1
|
Van Criekinge T, Sahu U, Bhatt T. Effect of Explicit Prioritization on Dual Tasks During Standing and Walking in People With Neurologic and Neurocognitive Disorders: A Systematic Review and Meta-analysis. Arch Phys Med Rehabil 2024; 105:2166-2183. [PMID: 38401769 DOI: 10.1016/j.apmr.2024.02.714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/05/2024] [Accepted: 02/10/2024] [Indexed: 02/26/2024]
Abstract
OBJECTIVES To examine the effectiveness of explicit task (ie, equal, motor or cognitive) prioritization during dual tasking (DT) in adults with neurologic and neurocognitive disorders (stroke, Parkinson disease [PD], multiple sclerosis, dementia, Alzheimer disease, and mild cognitive impairment). DATA SOURCE A systematic search in 4 databases (PubMed, Web of Science, Embase, and Cochrane Central) yielded 1138 unique studies published up to 2023. STUDY SELECTION Forty-one experimental studies were selected that assessed the effect of explicit prioritization instructions on both motor and cognitive performance during dual-tasks related to standing and walking in selected populations. Primary outcome measures were walking speed and response accuracy. Availability of data allowed us to perform a meta-analysis on 27 of the 41 articles by using inverse variance with a random effects model. DATA EXTRACTION The data including design, subject characteristics, motor and cognitive tasks, prioritization, motor and cognitive outcomes, instructions, and key findings were extracted. Two assessors rated the selected studies for risk of bias and quality using the Quality Assessment Tools of the National Institutes of Health. DATA SYNTHESIS This study examined 1535 adults who were asked to perform motor-cognitive DT in standing or walking, including 381 adults with stroke, 526 with PD, 617 with multiple sclerosis, 10 with dementia, 9 with Alzheimer disease, and 8 with mild cognitive impairment. During all prioritization instructions, participants slowed down during DT (standardized mean difference (SMD)equal=0.43; SMDmotor=0.78; SMDcognitive=0.69, P<.03) while maintaining similar response accuracy (SMDequal=0.12; SMDmotor=0.23; SMDcognitive=-.01, P>.05). However, considerable between-group heterogeneity was observed resulting in different motor and cognitive responses between pathologies. CONCLUSION Motor prioritization was achieved in adults with PD and stroke, unlike adults with neurocognitive disorders who were negatively affected by any type DT prioritizing. The reported within-group heterogeneity revealed that effects of explicit task prioritization are dependent on motor and cognitive task complexity, and the type of instructions. Recommendations are provided to ensure accurate use of instructions during DT paradigms.
Collapse
Affiliation(s)
| | - Upasana Sahu
- Department of Physical Therapy, College of Applied Health and Sciences, University of Illinois at Chicago, Chicago, IL
| | - Tanvi Bhatt
- Department of Physical Therapy, College of Applied Health and Sciences, University of Illinois at Chicago, Chicago, IL.
| |
Collapse
|
2
|
Idowu MI, Szameitat AJ, Parton A. The assessment of executive function abilities in healthy and neurodegenerative aging-A selective literature review. Front Aging Neurosci 2024; 16:1334309. [PMID: 38596597 PMCID: PMC11002121 DOI: 10.3389/fnagi.2024.1334309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/26/2024] [Indexed: 04/11/2024] Open
Abstract
Numerous studies have examined executive function (EF) abilities in cognitively healthy older adults and those living with mild cognitive impairment (MCI) and Alzheimer's disease (AD). Currently, there are no standard accepted protocols for testing specific EFs; thus, researchers have used their preferred tool, which leads to variability in assessments of decline in a particular ability across studies. Therefore, there is a need for guidance as to the most sensitive tests for assessing EF decline. A search of the most current literature published between 2000 and 2022 on EF studies assessing cognitively healthy older adults and individuals living with MCI and AD was conducted using PubMed/Medline, PsycINFO, Embase, Web of Science, and Google Scholar. Emphasis was placed on the EF's dual-tasking, inhibition, shifting or switching, and working memory updating. Many tasks and their outcomes were reviewed. Of particular importance was the difference in outcomes for tasks applied to the same group of participants. These various EF assessment tools demonstrate differences in effectively identifying decline in EF ability due to the aging process and neurodegenerative conditions, such as MCI and AD. This review identifies various factors to consider in using particular EF tasks in particular populations, including task demand and stimuli factors, and also when comparing differing results across studies.
