1
|
Borsodi K, Balla H, Molnár PJ, Lénárt Á, Kenessey I, Horváth A, Keszthelyi A, Romics M, Majoros A, Nyirády P, Offermanns S, Benyó Z. Signaling Pathways Mediating Bradykinin-Induced Contraction in Murine and Human Detrusor Muscle. Front Med (Lausanne) 2022; 8:745638. [PMID: 35127739 PMCID: PMC8811450 DOI: 10.3389/fmed.2021.745638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/23/2021] [Indexed: 01/22/2023] Open
Abstract
Bradykinin (BK) has been proposed to modulate urinary bladder functions and implicated in the pathophysiology of detrusor overactivity. The present study aims to elucidate the signaling pathways of BK-induced detrusor muscle contraction, with the goal of better understanding the molecular regulation of micturition and identifying potential novel therapeutic targets of its disorders. Experiments have been carried out on bladders isolated from wild-type or genetically modified [smooth muscle-specific knockout (KO): Gαq/11-KO, Gα12/13-KO and constitutive KO: thromboxane prostanoid (TP) receptor-KO, cyclooxygenase-1 (COX-1)-KO] mice and on human bladder samples. Contractions of detrusor strips were measured by myography. Bradykinin induced concentration-dependent contractions in both murine and human bladders, which were independent of secondary release of acetylcholine, ATP, or prostanoid mediators. B2 receptor antagonist HOE-140 markedly diminished contractile responses in both species, whereas B1 receptor antagonist R-715 did not alter BK's effect. Consistently with these findings, pharmacological stimulation of B2 but not B1 receptors resembled the effect of BK. Interestingly, both Gαq/11- and Gα12/13-KO murine bladders showed reduced response to BK, indicating that simultaneous activation of both pathways is required for the contraction. Furthermore, the Rho-kinase (ROCK) inhibitor Y-27632 markedly decreased contractions in both murine and human bladders. Our results indicate that BK evokes contractions in murine and human bladders, acting primarily on B2 receptors. Gαq/11-coupled and Gα12/13-RhoA-ROCK signaling appear to mediate these contractions simultaneously. Inhibition of ROCK enzyme reduces the contractions in both species, identifying this enzyme, together with B2 receptor, as potential targets for treating voiding disorders.
Collapse
Affiliation(s)
- Kinga Borsodi
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Helga Balla
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Péter József Molnár
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- Department of Urology, Semmelweis University, Budapest, Hungary
| | - Ádám Lénárt
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - István Kenessey
- 2Department of Pathology, Semmelweis University, Budapest, Hungary
| | - András Horváth
- Department of Urology, Semmelweis University, Budapest, Hungary
| | | | - Miklós Romics
- Department of Urology, Semmelweis University, Budapest, Hungary
| | - Attila Majoros
- Department of Urology, Semmelweis University, Budapest, Hungary
| | - Péter Nyirády
- Department of Urology, Semmelweis University, Budapest, Hungary
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- *Correspondence: Zoltán Benyó
| |
Collapse
|
2
|
Urinary Biomarkers in Interstitial Cystitis/Bladder Pain Syndrome and Its Impact on Therapeutic Outcome. Diagnostics (Basel) 2021; 12:diagnostics12010075. [PMID: 35054241 PMCID: PMC8774507 DOI: 10.3390/diagnostics12010075] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 12/25/2022] Open
Abstract
Interstitial cystitis/bladder pain syndrome (IC/BPS) is defined as a chronic bladder disorder with suprapubic pain (pelvic pain) and pressure and/or discomfort related to bladder filling accompanied by lower urinary tract symptoms, such as urinary frequency and urgency without urinary tract infection (UTI) lasting for at least 6 weeks. IC/BPS presents significant bladder pain and frequency urgency symptoms with unknown etiology, and it is without a widely accepted standard in diagnosis. Patients’ pathological features through cystoscopy and histologic features of bladder biopsy determine the presence or absence of Hunner lesions. IC/PBS is categorized into Hunner (ulcerative) type IC/BPS (HIC/BPS) or non-Hunner (nonulcerative) type IC/BPS (NHIC/BPS). The pathophysiology of IC/BPS is composed of multiple possible factors, such as chronic inflammation, autoimmune disorders, neurogenic hyperactivity, urothelial defects, abnormal angiogenesis, oxidative stress, and exogenous urine substances, which play a crucial role in the pathophysiology of IC/BPS. Abnormal expressions of several urine and serum specimens, including growth factor, methylhistamine, glycoprotein, chemokine and cytokines, might be useful as biomarkers for IC/BPS diagnosis. Further studies to identify the key molecules in IC/BPS will help to improve the efficacy of treatment and identify biomarkers of the disease. In this review, we discuss the potential medical therapy and assessment of therapeutic outcome with urinary biomarkers for IC/BPS.
