1
|
Cui Y, Yang B, Lin S, Huang L, Xie F, Feng W, Lin Z. FGF23 alleviates neuronal apoptosis and inflammation, and promotes locomotion recovery via activation of PI3K/AKT signalling in spinal cord injury. Exp Ther Med 2023; 26:340. [PMID: 37383378 PMCID: PMC10294607 DOI: 10.3892/etm.2023.12039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/24/2023] [Indexed: 06/30/2023] Open
Abstract
Fibroblast growth factor 23 (FGF23) regulates neuronal morphology, synaptic growth and inflammation; however, its involvement in spinal cord injury (SCI) remains unclear. Therefore, the present study aimed to investigate the effect of FGF23 on neuronal apoptosis, inflammation and locomotion recovery, as well as its underlying mechanism in experimental SCI models. Primary rat neurons were stimulated with H2O2 to establish an in vitro model of SCI and were then transfected with an FGF23 overexpression (oeFGF23) or short hairpin RNA (shFGF23) adenovirus-associated virus and treated with or without LY294002 (a PI3K/AKT inhibitor). Subsequently, an SCI rat model was constructed, followed by treatment with oeFGF23, LY294002 or a combination of the two. FGF23 overexpression (oeFGF23 vs. oeNC) decreased the cell apoptotic rate and cleaved-caspase3 expression, but increased Bcl-2 expression in H2O2-stimulated neurons, whereas shFGF23 transfection (shFGF23 vs. shNC) exhibited the opposite effect (all P<0.05). Furthermore, FGF23 overexpression (oeFGF23 vs. oeNC) could activate the PI3K/AKT signalling pathway, whereas treatment with the PI3K/AKT inhibitor (LY294002) (oeFGF23 + LY294002 vs. LY294002) attenuated these effects in H2O2-stimulated neurons (all P<0.05). In SCI model rats, FGF23 overexpression (oeFGF23 vs. oeNC) reduced the laceration and inflammatory cell infiltration in injured tissue, decreased TNF-α and IL-1β levels, and improved locomotion recovery (all P<0.05); these effects were attenuated by additional administration of LY294002 (oeFGF23 + LY294002 vs. LY294002) (all P<0.05). In conclusion, FGF23 alleviated neuronal apoptosis and inflammation, and promoted locomotion recovery via activation of the PI3K/AKT signalling pathway in SCI, indicating its potential as a treatment option for SCI; however, further studies are warranted for validation.
Collapse
Affiliation(s)
- Yan Cui
- Department of Orthopaedic Trauma, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Bin Yang
- Department of Orthopaedic Trauma, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Shaoyi Lin
- Department of Orthopaedic Trauma, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Luqiang Huang
- Department of Orthopaedic Trauma, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Feibin Xie
- Department of Orthopaedic Trauma, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Wei Feng
- Department of Neurosurgery, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Zhenzong Lin
- Department of Orthopaedic Trauma, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| |
Collapse
|
2
|
Long-Term Excessive Dietary Phosphate Intake Increases Arterial Blood Pressure, Activates the Renin-Angiotensin-Aldosterone System, and Stimulates Sympathetic Tone in Mice. Biomedicines 2022; 10:biomedicines10102510. [PMID: 36289771 PMCID: PMC9599363 DOI: 10.3390/biomedicines10102510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/27/2022] [Accepted: 10/05/2022] [Indexed: 11/22/2022] Open
Abstract
Increased dietary phosphate intake has been associated with severity of coronary artery disease, increased carotid intima–media thickness, left ventricular hypertrophy (LVH), and increased cardiovascular mortality and morbidity in individuals with normal renal function as well as in patients suffering from chronic kidney disease. However, the underlying mechanisms are still unclear. To further elucidate the cardiovascular sequelae of long-term elevated phosphate intake, we maintained male C57BL/6 mice on a calcium, phosphate, and lactose-enriched diet (CPD, 2% Ca, 1.25% P, 20% lactose) after weaning them for 14 months and compared them with age-matched male mice fed a normal mouse diet (ND, 1.0% Ca, 0.7% P). Notably, the CPD has a balanced calcium/phosphate ratio, allowing the effects of elevated dietary phosphate intake largely independent of changes in parathyroid hormone (PTH) to be investigated. In agreement with the rationale of this experiment, mice maintained on CPD for 14 months were characterized by unchanged serum PTH but showed elevated concentrations of circulating intact fibroblast growth factor-23 (FGF23) compared with mice on ND. Cardiovascular phenotyping did not provide evidence for LVH, as evidenced by unchanged LV chamber size, normal cardiomyocyte area, lack of fibrosis, and unchanged molecular markers of hypertrophy (Bnp) between the two groups. However, intra-arterial catheterization revealed increases in systolic pressure, mean arterial pressure, and pulse pressure in mice fed the CPD. Interestingly, chronically elevated dietary phosphate intake stimulated the renin–angiotensin–aldosterone system (RAAS) as evidenced by increased urinary aldosterone in animals fed the CPD, relative to the ND controls. Furthermore, the catecholamines epinephrine, norepinephrine, and dopamine as well as the catecholamine metabolites metanephrine. normetanephrine and methoxytyramine as measured by mass spectrometry were elevated in the urine of mice on CPD, relative to mice on the ND. These changes were partially reversed by switching 14-month-old mice on CPD back to ND for 2 weeks. In conclusion, our data suggest that excess dietary phosphate induces a rise in blood pressure independent of secondary hyperparathyroidism, and that this effect may be mediated through activation of the RAAS and stimulation of the sympathetic tone.