Collapse
Affiliation(s)
- Mojitola I. Idowu
- Centre for Cognitive and Clinical Neuroscience (CCN), College of Health, Medicine and Life Sciences, Division of Psychology, Department of Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | | | - Andrew Parton
- Centre for Cognitive and Clinical Neuroscience (CCN), College of Health, Medicine and Life Sciences, Division of Psychology, Department of Life Sciences, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
3
|
Liu S, Rosso AL, Baillargeon EM, Weinstein AM, Rosano C, Torres-Oviedo G. Novel attentional gait index reveals a cognitive ability-related decline in gait automaticity during dual-task walking. Front Aging Neurosci 2024; 15:1283376. [PMID: 38274986 PMCID: PMC10808635 DOI: 10.3389/fnagi.2023.1283376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction Gait automaticity refers to the ability to walk with minimal recruitment of attentional networks typically mediated through the prefrontal cortex (PFC). Reduced gait automaticity (i.e., greater use of attentional resources during walking) is common with aging, contributing to an increased risk of falls and reduced quality of life. A common assessment of gait automaticity involves examining PFC activation using near-infrared spectroscopy (fNIRS) during dual-task (DT) paradigms, such as walking while performing a cognitive task. However, neither PFC activity nor task performance in isolation measures automaticity accurately. For example, greater PFC activation could be interpreted as worse gait automaticity when accompanied by poorer DT performance, but when accompanied by better DT performance, it could be seen as successful compensation. Thus, there is a need to incorporate behavioral performance and PFC measurements for a more comprehensive evaluation of gait automaticity. To address this need, we propose a novel attentional gait index as an analytical approach that combines changes in PFC activity with changes in DT performance to quantify automaticity, where a reduction in automaticity will be reflected as an increased need for attentional gait control (i.e., larger index). Methods The index was validated in 173 participants (≥65 y/o) who completed DTs with two levels of difficulty while PFC activation was recorded with fNIRS. The two DTs consisted of reciting every other letter of the alphabet while walking over either an even or uneven surface. Results As DT difficulty increases, more participants showed the anticipated increase in the attentional control of gait (i.e., less automaticity) as measured by the novel index compared to PFC activation. Furthermore, when comparing across individuals, lower cognitive function was related to higher attentional gait index, but not PFC activation or DT performance. Conclusion The proposed index better quantified the differences in attentional control of gait between tasks and individuals by providing a unified measure that includes both brain activation and performance. This new approach opens exciting possibilities to assess participant-specific deficits and compare rehabilitation outcomes from gait automaticity interventions.
Collapse
Affiliation(s)
- Shuqi Liu
- Sensorimotor Learning Laboratory, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
- Center for the Neural Basis of Cognition, Pittsburgh, PA, United States
| | - Andrea L. Rosso
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Emma M. Baillargeon
- Department of Medicine, Division of Geriatric Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Andrea M. Weinstein
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Caterina Rosano
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Gelsy Torres-Oviedo
- Sensorimotor Learning Laboratory, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
- Center for the Neural Basis of Cognition, Pittsburgh, PA, United States
| |
Collapse
|
4
|
Reinert R, Brüning J. Individual Strategies of Response Organization in Multitasking Are Stable Even at Risk of High Between-Task Interference. Front Psychol 2022; 13:860219. [PMID: 35465496 PMCID: PMC9019473 DOI: 10.3389/fpsyg.2022.860219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Recently, reliable interindividual differences were found for the way how individuals process multiple tasks (at a cognitive level) and how they organize their responses (at a response level). Previous studies have shown mixed results with respect to the flexibility of these preferences. On the one hand, individuals tend to adjust their preferred task processing mode to varying degrees of risk of crosstalk between tasks. On the other, response strategies were observed to be highly stable under varying between-resource competition. In the present study, we investigated whether the stability of response strategies also persists with increased risk of crosstalk or whether individuals adjust their choice of response strategy, similar to what has been found at the level of task processing modes. Besides, related differences in multitasking efficiency were assessed. For this purpose, 53 participants performed the Free Concurrent Dual-Tasking (FCDT) paradigm, which allows them to control their task scheduling and response organization. The participants completed the FCDT paradigm under two conditions including task pairs characterized by either low or high levels of risk of crosstalk. The free choice of task scheduling resulted in the previously found distinct response patterns, best described as blocking, switching or response grouping. Remarkably, we did not find any notable adjustments of strategies of response organization to the extent of crosstalk. However, we observed suspected performance decrements of a switching strategy in the condition of high risk of crosstalk. The results suggest that individual strategies of response organization are stable habits. Further, they illustrate disadvantages of switching vs. blocking strategies of response organization in case of high task similarity.
