1
|
John S, Bhowmick K, Park A, Huang H, Yang X, Mishra L. Recent advances in targeting obesity, with a focus on TGF-β signaling and vagus nerve innervation. Bioelectron Med 2025; 11:10. [PMID: 40301996 PMCID: PMC12042417 DOI: 10.1186/s42234-025-00172-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/31/2025] [Indexed: 05/01/2025] Open
Abstract
Over a third of the global population is affected by obesity, fatty liver disease (Metabolic Dysfunction-Associated Steatotic Liver Disease, MASLD), and its severe form, MASH (Metabolic Dysfunction-Associated Steatohepatitis), which can ultimately progress to hepatocellular carcinoma (HCC). Recent advancements include therapeutics such as glucagon-like peptide 1 (GLP-1) agonists and neural/vagal modulation strategies for these disorders. Among the many pathways regulating these conditions, emerging insights into transforming growth factor-β (TGF-β) signaling highlight potential future targets through its role in pathophysiological processes such as adipogenesis, inflammation, and fibrosis. Vagus nerve innervation in the gastrointestinal tract is involved in satiety regulation and energy homeostasis, and vagus nerve stimulation has been applied in weight loss and diabetes. This review explores clinical trials in obesity, novel therapeutic targets, and the role of TGF-β signaling and vagus nerve modulation in obesity-related liver diseases and HCC.
Collapse
Affiliation(s)
- Sahara John
- Institute for Bioelectronic Medicine, Divisions of Gastroenterology and Hepatology, Department of Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, 11030, USA
| | - Krishanu Bhowmick
- Institute for Bioelectronic Medicine, Divisions of Gastroenterology and Hepatology, Department of Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, 11030, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Andrew Park
- Institute for Bioelectronic Medicine, Divisions of Gastroenterology and Hepatology, Department of Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, 11030, USA
| | - Hai Huang
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, 11030, USA
| | - Xiaochun Yang
- Institute for Bioelectronic Medicine, Divisions of Gastroenterology and Hepatology, Department of Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, 11030, USA.
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA.
| | - Lopa Mishra
- Institute for Bioelectronic Medicine, Divisions of Gastroenterology and Hepatology, Department of Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, 11030, USA.
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA.
- Department of Surgery, George Washington University, Washington, DC, 20037, USA.
| |
Collapse
|
2
|
Tan G, Huguenard AL, Donovan KM, Demarest P, Liu X, Li Z, Adamek M, Lavine K, Vellimana AK, Kummer TT, Osbun JW, Zipfel GJ, Brunner P, Leuthardt EC. The effect of transcutaneous auricular vagus nerve stimulation on cardiovascular function in subarachnoid hemorrhage patients: A randomized trial. eLife 2025; 13:RP100088. [PMID: 39786346 PMCID: PMC11717364 DOI: 10.7554/elife.100088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
Background Subarachnoid hemorrhage (SAH) is characterized by intense central inflammation, leading to substantial post-hemorrhagic complications such as vasospasm and delayed cerebral ischemia. Given the anti-inflammatory effect of transcutaneous auricular vagus nerve stimulation (taVNS) and its ability to promote brain plasticity, taVNS has emerged as a promising therapeutic option for SAH patients. However, the effects of taVNS on cardiovascular dynamics in critically ill patients, like those with SAH, have not yet been investigated. Given the association between cardiac complications and elevated risk of poor clinical outcomes after SAH, it is essential to characterize the cardiovascular effects of taVNS to ensure this approach is safe in this fragile population. Therefore, this study assessed the impact of both acute and repetitive taVNS on cardiovascular function. Methods In this randomized clinical trial, 24 SAH patients were assigned to either a taVNS treatment or a sham treatment group. During their stay in the intensive care unit, we monitored patient electrocardiogram readings and vital signs. We compared long-term changes in heart rate, heart rate variability (HRV), QT interval, and blood pressure between the two groups. Additionally, we assessed the effects of acute taVNS by comparing cardiovascular metrics before, during, and after the intervention. We also explored acute cardiovascular biomarkers in patients exhibiting clinical improvement. Results We found that repetitive taVNS did not significantly alter heart rate, QT interval, blood pressure, or intracranial pressure (ICP). However, repetitive taVNS increased overall HRV and parasympathetic activity compared to the sham treatment. The increase in parasympathetic activity was most pronounced from 2 to 4 days after initial treatment (Cohen's d = 0.50). Acutely, taVNS increased heart rate, blood pressure, and peripheral perfusion index without affecting the corrected QT interval, ICP, or HRV. The acute post-treatment elevation in heart rate was more pronounced in patients who experienced a decrease of more than one point in their modified Rankin Score at the time of discharge. Conclusions Our study found that taVNS treatment did not induce adverse cardiovascular effects, such as bradycardia or QT prolongation, supporting its development as a safe immunomodulatory treatment approach for SAH patients. The observed acute increase in heart rate after taVNS treatment may serve as a biomarker for SAH patients who could derive greater benefit from this treatment. Funding The American Association of Neurological Surgeons (ALH), The Aneurysm and AVM Foundation (ALH), The National Institutes of Health R01-EB026439, P41-EB018783, U24-NS109103, R21-NS128307 (ECL, PB), McDonnell Center for Systems Neuroscience (ECL, PB), and Fondazione Neurone (PB). Clinical trial number NCT04557618.
