1
|
Allwood JW, Williams A, Uthe H, van Dam NM, Mur LAJ, Grant MR, Pétriacq P. Unravelling Plant Responses to Stress-The Importance of Targeted and Untargeted Metabolomics. Metabolites 2021; 11:558. [PMID: 34436499 PMCID: PMC8398504 DOI: 10.3390/metabo11080558] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/10/2021] [Accepted: 08/16/2021] [Indexed: 12/19/2022] Open
Abstract
Climate change and an increasing population, present a massive global challenge with respect to environmentally sustainable nutritious food production. Crop yield enhancements, through breeding, are decreasing, whilst agricultural intensification is constrained by emerging, re-emerging, and endemic pests and pathogens, accounting for ~30% of global crop losses, as well as mounting abiotic stress pressures, due to climate change. Metabolomics approaches have previously contributed to our knowledge within the fields of molecular plant pathology and plant-insect interactions. However, these remain incredibly challenging targets, due to the vast diversity in metabolite volatility and polarity, heterogeneous mixtures of pathogen and plant cells, as well as rapid rates of metabolite turn-over. Unravelling the systematic biochemical responses of plants to various individual and combined stresses, involves monitoring signaling compounds, secondary messengers, phytohormones, and defensive and protective chemicals. This demands both targeted and untargeted metabolomics approaches, as well as a range of enzymatic assays, protein assays, and proteomic and transcriptomic technologies. In this review, we focus upon the technical and biological challenges of measuring the metabolome associated with plant stress. We illustrate the challenges, with relevant examples from bacterial and fungal molecular pathologies, plant-insect interactions, and abiotic and combined stress in the environment. We also discuss future prospects from both the perspective of key innovative metabolomic technologies and their deployment in breeding for stress resistance.
Collapse
Affiliation(s)
- James William Allwood
- Environmental and Biochemical Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
| | - Alex Williams
- School of Earth and Environmental Sciences, The University of Manchester, Oxford Road, Manchester M13 9PT, UK;
- Department of Animal and Plant Sciences, Biosciences, The University of Sheffield Western Bank, Sheffield S10 2TN, UK
| | - Henriette Uthe
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Molecular Interaction Ecology Group, Friedrich-Schiller University Jena, Puschstr. 4, 04103 Leipzig, Germany; (H.U.); (N.M.v.D.)
| | - Nicole M. van Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Molecular Interaction Ecology Group, Friedrich-Schiller University Jena, Puschstr. 4, 04103 Leipzig, Germany; (H.U.); (N.M.v.D.)
| | - Luis A. J. Mur
- Institute of Biological, Environmental and Rural Sciences (IBERS), Edward Llwyd Building, Aberystwyth University, Aberystwyth SY23 3DA, UK;
| | - Murray R. Grant
- Gibbet Hill Campus, School of Life Sciences, The University of Warwick, Coventry CV4 7AL, UK;
| | - Pierre Pétriacq
- UMR 1332 Fruit Biology and Pathology, Centre INRAE de Nouvelle Aquitaine Bordeaux, University of Bordeaux, 33140 Villenave d’Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle Aquitaine-Bordeaux, 33140 Villenave d’Ornon, France
| |
Collapse
|
2
|
Glucosinolates: Natural Occurrence, Biosynthesis, Accessibility, Isolation, Structures, and Biological Activities. Molecules 2020; 25:molecules25194537. [PMID: 33022970 PMCID: PMC7582585 DOI: 10.3390/molecules25194537] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022] Open
Abstract
Glucosinolates (GSLs) are secondary plant metabolites abundantly found in plant order Brassicales. GSLs are constituted by an S-β-d-glucopyrano unit anomerically connected to O-sulfated (Z)-thiohydroximate moiety. The side-chain of the O-sulfate thiohydroximate moiety, which is derived from a different amino acid, contributes to the diversity of natural GSL, with more than 130 structures identified and validated to this day. Both the structural diversity of GSL and their biological implication in plants have been biochemically studied. Although chemical syntheses of GSL have been devised to give access to these secondary metabolites, direct extraction from biomass remains the conventional method to isolate natural GSL. While intact GSLs are biologically inactive, various products, including isothiocyanates, nitriles, epithionitriles, and cyanides obtained through their hydrolysis of GSLs, exhibit many different biological activities, among which several therapeutic benefits have been suggested. This article reviews natural occurrence, accessibility via chemical, synthetic biochemical pathways of GSL, and the current methodology of extraction, purification, and characterization. Structural information, including the most recent classification of GSL, and their stability and storage conditions will also be discussed. The biological perspective will also be explored to demonstrate the importance of these prominent metabolites.
Collapse
|
3
|
Sontowski R, Gorringe NJ, Pencs S, Schedl A, Touw AJ, van Dam NM. Same Difference? Low and High Glucosinolate Brassica rapa Varieties Show Similar Responses Upon Feeding by Two Specialist Root Herbivores. FRONTIERS IN PLANT SCIENCE 2019; 10:1451. [PMID: 31798608 PMCID: PMC6865846 DOI: 10.3389/fpls.2019.01451] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
Glucosinolates (GSLs) evolved in Brassicaceae as chemical defenses against herbivores. The GSL content in plants is affected by both abiotic and biotic factors, but also depends on the genetic background of the plant. Since the bitter taste of GSLs can be unfavorable for both livestock and human consumption, several plant varieties with low GSL seed or leaf content have been bred. Due to their lower GSL levels, such varieties can be more susceptible to herbivore pests. However, low GSL varieties may quickly increase GSL levels upon herbivore feeding by activating GSL biosynthesis, hydrolysis, or transporter genes. To analyze differences in herbivore-induced GSL responses in relation to constitutive GSL levels, we selected four Brassica rapa varieties, containing either low or high root GSL levels. Plants were infested either with Delia radicum or Delia floralis larvae. The larvae of both root flies are specialists on Brassica plants. Root samples were collected after 3, 5, and 7 days. We compared the effect of root herbivore damage on the expression of GSL biosynthesis (CYP79A1, CYP83B2), transporter (GTR1A2, GTR2A2), and GSL hydrolysis genes (PEN2, TGG2) in roots of low and high GSL varieties in conjugation with their GSL levels. We found that roots of high GSL varieties contained higher levels of aliphatic, indole, and benzyl GSLs than low GSL varieties. Infestation with D. radicum larvae led to upregulation of indole GSL synthesis genes in low and high GSL varieties. High GSL varieties showed no or later responses than low varieties to D. floralis herbivory. Low GSL varieties additionally upregulated the GSL transporter gene expression. Low GSL varieties did not show a stronger herbivore-induced response than high GSL varieties, which indicates that there is no trade-off between constitutive and induced GSLs.
Collapse
Affiliation(s)
- Rebekka Sontowski
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig, Leipzig, Germany
- Institute for Biodiversity, Friedrich Schiller University, Jena, Germany
| | - Nicola J. Gorringe
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig, Leipzig, Germany
- School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Stefanie Pencs
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig, Leipzig, Germany
- Institute for Biodiversity, Friedrich Schiller University, Jena, Germany
| | - Andreas Schedl
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig, Leipzig, Germany
- Institute for Biodiversity, Friedrich Schiller University, Jena, Germany
| | - Axel J. Touw
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig, Leipzig, Germany
- Institute for Biodiversity, Friedrich Schiller University, Jena, Germany
| | - Nicole M. van Dam
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig, Leipzig, Germany
- Institute for Biodiversity, Friedrich Schiller University, Jena, Germany
| |
Collapse
|