Collapse
Affiliation(s)
- Roman Reinert
- Department of Psychology and Ergonomics, Technische Universität Berlin, Berlin, Germany
| | - Jovita Brüning
- Department of Psychology and Ergonomics, Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
5
|
Gaujoux V, Osiurak F, Reynaud E. Spontaneous organization in task-switching reflects self-reported polychronicity and media multitasking tendency. CURRENT RESEARCH IN BEHAVIORAL SCIENCES 2022. [DOI: 10.1016/j.crbeha.2022.100085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
6
|
Rahman TT, Polskaia N, St-Amant G, Salzman T, Vallejo DT, Lajoie Y, Fraser SA. An fNIRS Investigation of Discrete and Continuous Cognitive Demands During Dual-Task Walking in Young Adults. Front Hum Neurosci 2021; 15:711054. [PMID: 34867235 PMCID: PMC8637836 DOI: 10.3389/fnhum.2021.711054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/18/2021] [Indexed: 11/24/2022] Open
Abstract
Introduction: Dual-task studies have demonstrated that walking is attention-demanding for younger adults. However, numerous studies have attributed this to task type rather than the amount of required to accomplish the task. This study examined four tasks: two discrete (i.e., short intervals of attention) and two continuous (i.e., sustained attention) to determine whether greater attentional demands result in greater dual-task costs due to an overloaded processing capacity. Methods: Nineteen young adults (21.5 ± 3.6 years, 13 females) completed simple reaction time (SRT) and go/no-go (GNG) discrete cognitive tasks and n-back (NBK) and double number sequence (DNS) continuous cognitive tasks with or without self-paced walking. Prefrontal cerebral hemodynamics were measured using functional near-infrared spectroscopy (fNIRS) and performance was measured using response time, accuracy, and gait speed. Results: Repeated measures ANOVAs revealed decreased accuracy with increasing cognitive demands (p = 0.001) and increased dual-task accuracy costs (p < 0.001). Response times were faster during the single compared to dual-tasks during the SRT (p = 0.005) and NBK (p = 0.004). DNS gait speed was also slower in the dual compared to single task (p < 0.001). Neural findings revealed marginally significant interactions between dual-task walking and walking alone in the DNS (p = 0.06) and dual -task walking compared to the NBK cognitive task alone (p = 0.05). Conclusion: Neural findings suggest a trend towards increased PFC activation during continuous tasks. Cognitive and motor measures revealed worse performance during the discrete compared to continuous tasks. Future studies should consider examining different attentional demands of motor tasks.
Collapse
Affiliation(s)
- Tabassum Tahmina Rahman
- Interdisciplinary School of Health Sciences, Faculty of Health Science, University of Ottawa, Ottawa, ON, Canada
| | - Nadia Polskaia
- School of Human Kinetics, Faculty of Health Science, University of Ottawa, Ottawa, ON, Canada
| | - Gabrielle St-Amant
- School of Human Kinetics, Faculty of Health Science, University of Ottawa, Ottawa, ON, Canada
| | - Talia Salzman
- School of Human Kinetics, Faculty of Health Science, University of Ottawa, Ottawa, ON, Canada
| | - Diana Tobón Vallejo
- Electronics and Telecommunications Engineering Department, Universidad de Medellín, Medellín, Colombia
| | - Yves Lajoie
- School of Human Kinetics, Faculty of Health Science, University of Ottawa, Ottawa, ON, Canada
| | - Sarah Anne Fraser
- Interdisciplinary School of Health Sciences, Faculty of Health Science, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
7
|
Urban K, Schudlo L, Keightley M, Alain S, Reed N, Chau T. Altered Brain Activation in Youth following Concussion: Using a Dual-task Paradigm. Dev Neurorehabil 2021; 24:187-198. [PMID: 33012188 DOI: 10.1080/17518423.2020.1825539] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A concussion is known as a functional injury affecting brain communication, integration, and processing. There is a need to objectively measure how concussions disrupt brain activation while completing ecologically relevant tasks.The objective of this study was to compare brain activation patterns between concussion and comparison groups (non-concussed youth) during a cognitive-motor single and dual-task paradigm utilizing functional near-infrared spectroscopy (fNIRS) in regions of the frontal-parietal attention network and compared to task performance.Youth with concussion generally exhibited hyperactivation and recruitment of additional brain regions in the dorsal lateral prefrontal (DLPFC), superior (SPC) and inferior parietal cortices (IPC), which are associated with processing, information integration, and response selection. Additionally, hyper- or hypo-activation patterns were associated with slower processing speed on the cognitive task. Our findings corroborate the growing literature suggesting that neural recovery may be delayed compared to the restoration of behavioral performance post-concussion.Concussion, near-infrared spectroscopy, dual-task paradigm, cognitive, motor, brain activation.