Collapse
|
3
|
Turco AE, Oakes SR, Keil Stietz KP, Dunham CL, Joseph DB, Chathurvedula TS, Girardi NM, Schneider AJ, Gawdzik J, Sheftel CM, Wang P, Wang Z, Bjorling DE, Ricke WA, Tang W, Hernandez LL, Keast JR, Bonev AD, Grimes MD, Strand DW, Tykocki NR, Tanguay RL, Peterson RE, Vezina CM. A mechanism linking perinatal 2,3,7,8 tetrachlorodibenzo-p-dioxin exposure to lower urinary tract dysfunction in adulthood. Dis Model Mech 2021; 14:271057. [PMID: 34318329 PMCID: PMC8326766 DOI: 10.1242/dmm.049068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022] Open
Abstract
Benign prostatic hyperplasia/lower urinary tract dysfunction (LUTD) affects nearly all men. Symptoms typically present in the fifth or sixth decade and progressively worsen over the remainder of life. Here, we identify a surprising origin of this disease that traces back to the intrauterine environment of the developing male, challenging paradigms about when this disease process begins. We delivered a single dose of a widespread environmental contaminant present in the serum of most Americans [2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD), 1 µg/kg], and representative of a broader class of environmental contaminants, to pregnant mice and observed an increase in the abundance of a neurotrophic factor, artemin, in the developing mouse prostate. Artemin is required for noradrenergic axon recruitment across multiple tissues, and TCDD rapidly increases prostatic noradrenergic axon density in the male fetus. The hyperinnervation persists into adulthood, when it is coupled to autonomic hyperactivity of prostatic smooth muscle and abnormal urinary function, including increased urinary frequency. We offer new evidence that prostate neuroanatomical development is malleable and that intrauterine chemical exposures can permanently reprogram prostate neuromuscular function to cause male LUTD in adulthood. Summary: We describe a new mechanism of benign prostate disease, initiated by fetal chemical exposure, which durably increases prostatic noradrenergic axon density and causes smooth muscle hyperactivity and urinary voiding dysfunction.