Collapse
Affiliation(s)
- Gansheng Tan
- Department of Neurosurgery, Washington University School of MedicineSpringfieldUnited States
- Department of Biomedical Engineering, Washington University in St. LouisSt LouisUnited States
| | - Anna L Huguenard
- Department of Neurosurgery, Washington University School of MedicineSpringfieldUnited States
| | - Kara M Donovan
- Department of Neurosurgery, Washington University School of MedicineSpringfieldUnited States
- Department of Biomedical Engineering, Washington University in St. LouisSt LouisUnited States
| | - Phillip Demarest
- Department of Neurosurgery, Washington University School of MedicineSpringfieldUnited States
- Department of Biomedical Engineering, Washington University in St. LouisSt LouisUnited States
| | - Xiaoxuan Liu
- Department of Neurosurgery, Washington University School of MedicineSpringfieldUnited States
- Department of Biomedical Engineering, Washington University in St. LouisSt LouisUnited States
| | - Ziwei Li
- Department of Neurosurgery, Washington University School of MedicineSpringfieldUnited States
- Department of Biomedical Engineering, Washington University in St. LouisSt LouisUnited States
| | - Markus Adamek
- Department of Neuroscience, Washington University in St. LouisSt LouisUnited States
| | - Kory Lavine
- Department of Neurosurgery, Washington University School of MedicineSpringfieldUnited States
| | - Ananthv K Vellimana
- Department of Neurosurgery, Washington University School of MedicineSpringfieldUnited States
- Department of Neurology, Washington University in St. LouisSt LouisUnited States
| | - Terrance T Kummer
- Department of Neurology, Washington University in St. LouisSt LouisUnited States
| | - Joshua W Osbun
- Department of Neurosurgery, Washington University School of MedicineSpringfieldUnited States
- Department of Neurology, Washington University in St. LouisSt LouisUnited States
| | - Gregory J Zipfel
- Department of Neurosurgery, Washington University School of MedicineSpringfieldUnited States
| | - Peter Brunner
- Department of Neurosurgery, Washington University School of MedicineSpringfieldUnited States
- Department of Biomedical Engineering, Washington University in St. LouisSt LouisUnited States
| | - Eric C Leuthardt
- Department of Neurosurgery, Washington University School of MedicineSpringfieldUnited States
- Department of Biomedical Engineering, Washington University in St. LouisSt LouisUnited States
| |
Collapse
|
3
|
Tan G, Huguenard AL, Donovan KM, Demarest P, Liu X, Li Z, Adamek M, Lavine K, Vellimana AK, Kummer TT, Osbun JW, Zipfel GJ, Brunner P, Leuthardt EC. The effect of transcutaneous auricular vagus nerve stimulation on cardiovascular function in subarachnoid hemorrhage patients: a safety study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.03.24304759. [PMID: 38633771 PMCID: PMC11023641 DOI: 10.1101/2024.04.03.24304759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Introduction Subarachnoid hemorrhage (SAH) is characterized by intense central inflammation, leading to substantial post-hemorrhagic complications such as vasospasm and delayed cerebral ischemia. Given the anti-inflammatory effect of transcutaneous auricular vagus nerve stimulation (taVNS) and its ability to promote brain plasticity, taVNS has emerged as a promising therapeutic option for SAH patients. However, the effects of taVNS on cardiovascular dynamics in critically ill patients, like those with SAH, have not yet been investigated. Given the association between cardiac complications and elevated risk of poor clinical outcomes after SAH, it is essential to characterize the cardiovascular effects of taVNS to ensure this approach is safe in this fragile population. Therefore, we assessed the impact of both acute taVNS and repetitive taVNS on cardiovascular function in this study. Methods In this randomized clinical trial, 24 SAH patients were assigned to either a taVNS treatment or a Sham treatment group. During their stay in the intensive care unit, we monitored patient electrocardiogram (ECG) readings and vital signs. We compared long-term changes in heart rate, heart rate variability, QT interval, and blood pressure between the two groups. Additionally, we assessed the effects of acute taVNS by comparing cardiovascular metrics before, during, and after the intervention. We also explored acute cardiovascular biomarkers in patients exhibiting clinical improvement. Results We found that repetitive taVNS did not significantly alter