Collapse
Affiliation(s)
- Karolina Urban
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada.,Rehabilitation Science Institute, University of Toronto, Toronto, Canada
| | - Larissa Schudlo
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada.,Electrical, Computer and Biomedical Engineering Department, Ryerson University, Toronto, Canada
| | | | - Sam Alain
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
| | - Nick Reed
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada.,Rehabilitation Science Institute, University of Toronto, Toronto, Canada.,Department of Occupational Science and Occupational Therapy, University of Toronto, Toronto, Canada
| | - Tom Chau
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| |
Collapse
|
8
|
Lussier M, Saillant K, Vrinceanu T, Hudon C, Bherer L. Normative Data for a Tablet-Based Dual-Task Assessment in Healthy Older Adults. Arch Clin Neuropsychol 2020; 36:1316-1325. [PMID: 33372951 DOI: 10.1093/arclin/acaa121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 10/15/2020] [Accepted: 11/13/2020] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE The objective of this study is to provide normative data for a tablet-based dual-task assessment in older adults without cognitive deficits. METHOD In total, 264 participants aged between 60 and 90 years, French and English-speaking, were asked to perform two discrimination tasks, alone and concurrently. The participants had to answer as fast as possible to one or two images appearing in the center of the tablet by pressing to the corresponding buttons. Normative data are provided for reaction time (RT), coefficient of variation, and accuracy. Analyses of variance were performed by trial types (single-pure, single-mixed, dual-mixed), and linear regressions assessed the relationship between performance and sociodemographic characteristics. RESULTS The participants were highly educated and a large proportion of them were women (73.9%). The accuracy on the task was very high across all blocks. RT data revealed both a task-set cost and a dual-task cost between the blocks. Age was associated with slower RT and with higher coefficient of variability. Men were significantly slower on dual-mixed trials, but their coefficient of variability was lower on single-pure trials. Education was not associated with performance. CONCLUSIONS This study provides normative data for a tablet-based dual-task assessment in older adults without cognitive impairment, which was lacking. All participants completed the task with good accuracy in less than 15 minutes and thus, the task is transferable to clinical and research settings.
Collapse
Affiliation(s)
- Maxime Lussier
- Department of Medicine, Université de Montréal, Montréal H3C 3J7, Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal H3W 1W5, Canada
| | - Kathia Saillant
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal H3W 1W5, Canada.,Department of Psychologie, Université du Québec à Montréal, Montréal H3C 3P8, Canada.,EPIC Center, Montreal Heart Institute, Montreal H1T 1N6, Canada
| | - Tudor Vrinceanu
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal H3W 1W5, Canada.,Department of Psychologie, Université du Québec à Montréal, Montréal H3C 3P8, Canada.,EPIC Center, Montreal Heart Institute, Montreal H1T 1N6, Canada
| | - Carol Hudon
- School of Psychology, Université Laval, Québec G1V 0A6, Canada.,CERVO Brain Research Centre, Québec G1J 2G3, Canada
| | - Louis Bherer
- Department of Medicine, Université de Montréal, Montréal H3C 3J7, Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal H3W 1W5, Canada.,EPIC Center, Montreal Heart Institute, Montreal H1T 1N6, Canada
| |
Collapse
|
9
|
Yeung MK, Chan AS. A Systematic Review of the Application of Functional Near-Infrared Spectroscopy to the Study of Cerebral Hemodynamics in Healthy Aging. Neuropsychol Rev 2020; 31:139-166. [PMID: 32959167 DOI: 10.1007/s11065-020-09455-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 08/28/2020] [Indexed: 12/21/2022]
Abstract
Positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) studies have shown that healthy aging is associated with functional brain deterioration that preferentially affects the prefrontal cortex. This article reviews the application of an alternative method, functional near-infrared spectroscopy (fNIRS), to the study of age-related changes in cerebral hemodynamics and factors that influence cerebral hemodynamics in the elderly population. We conducted literature searches in PudMed and PsycINFO, and selected only English original research articles that used fNIRS to study healthy individuals with a mean age of ≥ 55 years. All articles were published in peer-reviewed journals between 1977 and May 2019. We synthesized 114 fNIRS studies examining hemodynamic changes that occurred in the resting state and during the tasks of sensation and perception, motor control, semantic processing, word retrieval, attentional shifting, inhibitory control, memory, and emotion and motivation in healthy older adults. This review, which was not registered in a registry, reveals an age-related reduction in resting-state cerebral oxygenation and connectivity in the prefrontal cortex. It also shows that aging is associated with a reduction in functional hemispheric asymmetry and increased compensatory activity in the frontal lobe across multiple task domains. In addition, this article describes the beneficial effects of healthy lifestyles and the detrimental effects of cardiovascular disease risk factors on brain functioning among nondemented older adults. Limitations of this review include exclusion of gray and non-English literature and lack of meta-analysis. Altogether, the fNIRS literature provides some support for various neurocognitive aging theories derived from task-based PET and fMRI studies. Because fNIRS is relatively motion-tolerant and environmentally unconstrained, it is a promising tool for fostering the development of aging biomarkers and antiaging interventions.