Collapse
Affiliation(s)
- Anne E Turco
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison,Madison, WI 53705, USA
| | - Steven R Oakes
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Kimberly P Keil Stietz
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Cheryl L Dunham
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Diya B Joseph
- Department of Urology, University of Texas Southwestern, Dallas, TX 75390, USA
| | | | - Nicholas M Girardi
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Andrew J Schneider
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Joseph Gawdzik
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Celeste M Sheftel
- Cellular and Molecular Pharmacology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Peiqing Wang
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zunyi Wang
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Dale E Bjorling
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - William A Ricke
- Department of Urology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Weiping Tang
- Department of Urology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Laura L Hernandez
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Janet R Keast
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Adrian D Bonev
- Department of Pharmacology, University of Vermont, Burlington, VT 05405, USA
| | - Matthew D Grimes
- Department of Urology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Douglas W Strand
- Department of Urology, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Nathan R Tykocki
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 58823, USA
| | - Robyn L Tanguay
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Richard E Peterson
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison,Madison, WI 53705, USA.,School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Chad M Vezina
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison,Madison, WI 53705, USA.,Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
4
|
Urine Proteomic Study in OAB Patients-Preliminary Report. J Clin Med 2020; 9:jcm9051389. [PMID: 32397227 PMCID: PMC7290998 DOI: 10.3390/jcm9051389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 12/21/2022] Open
Abstract
Overactive bladder (OAB) is defined by International Urogynecological Association (IUGA)/ International Continence Society (ICS) as urinary urgency, usually accompanied by frequency and nocturia, with or without urgency urinary incontinence, in the absence of urinary tract infection (UTI) or other obvious pathology. The pathophysiology of OAB is not well understood, however a number of different proteins and cytokines including vascular cell adhesion molecule-1 (VCAM-1) were found to be important in regulating structural integrity of the bladder wall. Proteome analysis may thus provide significant information with regard to OAB and may help in discovering novel diagnostic disease biomarkers. Sixteen Caucasian women aged 32-78 were included in the study. Patients were placed within 2 groups: OAB group (n = 8) and control group (n = 8). Urine samples were collected, immediately preserved in a protease inhibitor mixture, and frozen at -80 ℃. All samples were then further processed according to the isobaric tags for relative and absolute quantification (iTRAQ) manual. Proteins were labeled and analyzed in the mass spectrometer conjugated with liquid chromatograph (data are available via ProteomeXchange with the identifier PXD017799). There were no statistically significant differences in demographic data between control and OAB groups. VCAM-1 was the only protein that reached statistical significance as a differentiating protein in both of our experiments assessing the proteomic constitution in OAB patients. Studies involving a larger group of patients may provide further information on urinary bladder proteomics.
Collapse
|
5
|
Apostolidis A, Wagg A, Rahnam A'i MS, Panicker JN, Vrijens D, von Gontard A. Is there "brain OAB" and how can we recognize it? International Consultation on Incontinence-Research Society (ICI-RS) 2017. Neurourol Urodyn 2018; 37:S38-S45. [PMID: 29388707 DOI: 10.1002/nau.23506] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/26/2017] [Indexed: 02/06/2023]
Abstract
AIMS In light of mounting evidence supporting the association of brain regions with the control of urine storage and voiding, the high placebo effect in OAB studies as well as certain anecdotal observations from clinical practice with OAB patients, the role of the brain in OAB was explored. METHODS At the ICI-RS 2017 meeting, a panel of Functional Urologists and Basic Scientists presented literature data generating a proposal to discuss whether there is "brain OAB" and how we could recognize it. RESULTS Existing data point toward organic brain causes of OAB, in particular concerning white matter disease (WMD) and aging, but with currently speculative mechanisms. Imaging techniques have revealed connectivity changes between brain regions which may explain brain-peripheral interactions in OAB patients, further to acknowledged structural and functional changes in the central nervous system (CNS). Furthermore, psychological disorders like stress and depression have been identified as causes of OAB, with animal and human studies proposing a neurochemical and neuroendocrine pathophysiological basis, involving either the serotoninergic system or the hypothalamic-pituitary-adrenal axis. Finally, childhood data suggest that OAB could be a developmental disorder involving the CNS, although childhood OAB could be a different condition than that of adults in many children. CONCLUSIONS Future research should aim to identify the pathogenesis of WMD and the aging processes affecting the brain and the bladder, with possible benefits in prevention strategies, as well as connectivity disorders within the CNS, the pathophysiology of OAB in childhood and the neurochemical pathways connecting affective disorders with OAB.