heart rate, QT interval, blood pressure, or intracranial pressure. However, taVNS increased overall heart rate variability and parasympathetic activity compared to the sham treatment. The increase in parasympathetic activity was most pronounced from 2-4 days after initial treatment (Cohen's d = 0.50). Acutely, taVNS increased heart rate, blood pressure, and peripheral perfusion index without affecting the corrected QT interval, intracranial pressure, or heart rate variability. The acute post-treatment elevation in heart rate was more pronounced in patients who experienced a decrease of more than one point in their Modified Rankin Score at the time of discharge. Conclusions Our study found that taVNS treatment did not induce adverse cardiovascular effects, such as bradycardia or QT prolongation, supporting its development as a safe immunomodulatory treatment approach for SAH patients. The observed acute increase in heart rate after taVNS treatment may serve as a biomarker for SAH patients who could derive greater benefit from this treatment. Trial registration NCT04557618.
Collapse
Affiliation(s)
- Gansheng Tan
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, MO, USA
| | - Anna L. Huguenard
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Kara M. Donovan
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, MO, USA
| | - Phillip Demarest
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, MO, USA
| | - Xiaoxuan Liu
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, MO, USA
| | - Ziwei Li
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, MO, USA
| | - Markus Adamek
- Department of Neuroscience, Washington University in St. Louis, MO, USA
| | - Kory Lavine
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Ananth K. Vellimana
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University in St. Louis, MO, USA
| | | | - Joshua W. Osbun
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University in St. Louis, MO, USA
| | - Gregory J. Zipfel
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Peter Brunner
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, MO, USA
| | - Eric C. Leuthardt
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, MO, USA
| |
Collapse
|
4
|
Abdul-Rahman T, Lizano-Jubert I, Garg N, Tejerina-Marion E, Awais Bukhari SM, Luisa Ek A, Wireko AA, Mares AC, Sikora V, Gupta R. The Use of Cardioprotective Devices and Strategies in Patients Undergoing Percutaneous Procedures and Cardiac Surgery. Healthcare (Basel) 2023; 11:healthcare11081094. [PMID: 37107928 PMCID: PMC10137626 DOI: 10.3390/healthcare11081094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/28/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
In the United States, about one million people are seen to visit the operating theater for cardiac surgery annually. However, nearly half of these visits result in complications such as renal, neurological, and cardiac injury of varying degrees. Historically, many mechanisms and approaches have been explored in attempts to reduce injuries associated with cardiac surgery and percutaneous procedures. Devices such as cardioplegia, mechanical circulatory support, and other methods have shown promising results in managing and preventing life-threatening cardiac-surgery-related outcomes such as heart failure and cardiogenic shock. Comparably, cardioprotective devices such as TandemHeart, Impella family devices, and venoarterial extracorporeal membrane oxygenation (VA-ECMO) have also been proven to show significant cardioprotection through mechanical support. However, their use as interventional agents in the prevention of hemodynamic changes due to cardiac surgery or percutaneous interventions has been correlated with adverse effects. This can lead to a rebound increased risk of mortality in high-risk patients who undergo cardiac surgery. Further research is necessary to delineate and stratify patients into appropriate cardioprotective device groups. Furthermore, the use of one device over another in terms of efficacy remains controversial and further research is necessary to assess device potential in different settings. Clinical research is also needed regarding novel strategies and targets, such as transcutaneous vagus stimulation and supersaturated oxygen therapy, aimed at reducing mortality among high-risk cardiac surgery patients. This review explores the recent advances regarding the use of cardioprotective devices in patients undergoing percutaneous procedures and cardiac surgery.