Collapse
Affiliation(s)
- Michael K Yeung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, SAR, China.
| | - Agnes S Chan
- Neuropsychology Laboratory, Department of Psychology, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, SAR, China. .,Chanwuyi Research Center for Neuropsychological Well-being, The Chinese University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
10
|
Bizzego A, Balagtas JPM, Esposito G. Commentary: Current Status and Issues Regarding Pre-processing of fNIRS Neuroimaging Data: An Investigation of Diverse Signal Filtering Methods Within a General Linear Model Framework. Front Hum Neurosci 2020; 14:247. [PMID: 32760261 PMCID: PMC7373176 DOI: 10.3389/fnhum.2020.00247] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/03/2020] [Indexed: 01/28/2023] Open
Affiliation(s)
- Andrea Bizzego
- Department of Psychology and Cognitive Science, University of Trento, Trento, Italy
| | - Jan Paolo M Balagtas
- Psychology Program, School of Social Sciences, Nanyang Technological University, Singapore, Singapore
| | - Gianluca Esposito
- Department of Psychology and Cognitive Science, University of Trento, Trento, Italy.,Psychology Program, School of Social Sciences, Nanyang Technological University, Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
11
|
Udina C, Avtzi S, Durduran T, Holtzer R, Rosso AL, Castellano-Tejedor C, Perez LM, Soto-Bagaria L, Inzitari M. Functional Near-Infrared Spectroscopy to Study Cerebral Hemodynamics in Older Adults During Cognitive and Motor Tasks: A Review. Front Aging Neurosci 2020; 11:367. [PMID: 32038224 PMCID: PMC6985209 DOI: 10.3389/fnagi.2019.00367] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
The integrity of the frontal areas of the brain, specifically the prefrontal cortex, are critical to preserve cognition and mobility in late life. Prefrontal cortex regions are involved in executive functions and gait control and have been related to the performance of dual-tasks. Dual-task performance assessment may help identify older adults at risk of negative health outcomes. As an alternative to neuroimaging techniques that do not allow assessment during actual motion, functional Near-Infrared Spectroscopy (fNIRS) is a non-invasive technique that can assess neural activation through the measurement of cortical oxygenated and deoxygenated hemoglobin levels, while the person is performing a motor task in a natural environment as well as during cognitive tasks. The aim of this review was to describe the use of fNIRS to study frontal lobe hemodynamics during cognitive, motor and dual-tasks in older adults. From the 46 included publications, 20 studies used only cognitive tasks, three studies used motor tasks and 23 used dual-tasks. Our findings suggest that fNIRS detects changes in frontal activation in older adults (cognitively healthy and mild cognitive impairment), especially while performing cognitive and dual-tasks. In both the comparison between older and younger adults, and in people with different neurological conditions, compared to healthier controls, the prefrontal cortex seems to experience a higher activation, which could be interpreted in the context of proposed neural inefficiency and limited capacity models. Further research is needed to establish standardized fNIRS protocols, study the cerebral hemodynamic in different neurological and systemic conditions that might influence cortical activation and explore its role in predicting incident health outcomes such as dementia.