Collapse
Affiliation(s)
- Apostolos Apostolidis
- 2nd Department of Urology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Adrian Wagg
- Division of Geriatric Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Mohammad S Rahnam A'i
- Department of Urology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Jalesh N Panicker
- Department of Uro-Neurology, UCL Institute of Neurology, London, United Kingdom
| | - Desiree Vrijens
- Department of Urology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Alexander von Gontard
- Department of Child and Adolescent Psychiatry, Saarland University Hospital, Homburg, Germany
| |
Collapse
|
6
|
Chai TC, Russo A, Yu S, Lu M. Mucosal signaling in the bladder. Auton Neurosci 2015; 200:49-56. [PMID: 26422993 DOI: 10.1016/j.autneu.2015.08.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 08/27/2015] [Indexed: 01/09/2023]
Abstract
The bladder mucosa is comprised of the multilayered urothelium, lamina propria (LP), microvasculature, and smooth muscle fibers (muscularis mucosae). The muscularis mucosae is not always present in the mucosa, and its presence is related to the thickness of the LP. Since there are no mucus secreting cells, "mucosa" is an imprecise term. Nerve fibers are present in the LP of the mucosa. Efferent nerves mediate mucosal contractions which can be elicited by electrical field stimulation (EFS) and various agonists. The source of mucosal contractility is unknown, but may arise from the muscularis mucosae or myofibroblasts. EFS also increases frequency of mucosal venule contractions. Thus, efferent neural activity has multiple effects on the mucosa. Afferent activity has been measured when the mucosa is stimulated by mechanical and stretch stimuli from the luminal side. Nerve fibers have been shown to penetrate into the urothelium, allowing urothelial cells to interact with nerves. Myofibroblasts are specialized cells within the LP that generate spontaneous electrical activity which then can modulate both afferent and efferent neural activities. Thus mucosal signaling is defined as interactions between bladder autonomic nerves with non-neuronal cells within the mucosa. Mucosal signaling is likely to be involved in clinical functional hypersensory bladder disorders (e.g. overactive bladder, urgency, urgency incontinence, bladder pain syndrome) in which mechanisms are poorly understood despite high prevalence of these conditions. Targeting aberrant mucosal signaling could represent a new approach in treating these disorders.
Collapse
Affiliation(s)
- Toby C Chai
- Department of Urology, United States; Department of Obstetrics, Gynecology and Reproductive Science, Yale School of Medicine, New Haven, CT, United States.
| | - Andrea Russo
- Department of Obstetrics, Gynecology and Reproductive Science, Yale School of Medicine, New Haven, CT, United States
| | - Shan Yu
- Department of Urology, United States
| | - Ming Lu
- Department of Urology, United States
| |
Collapse
|
7
|
Patra PB, Patra S. Research Findings on Overactive Bladder. Curr Urol 2015; 8:1-21. [PMID: 26195957 PMCID: PMC4483299 DOI: 10.1159/000365682] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 01/09/2014] [Indexed: 12/19/2022] Open
Abstract
Several physiopathologic conditions lead to the manifestation of overactive bladder (OAB). These conditions include ageing, diabetes mellitus, bladder outlet obstruction, spinal cord injury, stroke and brain injury, Parkinson's disease, multiple sclerosis, interstitial cystitis, stress and depression. This review has discussed research findings in human and animal studies conducted on the above conditions. Several structural and functional changes under these conditions have not only been observed in the lower urinary tract, but also in the brain and spinal cord. Significant changes were observed in the following areas: neurotransmitters, prostaglandins, nerve growth factor, Rho-kinase, interstitial cells of Cajal, and ion and transient receptor potential channels. Interestingly, alterations in these areas showed great variation in each of the conditions of the OAB, suggesting that the pathophysiology of the OAB might be different in each condition of the disease. It is anticipated that this review will be helpful for further research on new and specific drug development against OAB.
Collapse
Affiliation(s)
- Phani B. Patra
- King of Prussia, Drexel University College of Medicine, Philadelphia, Pa., USA
| | - Sayani Patra
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pa., USA
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW This review addresses significant changes in our understanding of urothelial development and regeneration. Understanding urothelial differentiation will be important in the push to find new methods of bladder reconstruction and augmentation, as well as identification of bladder cancer stem cells. RECENT FINDINGS This review will cover recent findings including the identification of novel progenitor cells in the embryo and adult urothelium, function of the urothelium, and regeneration of the urothelium. Using Cre-lox recombination with cell-type-specific Cre lines, lineage studies from our laboratory have revealed novel urothelial cell types and progenitors that are critical for formation and regeneration of the urothelium. Interestingly, our studies indicate that Keratin-5-expressing basal cells, which have previously been proposed to be urothelial stem cells, are a self-renewing unipotent population, whereas P-cells, a novel urothelial cell type, are progenitors in the embryo, and intermediate cells serve as a progenitor pool in the adult. SUMMARY These findings could have important implications for our understanding of cancer tumorigenesis and could move the fields of regeneration and reconstruction forward.