Collapse
|
3
|
Preclinical Evaluation of Novel Tyrosine-Kinase Inhibitors in Medullary Thyroid Cancer. Cancers (Basel) 2022; 14:cancers14184442. [PMID: 36139603 PMCID: PMC9497079 DOI: 10.3390/cancers14184442] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/04/2022] [Accepted: 09/10/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Medullary thyroid carcinoma (MTC) is a neuroendocrine tumor arising from parafollicular calcitonin-secreting C cells of the thyroid. Most of the patients affected by MTC, especially the familial form, harbor a mutation of the RET proto-oncogene. In patients with advanced disease, medical therapy is represented by two tyrosine-kinase inhibitors: cabozantinib and vandetanib. However, their usage is limited by several adverse events and drug-resistance onset. The aim of this preclinical study was to evaluate the antitumor activity of novel molecules for the therapy of MTC: SU5402, an inhibitor of the fibroblast growth factor receptor type 1 (FGFR-1) and vascular endothelial growth factor receptor (VEGFR)-2; sulfatinib, a multi-target kinase inhibitor selective for FGFR-1 and the VEGFR-1, -2, and -3; SPP86, a RET-specific inhibitor. Our results suggest a potential role in targeting the FGFR and VEGFR signaling pathways as an alternative strategy for resistant tumors and a significative antitumor activity of this new RET-specific inhibitor. Abstract Medullary thyroid carcinoma (MTC) is a neuroendocrine tumor arising from parafollicular C cells of the thyroid gland. In this preclinical study, we tested three tyrosine-kinase inhibitors (TKIs): SU5402, a selective inhibitor of fibroblast growth factor receptor (FGFR)-1 and vascular endothelial growth factor receptor (VEGFR)-2; sulfatinib, an inhibitor of FGFR-1 and VEGFR-1, -2, -3; and SPP86, a RET-specific inhibitor. The effects of these compounds were evaluated in vitro in two human MTC cell lines (TT and MZ-CRC-1), and in vivo using xenografts of MTC cells in zebrafish embryos. SU5402, sulfatinib and SPP86 decreased cell viability. Sulfatinib and SPP86 significantly induced apoptosis in both cell lines. Sulfatinib and SPP86 inhibited the migration of TT and MZCRC-1 cells, while SU5402 was able to inhibit migration only in TT cells. In vivo we observed a significant reduction in TT cell-induced angiogenesis in zebrafish embryos after incubation with sulfatinib and SPP86. In conclusion, sulfatinib and SPP86 displayed a relevant antitumor activity both in vitro and in vivo. Moreover, this work suggests the potential utility of targeting FGFR and VEGFR signaling pathways as an alternative therapy for MTC.
Collapse
|
4
|
Ursem SR, Diepenbroek C, Bacic V, Unmehopa UA, Eggels L, Maya‐Monteiro CM, Heijboer AC, la Fleur SE. Localization of fibroblast growth factor 23 protein in the rat hypothalamus. Eur J Neurosci 2021; 54:5261-5271. [PMID: 34184338 PMCID: PMC8456796 DOI: 10.1111/ejn.15375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 11/29/2022]
Abstract
Fibroblast growth factor 23 (FGF23) is an endocrine growth factor and known to play a pivotal role in phosphate homeostasis. Interestingly, several studies point towards a function of FGF23 in the hypothalamus. FGF23 classically activates the FGF receptor 1 in the presence of the co-receptor αKlotho, of both gene expression in the brain was previously established. However, studies on gene and protein expression of FGF23 in the brain are scarce and have been inconsistent. Therefore, our aim was to localise FGF23 gene and protein expression in the rat brain with focus on the hypothalamus. Also, we investigated the protein expression of αKlotho. Adult rat brains were used to localise and visualise FGF23 and αKlotho protein in the hypothalamus by immunofluorescence labelling. Furthermore, western blots were used for assessing hypothalamic FGF23 protein expression. FGF23 gene expression was investigated by qPCR in punches of the arcuate nucleus, lateral hypothalamus, paraventricular nucleus, choroid plexus, ventrolateral thalamic nucleus and the ventromedial hypothalamus. Immunoreactivity for FGF23 and αKlotho protein was found in the hypothalamus, third ventricle lining and the choroid plexus. Western blot analysis of the hypothalamus confirmed the presence of FGF23. Gene expression of FGF23 was not detected, suggesting that the observed FGF23 protein is not brain-derived. Several FGF receptors are known to be present in the brain. Therefore, we conclude that the machinery for FGF23 signal transduction is present in several brain areas, indeed suggesting a role for FGF23 in the brain.