Collapse
Affiliation(s)
- Cristina Udina
- Parc Sanitari Pere Virgili, Barcelona, Spain.,RE-FiT Barcelona Research Group, Vall d'Hebrón Institute of Research, Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Stella Avtzi
- Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Turgut Durduran
- Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Roee Holtzer
- Ferkauf Graduate School of Psychology, Yeshiva University, New York, NY, United States.,Department of Neurology, Albert Einstein College of Medicine, New York, NY, United States
| | - Andrea L Rosso
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Carmina Castellano-Tejedor
- Parc Sanitari Pere Virgili, Barcelona, Spain.,RE-FiT Barcelona Research Group, Vall d'Hebrón Institute of Research, Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura-Monica Perez
- Parc Sanitari Pere Virgili, Barcelona, Spain.,RE-FiT Barcelona Research Group, Vall d'Hebrón Institute of Research, Barcelona, Spain
| | - Luis Soto-Bagaria
- Parc Sanitari Pere Virgili, Barcelona, Spain.,RE-FiT Barcelona Research Group, Vall d'Hebrón Institute of Research, Barcelona, Spain
| | - Marco Inzitari
- Parc Sanitari Pere Virgili, Barcelona, Spain.,RE-FiT Barcelona Research Group, Vall d'Hebrón Institute of Research, Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
12
|
Stuart S, Alcock L, Rochester L, Vitorio R, Pantall A. Monitoring multiple cortical regions during walking in young and older adults: Dual-task response and comparison challenges. Int J Psychophysiol 2019; 135:63-72. [DOI: 10.1016/j.ijpsycho.2018.11.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 11/17/2018] [Accepted: 11/19/2018] [Indexed: 12/20/2022]
|
13
|
Herold F, Hamacher D, Schega L, Müller NG. Thinking While Moving or Moving While Thinking - Concepts of Motor-Cognitive Training for Cognitive Performance Enhancement. Front Aging Neurosci 2018; 10:228. [PMID: 30127732 PMCID: PMC6089337 DOI: 10.3389/fnagi.2018.00228] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 07/09/2018] [Indexed: 12/17/2022] Open
Abstract
The demographic change in industrial countries, with increasingly sedentary lifestyles, has a negative impact on mental health. Normal and pathological aging leads to cognitive deficits. This development poses major challenges on national health systems. Therefore, it is necessary to develop efficient cognitive enhancement strategies. The combination of regular physical exercise with cognitive stimulation seems especially suited to increase an individual's cognitive reserve, i.e., his/her resistance to degenerative processes of the brain. Here, we outline insufficiently explored fields in exercise-cognition research and provide a classification approach for different motor-cognitive training regimens. We suggest to classify motor-cognitive training in two categories, (I) sequential motor-cognitive training (the motor and cognitive training are conducted time separated) and (II) simultaneous motor-cognitive training (motor and cognitive training are conducted sequentially). In addition, simultaneous motor-cognitive training may be distinguished based on the specific characteristics of the cognitive task. If successfully solving the cognitive task is not a relevant prerequisite to complete the motor-cognitive task, we would consider this type of training as (IIa) motor-cognitive training with additional cognitive task. In contrast, in ecologically more valid (IIb) motor cognitive training with incorporated cognitive task, the cognitive tasks are a relevant prerequisite to solve the motor-cognitive task. We speculate that incorporating cognitive tasks into motor tasks, rather than separate training of mental and physical functions, is the most promising approach to efficiently enhance cognitive reserve. Further research investigating the influence of motor(-cognitive) exercises with different quantitative and qualitative characteristics on cognitive performance is urgently needed.
Collapse
Affiliation(s)
- Fabian Herold
- Research Group Neuroprotection, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Dennis Hamacher
- Department of Sport Science, Institute III, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Lutz Schega
- Department of Sport Science, Institute III, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Notger G. Müller
- Research Group Neuroprotection, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- Department of Neurology, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
14
|
|
15
|
Broeker L, Liepelt R, Poljac E, Künzell S, Ewolds H, de Oliveira RF, Raab M. Multitasking as a choice: a perspective. PSYCHOLOGICAL RESEARCH 2017; 82:12-23. [PMID: 29086021 DOI: 10.1007/s00426-017-0938-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 10/24/2017] [Indexed: 10/18/2022]
Abstract
Performance decrements in multitasking have been explained by limitations in cognitive capacity, either modelled as static structural bottlenecks or as the scarcity of overall cognitive resources that prevent humans, or at least restrict them, from processing two tasks at the same time. However, recent research has shown that individual differences, flexible resource allocation, and prioritization of tasks cannot be fully explained by these accounts. We argue that understanding human multitasking as a choice and examining multitasking performance from the perspective of judgment and decision-making (JDM), may complement current dual-task theories. We outline two prominent theories from the area of JDM, namely Simple Heuristics and the Decision Field Theory, and adapt these theories to multitasking research. Here, we explain how computational modelling techniques and decision-making parameters used in JDM may provide a benefit to understanding multitasking costs and argue that these techniques and parameters have the potential to predict multitasking behavior in general, and also individual differences in behavior. Finally, we present the one-reason choice metaphor to explain a flexible use of limited capacity as well as changes in serial and parallel task processing. Based on this newly combined approach, we outline a concrete interdisciplinary future research program that we think will help to further develop multitasking research.
