode and was mainly entrained by the respiratory oscillation. In conclusion, the autonomic nervous system and baroreflex have a significant role in compensating the hemodynamic perturbation due to changes of volemia and ventilatory-induced fluctuations of venous return. They exert an integrative function on the adaptive pattern of cardioventilatory coupling.
Collapse
Affiliation(s)
- Riccardo Colombo
- Department of Anesthesiology and Intensive Care, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital - Polo Universitario, University of Milan, Milan, Italy.
| | - Maddalena Alessandra Wu
- Department of Internal Medicine, ASST Fatebenefratelli Sacco, "Luigi Sacco" Hospital - Polo Universitario - University of Milan, Via G.B. Grassi 74, 20157 Milan, Italy
| | - Andrea Perotti
- Department of Anesthesiology and Intensive Care, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital - Polo Universitario, University of Milan, Milan, Italy
| | - Laura Saia
- School of Anesthesia and Intensive Care, University of Milan, Milan, Italy
| | - Tommaso Fossali
- Department of Anesthesiology and Intensive Care, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital - Polo Universitario, University of Milan, Milan, Italy
| | - Davide Ottolina
- Department of Anesthesiology and Intensive Care, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital - Polo Universitario, University of Milan, Milan, Italy
| | - Beatrice Borghi
- Department of Anesthesiology and Intensive Care, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital - Polo Universitario, University of Milan, Milan, Italy
| | - Antonio Castelli
- Department of Anesthesiology and Intensive Care, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital - Polo Universitario, University of Milan, Milan, Italy
| | - Roberto Rech
- Department of Anesthesiology and Intensive Care, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital - Polo Universitario, University of Milan, Milan, Italy
| | - Chiara Cogliati
- Department of Internal Medicine, ASST Fatebenefratelli Sacco, "Luigi Sacco" Hospital - Polo Universitario - University of Milan, Via G.B. Grassi 74, 20157 Milan, Italy
| | - Emanuele Catena
- Department of Anesthesiology and Intensive Care, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital - Polo Universitario, University of Milan, Milan, Italy
| |
Collapse
|
4
|
Barbic F, Heusser K, Minonzio M, Shiffer D, Cairo B, Tank J, Jordan J, Diedrich A, Gauger P, Zamuner RA, Porta A, Furlan R. Effects of Prolonged Head-Down Bed Rest on Cardiac and Vascular Baroreceptor Modulation and Orthostatic Tolerance in Healthy Individuals. Front Physiol 2019; 10:1061. [PMID: 31507438 PMCID: PMC6716544 DOI: 10.3389/fphys.2019.01061] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 08/02/2019] [Indexed: 11/13/2022] Open
Abstract
Orthostatic intolerance commonly occurs after prolonged bed rest, thus increasing the risk of syncope and falls. Baroreflex-mediated adjustments of heart rate and sympathetic vasomotor activity (muscle sympathetic nerve activity – MSNA) are crucial for orthostatic tolerance. We hypothesized that prolonged bed rest deconditioning alters overall baroreceptor functioning, thereby reducing orthostatic tolerance in healthy volunteers. As part of the European Space Agency Medium-term Bed Rest protocol, 10 volunteers were studied before and after 21 days of −6° head down bed rest (HDBR). In both conditions, subjects underwent ECG, beat-by-beat blood pressure, respiratory activity, and MSNA recordings while supine (REST) and during a 15-min 80° head-up tilt (TILT) followed by a 3-min −10 mmHg stepwise increase of lower body negative pressure to pre-syncope. Cardiac baroreflex sensitivity (cBRS) was obtained in the time (sequence method) and frequency domain (spectrum and cross-spectrum analyses of RR interval and systolic arterial pressure – SAP, variability). Baroreceptor modulation of sympathetic discharge activity to the vessels (sBRS) was estimated by the slope of the regression line between the percentage of MSNA burst occurrence and diastolic arterial pressure. Orthostatic tolerance significantly decreased after HDBR (12 ± 0.6 min) compared to before (21 ± 0.6 min). While supine, heart rate, SAP, and cBRS were unchanged before and after HDBR, sBRS gain was slightly depressed after than before HDBR (sBRS: −6.0 ± 1.1 versus −2.9 ± 1.5 burst% × mmHg−1, respectively). During TILT, HR was higher after than before HDBR (116 ± 4 b/min versus 100 ± 4 b/min, respectively), SAP was unmodified in both conditions, and cBRS indexes were lower after HDBR (α index: 3.4 ± 0.7 ms/mmHg; BRSSEQ 4.0 ± 1.0) than before (α index: 6.4 ± 1.0 ms/mmHg; BRSSEQ 6.8 ± 1.2). sBRS gain was significantly more depressed after HDBR than before (sBRS: −2.3 ± 0.7 versus −4.4 ± 0.4 burst% × mmHg−1, respectively). Our findings suggest that baroreflex-mediated adjustments in heart rate and MSNA are impaired after prolonged bed rest. The mechanism likely contributes to the decrease in orthostatic tolerance.