Collapse
|
9
|
Hanna-Mitchell AT, Kashyap M, Chan WV, Andersson KE, Tannenbaum C. Pathophysiology of idiopathic overactive bladder and the success of treatment: a systematic review from ICI-RS 2013. Neurourol Urodyn 2014; 33:611-7. [PMID: 24844598 DOI: 10.1002/nau.22582] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 02/10/2014] [Indexed: 12/11/2022]
Abstract
AIMS To investigate the frequency of phenotype profiling of patients with idiopathic overactive bladder (OAB) syndrome, and to determine the effectiveness of treatment among individuals with different pathophysiologic profiles. METHODS The electronic databases MEDLINE, EMBASE, Cochrane CENTRAL, Cochrane Database of Systematic Reviews, and CINAHL were searched from January 1, 1980 to August 12, 2013 for interventional randomized controlled treatment trials (RCTs) of idiopathic OAB. Phenotying for pathophysiologies originating in the urothelial/mucosal layer of the bladder, the detrusor muscle cell layer, and the central nervous system were sought. Articles that analyzed urgency outcomes based on pathophysiologic profiling were selected. Due to the heterogeneity of the included interventions and outcome assessment measures, meta-analysis was not appropriate and a qualitative synthesis was undertaken. RESULTS Of 239 original RCTs of idiopathic OAB, 48 (20%) profiled participants on underlying pathophysiology. Less than half of these (n = 20) reported treatment efficacy for urgency symptoms by pathophysiological sub-type. One examined the effect of botulinum A toxin on interstitial cell protein expression. Four compared treatment efficacy in OAB patients with and without involuntary detrusor contractions. Fifteen compared the effect of treatment on urgency reduction in patients with detrusor overactivity. There were no consistent trends in treatment efficacy according to pathophysiologic sub-type. No studies examined urothelial dysfunction or abnormal central processing of bladder afferent signaling in response to treatment. CONCLUSIONS In order to advance the field of idiopathic OAB, more trials are needed that profile and test urgency outcomes in participants according to suspected underlying pathophysiology. Neurourol. Urodynam. 33:611-617, 2014. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ann T Hanna-Mitchell
- University Hospitals Case Medical Center and Department of Urology, Urology Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | | | | | | | | |
Collapse
|
10
|
Effect of inflammatory mediators on ATP release of human urothelial RT4 cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:182862. [PMID: 24839598 PMCID: PMC4009244 DOI: 10.1155/2014/182862] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/02/2014] [Indexed: 12/24/2022]
Abstract
Inflammation is an important contributor to the aetiology of a number of bladder dysfunctions including interstitial cystitis, painful bladder syndrome, and overactive bladder. The aim of this study was to examine the effects of inflammatory mediators on urothelial ATP release. Human urothelial RT4 cells were exposed to normal buffer or varying concentrations of inflammatory mediators (bradykinin, histamine, and serotonin) in the presence or absence of hypotonic stretch stimuli (1 : 2 dilution of Krebs-Henseleit buffer). Others have demonstrated that bradykinin increased stretch-induced ATP release; however, we observed no change in control or stretch-induced ATP release with bradykinin. Pretreatment of RT4 cells with histamine or serotonin decreased stretch-induced ATP release (P = 0.037, P = 0.040, resp.). Previous studies have demonstrated increased ATP release in response to inflammation utilising whole bladder preparations in contrast to our simple model of cultured urothelial cells. The current study suggests that it is unlikely that there is a direct interaction between the release of inflammatory mediators and increased ATP release, but rather more complex interactions occurring in response to inflammation that lead to increased bladder sensation.
Collapse
|