Collapse
Affiliation(s)
- Laura Broeker
- German Sport University, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany.
| | - Roman Liepelt
- German Sport University, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Edita Poljac
- University of Freiburg, Engelbergerstr. 41, 79085, Freiburg, Germany
| | - Stefan Künzell
- University of Augsburg, Universitätsstraße 2, 86159, Augsburg, Germany
| | - Harald Ewolds
- University of Augsburg, Universitätsstraße 2, 86159, Augsburg, Germany
| | | | - Markus Raab
- German Sport University, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany.,London South Bank University, 103 Borough Road, London, SE1 0AA, UK
| |
Collapse
|
16
|
Agbangla NF, Audiffren M, Albinet CT. Use of near-infrared spectroscopy in the investigation of brain activation during cognitive aging: A systematic review of an emerging area of research. Ageing Res Rev 2017; 38:52-66. [PMID: 28755870 DOI: 10.1016/j.arr.2017.07.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 01/24/2023]
Abstract
The cognitive neuroscience of aging is a growing and stimulating research area. The development of neuroimaging techniques in the past two decades has considerably increased our understanding of the brain mechanisms that might underlie cognitive performance and resulting changes due to normal aging. Beside traditional metabolic neuroimaging techniques, such as Positron Emission Tomography and functional Magnetic Resonance Imaging, near infrared spectroscopy (NIRS), an optical imaging technique allowing to monitor real-time cerebral blood oxygenation, has gained recent interest in this field. The aim of the present review paper, after briefly presenting the NIRS technique, is to review and to summarize the recent results of neuroimaging studies using this technique in the field of cognitive aging. The reviewed literature shows that, despite low spatial resolution and cerebral depth penetration, this technique provides consistent findings on the reduced hemodynamic activity as a function of chronological age, mainly in the prefrontal cortex. Important moderators of brain hemodynamics, such as cognitive load, subjects' characteristics and experimental conditions, for which the NIRS technique is sensitive, are discussed. Strengths and weaknesses of functional NIRS in the field of cognitive aging are presented and finally, novel perspectives of research are proposed.
Collapse
|
17
|
Verghese J, Wang C, Ayers E, Izzetoglu M, Holtzer R. Brain activation in high-functioning older adults and falls: Prospective cohort study. Neurology 2016; 88:191-197. [PMID: 27927937 DOI: 10.1212/wnl.0000000000003421] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 09/29/2016] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To determine whether brain activity over the prefrontal cortex measured in real time during walking predicts falls in high-functioning older adults. METHOD We examined166 older persons (mean age 75 years, 51% women) enrolled in a prospective aging study. High-functioning status defined as the absence of dementia or disability with normal gait diagnosed by study clinicians. The magnitude of task-related changes in oxygenated hemoglobin levels over the prefrontal cortex was measured with functional near-infrared spectroscopy during motor (walking at normal pace) and cognitive (reciting alternate letters of the alphabet) single tasks and a dual-task condition (walking while reciting alternate letters of the alphabet). Incident falls were prospectively assessed over a 50-month study period. RESULTS Over a mean follow-up of 33.9 ± 11.9 months, 116 falls occurred. Higher levels of prefrontal cortical activation during the dual-task walking condition predicted falls (hazard ratio adjusted for age, sex, education, medical illnesses and general mental status 1.32, 95% confidence interval 1.03-1.70). Neither behavioral outcomes (velocity or letter rate) on the dual task nor brain activation patterns on the single tasks (normal walk or talk alone) predicted falls in this high-functioning sample. The results remained robust after accounting for multiple confounders and for cognitive status, slow gait, previous falls, and frailty. CONCLUSIONS Prefrontal brain activity levels while performing a cognitively demanding walking condition predicted falls in high-functioning seniors. These findings implicate neurobiological processes early in the pathogenesis of falls.
Collapse
Affiliation(s)
- Joe Verghese
- From the Departments of Neurology (J.V., E.A., R.H.), Medicine (J.V.), and Epidemiology (C.W.), Albert Einstein College of Medicine; Ferkauf Graduate School of Psychology (R.H.), Yeshiva University, Bronx, NY; and Drexel University School of Biomedical Engineering (M.I.), Philadelphia, PA.