Collapse
Affiliation(s)
- Toufik Abdul-Rahman
- Medical Institute, Sumy State University, 40007 Sumy, Ukraine
- Department of Cardiology, Otto Von Guericke University of Magdeburg, 39120 Magdeburg, Germany
| | - Ileana Lizano-Jubert
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac Campus Norte, Huixquilucan 52786, Mexico
| | - Neil Garg
- Rowan-Virtua School of Osteopathic Medicine, One Medical Center Drive Stratford, Stratford, NJ 08084, USA
| | - Emilio Tejerina-Marion
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac Campus Norte, Huixquilucan 52786, Mexico
| | | | - Ana Luisa Ek
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac Campus Norte, Huixquilucan 52786, Mexico
| | - Andrew Awuah Wireko
- Medical Institute, Sumy State University, 40007 Sumy, Ukraine
- Department of Cardiology, Otto Von Guericke University of Magdeburg, 39120 Magdeburg, Germany
| | - Adriana C Mares
- Division of Cardiovascular Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Vladyslav Sikora
- Medical Institute, Sumy State University, 40007 Sumy, Ukraine
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli, 20, 71122 Foggia, Italy
| | - Rahul Gupta
- Department of Cardiology, Lehigh Valley Health Network, Allentown, PA 18103, USA
| |
Collapse
|
5
|
Elamin ABA, Forsat K, Senok SS, Goswami N. Vagus Nerve Stimulation and Its Cardioprotective Abilities: A Systematic Review. J Clin Med 2023; 12:jcm12051717. [PMID: 36902505 PMCID: PMC10003006 DOI: 10.3390/jcm12051717] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/10/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
Despite the vagus nerve stimulator (VNS) being used in neuroscience, it has recently been highlighted that it has cardioprotective functions. However, many studies related to VNS are not mechanistic in nature. This systematic review aims to focus on the role of VNS in cardioprotective therapy, selective vagus nerve stimulators (sVNS), and their functional capabilities. A systemic review of the current literature was conducted on VNS, sVNS, and their ability to induce positive effects on arrhythmias, cardiac arrest, myocardial ischemia/reperfusion injury, and heart failure. Both experimental and clinical studies were reviewed and assessed separately. Of 522 research articles retrieved from literature archives, 35 met the inclusion criteria and were included in the review. Literature analysis proves that combining fiber-type selectivity with spatially-targeted vagus nerve stimulation is feasible. The role of VNS as a tool for modulating heart dynamics, inflammatory response, and structural cellular components was prominently seen across the literature. The application of transcutaneous VNS, as opposed to implanted electrodes, provides the best clinical outcome with minimal side effects. VNS presents a method for future cardiovascular treatment that can modulate human cardiac physiology. However, continued research is needed for further insight.
Collapse
Affiliation(s)
| | - Kowthar Forsat
- College of Medicine, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Solomon Silas Senok
- College of Medicine, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Nandu Goswami
- Institute of Physiology (Gravitational Physiology and Medicine), Medical University of Graz, 8036 Graz, Austria
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
- Correspondence:
| |
Collapse
|
6
|
Barker-Haliski M, Pitsch J, Galanopoulou AS, Köhling R. A companion to the preclinical common data elements for phenotyping seizures and epilepsy in rodent models. A report of the TASK3-WG1C: Phenotyping working group of the ILAE/AES joint translational task force. Epilepsia Open 2022. [PMID: 36461665 DOI: 10.1002/epi4.12676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/23/2022] [Indexed: 12/04/2022] Open
Abstract
Epilepsy is a heterogeneous disorder characterized by spontaneous seizures and behavioral comorbidities. The underlying mechanisms of seizures and epilepsy across various syndromes lead to diverse clinical presentation and features. Similarly, animal models of epilepsy arise from numerous dissimilar inciting events. Preclinical seizure and epilepsy models can be evoked through many different protocols, leaving the phenotypic reporting subject to diverse interpretations. Serendipity can also play an outsized role in uncovering novel drivers of seizures or epilepsy, with some investigators even stumbling into epilepsy research because of a new genetic cross or unintentional drug effect. The heightened emphasis on rigor and reproducibility in preclinical research, including that which is conducted for epilepsy, underscores the need for standardized phenotyping strategies. To address this goal as part of the TASK3-WG1C Working Group of the International League Against Epilepsy (ILAE)/American Epilepsy Society (AES) Joint Translational Task Force, we developed a case report form (CRF) to describe the common data elements (CDEs) necessary for the phenotyping of seizure-like behaviors in rodents. This companion manuscript describes the use of the proposed CDEs and CRF for the visual, behavioral phenotyping of seizure-like behaviors. These phenotyping CDEs and accompanying CRF can be used in parallel with video-electroencephalography (EEG) studies or as a first visual screen to determine whether a model manifests seizure-like behaviors before utilizing more specialized diagnostic tests, like video-EEG. Systematic logging of seizure-like behaviors may help identify models that could benefit from more specialized diagnostic tests to determine whether these are epileptic seizures, such as video-EEG.