Collapse
Affiliation(s)
- Franca Barbic
- Humanitas Clinical and Research Center, Department of Internal Medicine, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Humanitas University, Rozzano, Italy
| | - Karsten Heusser
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - Maura Minonzio
- Humanitas Clinical and Research Center, Department of Internal Medicine, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Humanitas University, Rozzano, Italy
| | - Dana Shiffer
- Humanitas Clinical and Research Center, Department of Internal Medicine, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Humanitas University, Rozzano, Italy
| | - Beatrice Cairo
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Jens Tank
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - Jens Jordan
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - André Diedrich
- Autonomic Dysfunction Center, Clinical Research Center (CRC), Department of Medicine, Vanderbilt University, Nashville, TN, United States
| | - Peter Gauger
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | | | - Alberto Porta
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy.,Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico di San Donato, San Donato Milanese, Italy
| | - Raffaello Furlan
- Humanitas Clinical and Research Center, Department of Internal Medicine, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Humanitas University, Rozzano, Italy
| |
Collapse
|
5
|
Abstract
It is from the discovery of leptin and the central nervous system as a regulator of bone remodeling that the presence of autonomic nerves within the skeleton transitioned from a mere histological observation to the mechanism whereby neurons of the central nervous system communicate with cells of the bone microenvironment and regulate bone homeostasis. This shift in paradigm sparked new preclinical and clinical investigations aimed at defining the contribution of sympathetic, parasympathetic, and sensory nerves to the process of bone development, bone mass accrual, bone remodeling, and cancer metastasis. The aim of this article is to review the data that led to the current understanding of the interactions between the autonomic and skeletal systems and to present a critical appraisal of the literature, bringing forth a schema that can put into physiological and clinical context the main genetic and pharmacological observations pointing to the existence of an autonomic control of skeletal homeostasis. The different types of nerves found in the skeleton, their functional interactions with bone cells, their impact on bone development, bone mass accrual and remodeling, and the possible clinical or pathophysiological relevance of these findings are discussed.
Collapse
Affiliation(s)
- Florent Elefteriou
- Department of Molecular and Human Genetics and Orthopedic Surgery, Center for Skeletal Medicine and Biology, Baylor College of Medicine , Houston, Texas
| |
Collapse
|
6
|
Hughes JM, Charkoudian N, Barnes JN, Morgan BJ. Revisiting the Debate: Does Exercise Build Strong Bones in the Mature and Senescent Skeleton? Front Physiol 2016; 7:369. [PMID: 27679578 PMCID: PMC5020082 DOI: 10.3389/fphys.2016.00369] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/10/2016] [Indexed: 12/18/2022] Open
Abstract
Traditional exercise programs seem to be less osteogenic in the mature and post-mature skeleton compared to the young skeleton. This is likely because of the decline in sensitivity of bone to mechanical loading that occurs with advancing age. Another factor contributing to the apparently diminished benefit of exercise in older adults is failure of widely used measurement techniques (i.e., DXA) to identify changes in 3-dimensional bone structure, which are important determinants of bone strength. Moreover, although hormonal contributors to bone loss in the elderly are well-recognized, the influence of age-related increases in sympathetic nervous system activity, which impacts bone metabolism, is rarely considered. In this Perspective, we cite evidence from animal and human studies demonstrating anabolic effects of exercise on bone across the lifespan and we discuss theoretical considerations for designing exercise regimens to optimize bone health. We conclude with suggestions for future research that should help define the osteogenic potential of exercise in older individuals.
Collapse
Affiliation(s)
- Julie M Hughes
- Military Performance Division, US Army Research Institute of Environmental Medicine Natick, MA, USA
| | - Nisha Charkoudian
- Thermal and Mountain Medicine Division, US Army Research Institute of Environmental Medicine Natick, MA, USA
| | - Jill N Barnes
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison Madison, WI, USA
| | - Barbara J Morgan
- John Rankin Laboratory of Pulmonary Medicine, Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison Madison, WI, USA
| |
Collapse
|
7
|
Watenpaugh DE. Analogs of microgravity: head-down tilt and water immersion. J Appl Physiol (1985) 2016; 120:904-14. [DOI: 10.1152/japplphysiol.00986.2015] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/04/2016] [Indexed: 01/26/2023] Open
Abstract
This article briefly reviews the fidelity of ground-based methods used to simulate human existence in weightlessness (spaceflight). These methods include horizontal bed rest (BR), head-down tilt bed rest (HDT), head-out water immersion (WI), and head-out dry immersion (DI; immersion with an impermeable elastic cloth barrier between subject and water). Among these, HDT has become by far the most commonly used method, especially for longer studies. DI is less common but well accepted for long-duration studies. Very few studies exist that attempt to validate a specific simulation mode against actual microgravity. Many fundamental physical, and thus physiological, differences exist between microgravity and our methods to simulate it, and between the different methods. Also, although weightlessness is the salient feature of spaceflight, several ancillary factors of space travel complicate Earth-based simulation. In spite of these discrepancies and complications, the analogs duplicate many responses to 0 G reasonably well. As we learn more about responses to microgravity and spaceflight, investigators will continue to fine-tune simulation methods to optimize accuracy and applicability.
Collapse
Affiliation(s)
- Donald E. Watenpaugh
- Department of Integrative Physiology, University of North Texas Health Science Center, Fort Worth, Texas
| |
Collapse
|
8
|
Effects of gravitational acceleration on cardiovascular autonomic control in resting humans. Eur J Appl Physiol 2015; 115:1417-27. [DOI: 10.1007/s00421-015-3117-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 01/26/2015] [Indexed: 10/24/2022]
|