1
|
Pan Y, Hao N, Liu N, Zhao Y, Cheng X, Ku Y, Hu Y. Mnemonic-trained brain tuning to a regular odd-even pattern subserves digit memory in children. NPJ SCIENCE OF LEARNING 2023; 8:27. [PMID: 37567915 PMCID: PMC10421878 DOI: 10.1038/s41539-023-00177-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 07/17/2023] [Indexed: 08/13/2023]
Abstract
It is said that our species use mnemonics - that "magic of memorization" - to engrave an enormous amount of information in the brain. Yet, it is unclear how mnemonics affect memory and what the neural underpinnings are. In this electroencephalography study, we examined the hypotheses whether mnemonic training improved processing-efficiency and/or altered encoding-pattern to support memory enhancement. By 22-day training of a digit-image mnemonic (a custom memory technique used by world-class mnemonists), a group of children showed increased short-term memory after training, but with limited gain generalization. This training resulted in regular odd-even neural patterns (i.e., enhanced P200 and theta power during the encoding of digits at even- versus odd- positions in a sequence). Critically, the P200 and theta power effects predicted the training-induced memory improvement. These findings provide evidence of how mnemonics alter encoding pattern, as reflected in functional brain organization, to support memory enhancement.
Collapse
Affiliation(s)
- Yafeng Pan
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
- The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China
| | - Ning Hao
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Ning Liu
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
- School of Psychology, Hainan Normal University, Haikou, China
| | - Yijie Zhao
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Xiaojun Cheng
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Yixuan Ku
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Department of Psychology, Sun Yat-sen Unviersity, Guangzhou, China.
- Peng Cheng Laboratory, Shenzhen, China.
| | - Yi Hu
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China.
| |
Collapse
|
2
|
Yoon JS, Harper J, Boot WR, Gong Y, Bernat EM. Neural Evidence of Superior Memory: How to Capture Brain Activities of Encoding Processes Underlying Superior Memory. Front Hum Neurosci 2019; 13:310. [PMID: 31551737 PMCID: PMC6738098 DOI: 10.3389/fnhum.2019.00310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 08/21/2019] [Indexed: 11/25/2022] Open
Abstract
Relatively little attention has been paid to the neural basis of superior memory despite its potential in providing important insight into efforts to improve memory in the general population or to offset age-related cognitive decline. The current study reports a rare opportunity to reproduce and isolate specific neural activities directly associated with exceptional memory. To capture the brain processes responsible for superior memory, we returned to a laboratory task and analytic approach used to explore the nature of exceptional memory, namely, digit-span task combined with verbal protocol analysis. One participant with average memory received approximately 50 h of digit-span training and the participant's digit-span increased from normative (8 digits) to exceptional (30 digits). Event-related potentials were recorded while the participant's digit span increased from 19 to 30 digits. Protocol analysis allowed us to identify direct behavioral indices of idiosyncratic encoding processes underlying the superior memory performance. EEG indices directly corresponding to the behavioral indices of encoding processes were identified. The results suggest that the early attention-related encoding processes were reflected in theta and delta whereas the later attention-independent encoding processes were reflected in time-domain slow-wave. This fine-grained approach offers new insights into studying neural mechanism mediating superior memory and the cognitive effort necessary to develop it.
Collapse
Affiliation(s)
- Jong-Sung Yoon
- Department of Psychology, University of South Dakota, Vermillion, SD, United States
| | - Jeremy Harper
- Department of Psychology, University of Minnesota, Minneapolis, MN, United States
| | - Walter R. Boot
- Department of Psychology, Florida State University, Tallahassee, FL, United States
| | - Yanfei Gong
- Shanghai Academy of Educational Sciences, Shanghai, China
| | - Edward M. Bernat
- Department of Psychology, University of Maryland, College Park, College Park, MD, United States
| |
Collapse
|
3
|
Abstract
Rhythmicity and oscillations are common features in nature, and can be seen in phenomena such as seasons, breathing, and brain activity. Despite the fact that a single neuron transmits its activity to its neighbor through a transient pulse, rhythmic activity emerges from large population-wide activity in the brain, and such rhythms are strongly coupled with the state and cognitive functions of the brain. However, it is still debated whether the oscillations of brain activity actually carry information. Here, we briefly introduce the biological findings of brain oscillations, and summarize the recent progress in understanding how oscillations mediate brain function. Finally, we examine the possible relationship between brain cognitive function and oscillation, focusing on how oscillation is related to memory, particularly with respect to state-dependent memory formation and memory retrieval under specific brain waves. We propose that oscillatory waves in the neocortex contribute to the synchronization and activation of specific memory trace ensembles in the neocortex by promoting long-range neural communication.
Collapse
Affiliation(s)
- Wenhan Luo
- Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Ji-Song Guan
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|