Collapse
Affiliation(s)
- Melissa Barker-Haliski
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Julika Pitsch
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Aristea S Galanopoulou
- Saul R. Korey Department of Neurology, Isabelle Rapin Division of Child Neurology, Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx, New York, USA
- Dominick P Purpura Department of Neuroscience, Isabelle Rapin Division of Child Neurology, Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Rüdiger Köhling
- Oscar-Langendorff-Institut für Physiologie, Universitätsmedizin Rostock, Rostock, Germany
| |
Collapse
|
7
|
Haberbusch M, Kronsteiner B, Kramer AM, Kiss A, Podesser BK, Moscato F. Closed-loop vagus nerve stimulation for heart rate control evaluated in the Langendorff-perfused rabbit heart. Sci Rep 2022; 12:18794. [PMID: 36335207 PMCID: PMC9637096 DOI: 10.1038/s41598-022-23407-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/31/2022] [Indexed: 11/07/2022] Open
Abstract
Persistent sinus tachycardia substantially increases the risk of cardiac death. Vagus nerve stimulation (VNS) is known to reduce the heart rate, and hence may be a non-pharmacological alternative for the management of persistent sinus tachycardia. To precisely regulate the heart rate using VNS, closed-loop control strategies are needed. Therefore, in this work, we developed two closed-loop VNS strategies using an in-silico model of the cardiovascular system. Both strategies employ a proportional-integral controller that operates on the current amplitude. While one control strategy continuously delivers stimulation pulses to the vagus nerve, the other applies bursts of stimuli in synchronization with the cardiac cycle. Both were evaluated in Langendorff-perfused rabbit hearts (n = 6) with intact vagal innervation. The controller performance was quantified by rise time (Tr), steady-state error (SSE), and percentual overshoot amplitude (%OS). In the ex-vivo setting, the cardiac-synchronized variant resulted in Tr = 10.7 ± 4.5 s, SSE = 12.7 ± 9.9 bpm and %OS = 5.1 ± 3.6% while continuous stimulation led to Tr = 10.2 ± 5.6 s, SSE = 10 ± 6.7 bpm and %OS = 3.2 ± 1.9%. Overall, both strategies produced a satisfying and reproducible performance, highlighting their potential use in persistent sinus tachycardia.
Collapse
Affiliation(s)
- Max Haberbusch
- grid.22937.3d0000 0000 9259 8492Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria ,grid.454395.aLudwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Bettina Kronsteiner
- grid.22937.3d0000 0000 9259 8492Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria ,grid.454395.aLudwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria ,grid.22937.3d0000 0000 9259 8492Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Anne-Margarethe Kramer
- grid.22937.3d0000 0000 9259 8492Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Attila Kiss
- grid.454395.aLudwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria ,grid.22937.3d0000 0000 9259 8492Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Bruno K. Podesser
- grid.454395.aLudwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria ,grid.22937.3d0000 0000 9259 8492Center for Biomedical Research, Medical University of Vienna, Vienna, Austria ,Ludwig Boltzmann Cluster for Tissue Regeneration, Vienna, Austria
| | - Francesco Moscato
- grid.22937.3d0000 0000 9259 8492Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria ,grid.454395.aLudwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria ,Ludwig Boltzmann Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
8
|
Ottaviani MM, Vallone F, Micera S, Recchia FA. Closed-Loop Vagus Nerve Stimulation for the Treatment of Cardiovascular Diseases: State of the Art and Future Directions. Front Cardiovasc Med 2022; 9:866957. [PMID: 35463766 PMCID: PMC9021417 DOI: 10.3389/fcvm.2022.866957] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/14/2022] [Indexed: 01/07/2023] Open
Abstract
The autonomic nervous system exerts a fine beat-to-beat regulation of cardiovascular functions and is consequently involved in the onset and progression of many cardiovascular diseases (CVDs). Selective neuromodulation of the brain-heart axis with advanced neurotechnologies is an emerging approach to corroborate CVDs treatment when classical pharmacological agents show limited effectiveness. The vagus nerve is a major component of the cardiac neuroaxis, and vagus nerve stimulation (VNS) is a promising application to restore autonomic function under various pathological conditions. VNS has led to encouraging results in animal models of CVDs, but its translation to clinical practice has not been equally successful, calling for more investigation to optimize this technique. Herein we reviewed the state of the art of VNS for CVDs and discuss avenues for therapeutic optimization. Firstly, we provided a succinct description of cardiac vagal innervation anatomy and physiology and principles of VNS. Then, we examined the main clinical applications of VNS in CVDs and the related open challenges. Finally, we presented preclinical studies that aim at overcoming VNS limitations through optimization of anatomical targets, development of novel neural interface technologies, and design of efficient VNS closed-loop protocols.