Collapse
Affiliation(s)
- Stan R. Ursem
- Endocrine Laboratory, Department of Clinical Chemistry, Amsterdam Gastroenterology & MetabolismAmsterdam UMC, Vrije Universiteit Amsterdam and University of AmsterdamAmsterdamThe Netherlands
| | - Charlene Diepenbroek
- Department of Endocrinology and Metabolism and Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam NeuroscienceAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward Group, Netherlands Institute for NeuroscienceAn Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| | - Vesna Bacic
- Department of Endocrinology and Metabolism and Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam NeuroscienceAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward Group, Netherlands Institute for NeuroscienceAn Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| | - Unga A. Unmehopa
- Department of Endocrinology and Metabolism and Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam NeuroscienceAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward Group, Netherlands Institute for NeuroscienceAn Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| | - Leslie Eggels
- Department of Endocrinology and Metabolism and Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam NeuroscienceAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward Group, Netherlands Institute for NeuroscienceAn Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| | - Clarissa M. Maya‐Monteiro
- Department of Endocrinology and Metabolism and Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam NeuroscienceAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward Group, Netherlands Institute for NeuroscienceAn Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC)Oswaldo Cruz Foundation (FIOCRUZ)Rio de JaneiroBrazil
| | - Annemieke C. Heijboer
- Endocrine Laboratory, Department of Clinical Chemistry, Amsterdam Gastroenterology & MetabolismAmsterdam UMC, Vrije Universiteit Amsterdam and University of AmsterdamAmsterdamThe Netherlands
| | - Susanne E. la Fleur
- Department of Endocrinology and Metabolism and Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam NeuroscienceAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward Group, Netherlands Institute for NeuroscienceAn Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| |
Collapse
|
5
|
Su C, Xue J, Ye C, Chen A. Role of the central renin‑angiotensin system in hypertension (Review). Int J Mol Med 2021; 47:95. [PMID: 33846799 PMCID: PMC8041481 DOI: 10.3892/ijmm.2021.4928] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 01/25/2021] [Indexed: 12/16/2022] Open
Abstract
Present in more than one billion adults, hypertension is the most significant modifiable risk factor for mortality resulting from cardiovascular disease. Although its pathogenesis is not yet fully understood, the disruption of the renin-angiotensin system (RAS), consisting of the systemic and brain RAS, has been recognized as one of the primary reasons for several types of hypertension. Therefore, acquiring sound knowledge of the basic science of RAS and the under- lying mechanisms of the signaling pathways associated with RAS may facilitate the discovery of novel therapeutic targets with which to promote the management of patients with cardiovascular and kidney disease. In total, 4 types of angiotensin II receptors have been identified (AT1R-AT4R), of which AT1R plays the most important role in vasoconstriction and has been most extensively studied. It has been found in several regions of the brain, and its distribution is highly associated with that of angiotensin-like immunoreactivity in nerve terminals. The effect of AT1R involves the activation of multiple media and signaling pathways, among which the most important signaling pathways are considered to be AT1R/JAK/STAT and Ras/Raf/MAPK pathways. In addition, the regulation of the nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) and cyclic AMP response element-binding (CREB) pathways is also closely related to the effect of ATR1. Their mechanisms of action are related to pro-inflammatory and sympathetic excitatory effects. Central AT1R is involved in almost all types of hypertension, including spontaneous hypertension, salt-sensitive hypertension, obesity-induced hypertension, renovascular hypertension, diabetic hypertension, L-NAME-induced hypertension, stress-induced hypertension, angiotensin II-induced hyper- tension and aldosterone-induced hypertension. There are 2 types of central AT1R blockade, acute blockade and chronic blockade. The latter can be achieved by chemical blockade or genetic engineering. The present review article aimed to high- light the prevalence, functions, interactions and modulation means of central AT-1R in an effort to assist in the treatment of several pathological conditions. The identification of angiotensin-derived peptides and the development of AT-2R agonists may provide a wider perspective on RAS, as well as novel therapeutic strategies.
Collapse
Affiliation(s)
- Chuanxin Su
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Jinhua Xue
- Research Center for Cardiovascular and Cerebrovascular Diseases, The University of Duisburg‑Essen, Duisburg‑Essen University, D-45122 Essen, Germany
| | - Chao Ye
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Aidong Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| |
Collapse
|