| | - Cuiling Wang
- From the Departments of Neurology (J.V., E.A., R.H.), Medicine (J.V.), and Epidemiology (C.W.), Albert Einstein College of Medicine; Ferkauf Graduate School of Psychology (R.H.), Yeshiva University, Bronx, NY; and Drexel University School of Biomedical Engineering (M.I.), Philadelphia, PA
| | - Emmeline Ayers
- From the Departments of Neurology (J.V., E.A., R.H.), Medicine (J.V.), and Epidemiology (C.W.), Albert Einstein College of Medicine; Ferkauf Graduate School of Psychology (R.H.), Yeshiva University, Bronx, NY; and Drexel University School of Biomedical Engineering (M.I.), Philadelphia, PA
| | - Meltem Izzetoglu
- From the Departments of Neurology (J.V., E.A., R.H.), Medicine (J.V.), and Epidemiology (C.W.), Albert Einstein College of Medicine; Ferkauf Graduate School of Psychology (R.H.), Yeshiva University, Bronx, NY; and Drexel University School of Biomedical Engineering (M.I.), Philadelphia, PA
| | - Roee Holtzer
- From the Departments of Neurology (J.V., E.A., R.H.), Medicine (J.V.), and Epidemiology (C.W.), Albert Einstein College of Medicine; Ferkauf Graduate School of Psychology (R.H.), Yeshiva University, Bronx, NY; and Drexel University School of Biomedical Engineering (M.I.), Philadelphia, PA
| |
Collapse
|
18
|
Fraser SA, Dupuy O, Pouliot P, Lesage F, Bherer L. Comparable Cerebral Oxygenation Patterns in Younger and Older Adults during Dual-Task Walking with Increasing Load. Front Aging Neurosci 2016; 8:240. [PMID: 27812334 PMCID: PMC5071361 DOI: 10.3389/fnagi.2016.00240] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/29/2016] [Indexed: 11/13/2022] Open
Abstract
The neuroimaging literature on dual-task gait clearly demonstrates increased prefrontal cortex (PFC) involvement when performing a cognitive task while walking. However, findings from direct comparisons of the cerebral oxygenation patterns of younger (YA) and older (OA) adults during dual-task walking are mixed and it is unclear how YA and OA respond to increasing cognitive load (difficulty) while walking. This functional near infra-red (fNIRS) study examined cerebral oxygenation of YA and OA during self-paced dual-task treadmill walking at two different levels of cognitive load (auditory n-back). Changes in accuracy (%) as well as oxygenated (HbO) and deoxygenated (HbR) hemoglobin were examined. For the HbO and HbR measures, eight regions of interest (ROIs) were assessed: the anterior and posterior dorsolateral and ventrolateral PFC (aDLPFC, pDLPFC, aVLPFC, pVLPFC) in each hemisphere. Nineteen YA (M = 21.83 years) and 14 OA (M = 66.85 years) walked at a self-selected pace while performing auditory 1-back and 2-back tasks. Walking alone (single motor: SM) and performing the cognitive tasks alone (single cognitive: SC) were compared to dual-task walking (DT = SM + SC). In the behavioural data, participants were more accurate in the lowest level of load (1-back) compared to the highest (2-back; p < 0.001). YA were more accurate than OA overall (p = 0.009), and particularly in the 2-back task (p = 0.048). In the fNIRS data, both younger and older adults had task effects (SM < DT) in specific ROIs for ΔHbO (three YA, one OA) and ΔHbR (seven YA, eight OA). After controlling for walk speed differences, direct comparisons between YA and OA did not reveal significant age differences, but did reveal a difficulty effect in HbO in the left aDLPFC (p = 0.028) and significant task effects (SM < DT) in HbR for six of the eight ROIs. Findings suggest that YA and OA respond similarly to manipulations of cognitive load when walking on a treadmill at a self-selected pace.
Collapse
Affiliation(s)
- Sarah A Fraser
- Interdisciplinary School of Health Sciences, University of Ottawa Ottawa, ON, Canada
| | - Olivier Dupuy
- Laboratory MOVE (EA6314), Faculty of Sport Sciences, University of Poitiers Poitiers, France
| | - Philippe Pouliot
- Département de Génie Électrique, École Polytechnique de Montréal, Montréal QC, Canada
| | - Frédéric Lesage
- Département de Génie Électrique, École Polytechnique de Montréal, Montréal QC, Canada
| | - Louis Bherer
- PERFORM Centre, Concordia UniversityMontréal, QC, Canada; Department of Medicine, Institutde Cardiologie de Montréal and University of Montréal, MontrealQC, Canada
| |
Collapse
|
19
|
Attention lapses and behavioural microsleeps during tracking, psychomotor vigilance, and dual tasks. Conscious Cogn 2016; 45:174-183. [DOI: 10.1016/j.concog.2016.09.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 07/15/2016] [Accepted: 09/03/2016] [Indexed: 11/19/2022]
|