Collapse
Affiliation(s)
- Matteo Maria Ottaviani
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
- Department of Excellence in Robotics and Artificial Intelligence, The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Fabio Vallone
- Department of Excellence in Robotics and Artificial Intelligence, The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Silvestro Micera
- Department of Excellence in Robotics and Artificial Intelligence, The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
- Bertarelli Foundation Chair in Translational Neural Engineering, Center for Neuroprosthetics, Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Fabio A. Recchia
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
- Fondazione Toscana Gabriele Monasterio, Pisa, Italy
- Department of Physiology, Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
9
|
Koza Y, Aydın MD, Bayram E, Sipal S, Altaş E, Soyalp C, Koza EA. The Role of Cardiac Ganglia in the Prevention of Coronary Atherosclerosis: An Analytical Examination of Cholesterol-fed Rabbits. Balkan Med J 2020; 37:79-83. [PMID: 31712246 PMCID: PMC7094178 DOI: 10.4274/balkanmedj.galenos.2019.2019.8.97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Background The heart is innervated by the autonomic nervous system, which contributes to the control of the heart’s rhythm and coronary circulation. It has been suggested that the cardiac fibers of the vagus nerve play important roles in controlling circulatory functions and in protecting against atherosclerotic pathologies in coronary arteries. Aims To investigate the presence of atherosclerotic differences in the coronary arteries of cholesterol-fed rabbits by measuring the density of cardiac ganglia neurons. Study Design Animal experiment. Methods This study was conducted using 45 male rabbits. Over a period of 16 weeks, they were kept on an atherogenic diet of water ad libitum and high fat (8.6%) containing saturated fatty acids with 205 mg/kg of cholesterol (1%) per day. Then, their hearts were removed and examined by histopathological methods. Atherosclerotic plaques of the main coronary arteries were examined using the Cavalieri method. Atherosclerosis index values (AIVs) were estimated as the wall surface area/plaque surface area, and the results were analyzed with the Kruskal-Wallis and Mann-Whitney U tests. Results While the average atherosclerosis index value was estimated to be ≤8% in 21 animals, the atherosclerosis index value was 9-20% in animals with minor plaque detection (n=11) and ≥20% in animals with major plaque detection (n=10). Increased atherosclerosis index values were more common in animals with low neuron densities than in animals with high neuron densities (p<0.017). Conclusion The low neuron density of the cardiac ganglia in cholesterol-fed rabbits is associated with an increased atherosclerotic plaque incidence and volume.
Collapse
Affiliation(s)
- Yavuzer Koza
- Department of Cardiology, Atatürk University School of Medicine, Erzurum, Turkey
| | - Mehmet Dumlu Aydın
- Department of Neurosurgery, Atatürk University School of Medicine, Erzurum, Turkey
| | - Ednan Bayram
- Department of Cardiology, Atatürk University School of Medicine, Erzurum, Turkey
| | - Sare Sipal
- Department of Pathology, Atatürk University School of Medicine, Erzurum, Turkey
| | - Ender Altaş
- Clinic of Cardiology, Erzurum Training and Research Hospital, Erzurum, Turkey
| | - Celaleddin Soyalp
- Department of Anesthesiology, 100. Yıl University School of Medicine, Van, Turkey
| | - Enise Armağan Koza
- Clinic of Anesthesiology, Erzurum Training and Research Hospital, Erzurum, Turkey
| |
Collapse
|
10
|
Capilupi MJ, Kerath SM, Becker LB. Vagus Nerve Stimulation and the Cardiovascular System. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a034173. [PMID: 31109966 DOI: 10.1101/cshperspect.a034173] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The vagus nerve plays an important role in maintaining physiological homeostasis, which includes reflex pathways that regulate cardiac function. The link between vagus nerve activity and the high-frequency component of heart rate variability (HRV) has been well established, correlating with vagal tone. Recently, vagus nerve stimulation (VNS) has been investigated as a therapeutic for a multitude of diseases, such as treatment-resistant epilepsy, rheumatoid arthritis, Crohn's disease, and asthma. Because of the vagus nerve's innervation of the heart, VNS has been identified as a potential therapy for cardiovascular disorders, such as cardiac arrest, acute myocardial infarction, and stroke. Here, we review the current state of preclinical and clinical studies, as well as the potential application of VNS in relation to the cardiovascular system.
Collapse
Affiliation(s)
- Michael J Capilupi
- Department of Emergency Medicine, North Shore University Hospital, Northwell Health, Manhasset, New York 11030
| | - Samantha M Kerath
- Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York 11030
| | - Lance B Becker
- Department of Emergency Medicine, North Shore University Hospital, Northwell Health, Manhasset, New York 11030.,Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York 11030.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York 11549
| |
Collapse
|
11
|
Proarrhythmic proclivity of left-stellate ganglion stimulation in a canine model of drug-induced long-QT syndrome type 1. Int J Cardiol 2019; 286:66-72. [PMID: 30777408 DOI: 10.1016/j.ijcard.2019.01.098] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/24/2019] [Accepted: 01/29/2019] [Indexed: 11/23/2022]
Abstract
BACKGROUND Left-stellate ganglion stimulation (LSGS) can modify regional dispersion of ventricular refractoriness, promote triggered activity, and reduce the threshold for ventricular fibrillation (VF). Sympathetic hyperactivity precipitates torsades de pointes (TdP) and VF in susceptible patients with long-QT syndrome type 1 (LQT1). We investigated the electromechanical effects of LSGS in a canine model of drug-induced LQT1, gaining novel arrhythmogenic insights. METHODS In nine mongrel dogs, the left and right stellate ganglia were exposed for electrical stimulation. ECG, left- and right-ventricular endocardial monophasic action potentials (MAPs) and pressures (LVP, RVP) were recorded. The electromechanical window (EMW; Q to LVP at 90% relaxation minus QT interval) was calculated. LQT1 was mimicked by infusion of the KCNQ1/IKs blocker HMR1556. RESULTS At baseline, LSGS and right-stellate ganglion stimulation (RSGS) caused similar heart-rate acceleration and QT shortening. Positive inotropic and lusitropic effects were more pronounced under LSGS than RSGS. IKs blockade prolonged QTc, triggered MAP-early afterdepolarizations (EADs) and rendered the EMW negative, but no ventricular tachyarrhythmias occurred. Superimposed LSGS exaggerated EMW negativity and evoked TdP in 5/9 dogs within 30 s. Preceding extrasystoles originated mostly from the outflow-tracts region. TdP deteriorated into therapy-refractory VF in 4/5 animals. RSGS did not provoke TdP/VF. CONCLUSIONS In this model of drug-induced LQT1, LSGS readily induced TdP and VF during repolarization prolongation and MAP-EAD generation, but only if EMW turned from positive to very negative. We postulate that altered mechano-electric coupling can exaggerate regional dispersion of refractoriness and facilitates ventricular ectopy.
Collapse
|
12
|
Huang WA, Shivkumar K, Vaseghi M. Device-based autonomic modulation in arrhythmia patients: the role of vagal nerve stimulation. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2015; 17:379. [PMID: 25894588 DOI: 10.1007/s11936-015-0379-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OPINION STATEMENT Vagal nerve stimulation (VNS) has shown promise as an adjunctive therapy for management of cardiac arrhythmias by targeting the cardiac parasympathetic nervous system. VNS has been evaluated in the setting of ischemia-driven ventricular arrhythmias and atrial arrhythmias, as well as a treatment option for heart failure. As better understanding of the complexities of the cardiac autonomic nervous system is obtained, vagal nerve stimulation will likely become a powerful tool in the current cardiovascular therapeutic armamentarium.
Collapse
Affiliation(s)
- William A Huang
- UCLA Cardiac Arrhythmia Center, University of California, 100 Medical Plaza, Suite 660, Los Angeles, CA, 90095, USA
| | | | | |
Collapse
|