1
|
Krishnan A, Suresh CH, Gandour JT. Cortical hemisphere preference and brainstem ear asymmetry reflect experience-dependent functional modulation of pitch. BRAIN AND LANGUAGE 2021; 221:104995. [PMID: 34303110 PMCID: PMC8559596 DOI: 10.1016/j.bandl.2021.104995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/07/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Temporal attributes of pitch processing at cortical and subcortical levels are differentially weighted and well-coordinated. The question is whether language experience induces functional modulation of hemispheric preference complemented by brainstem ear symmetry for pitch processing. Brainstem frequency-following and cortical pitch responses were recorded concurrently from Mandarin and English participants. A Mandarin syllable with a rising pitch contour was presented to both ears with monaural stimulation. At the cortical level, left ear stimulation in the Chinese group revealed an experience-dependent response for pitch processing in the right hemisphere, consistent with a functionalaccount. The English group revealed a contralateral hemisphere preference consistent with a structuralaccount. At the brainstem level, Chinese participants showed a functional leftward ear asymmetry, whereas English were consistent with a structural account. Overall, language experience modulates both cortical hemispheric preference and brainstem ear asymmetry in a complementary manner to optimize processing of temporal attributes of pitch.
Collapse
Affiliation(s)
- Ananthanarayan Krishnan
- Department of Speech Language Hearing Sciences, Purdue University, Lyles Porter Hall, 715 Clinic Drive, West Lafayette, IN 47907, USA.
| | - Chandan H Suresh
- Department of Speech Language Hearing Sciences, Purdue University, Lyles Porter Hall, 715 Clinic Drive, West Lafayette, IN 47907, USA; Department of Communication Disorders, California State, University, 5151 State University Drive, Los Angeles, CA 90032, USA.
| | - Jackson T Gandour
- Department of Speech Language Hearing Sciences, Purdue University, Lyles Porter Hall, 715 Clinic Drive, West Lafayette, IN 47907, USA.
| |
Collapse
|
2
|
Easwar V, Boothalingam S, Flaherty R. Fundamental frequency-dependent changes in vowel-evoked envelope following responses. Hear Res 2021; 408:108297. [PMID: 34229221 DOI: 10.1016/j.heares.2021.108297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
Scalp-recorded envelope following responses (EFRs) provide a non-invasive method to assess the encoding of the fundamental frequency (f0) of voice that is important for speech understanding. It is well-known that EFRs are influenced by voice f0. However, this effect of f0 has not been examined independent of concomitant changes in spectra or neural generators. We evaluated the effect of voice f0 on EFRs while controlling for vowel formant characteristics and potentially avoiding significant changes in dominant neural generators using a small f0 range. EFRs were elicited by a male-spoken vowel /u/ (average f0 = 100.4 Hz) and its lowered f0 version (average f0 = 91.9 Hz) with closely matched formant characteristics. Vowels were presented to each ear of 17 young adults with normal hearing. EFRs were simultaneously recorded between the vertex and the nape, and the vertex and the ipsilateral mastoid-the two most common electrode montages used for EFRs. Our results indicate that when vowel formant characteristics are matched, an increase in f0 by 8.5 Hz reduces EFR amplitude by 25 nV, phase coherence by 0.05 and signal-to-noise ratio by 3.5 dB, on average. The reduction in EFR characteristics was similar across ears of stimulation and the two montages used. These findings will help parse the influence of f0 or stimulus spectra on EFRs when both co-vary.
Collapse
Affiliation(s)
- Vijayalakshmi Easwar
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, United States; Waisman Center, University of Wisconsin-Madison, United States
| | - Sriram Boothalingam
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, United States; Waisman Center, University of Wisconsin-Madison, United States
| | - Regan Flaherty
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, United States; Waisman Center, University of Wisconsin-Madison, United States
| |
Collapse
|
3
|
Momtaz S, Moncrieff D, Bidelman GM. Dichotic listening deficits in amblyaudia are characterized by aberrant neural oscillations in auditory cortex. Clin Neurophysiol 2021; 132:2152-2162. [PMID: 34284251 DOI: 10.1016/j.clinph.2021.04.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 04/16/2021] [Accepted: 04/29/2021] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Children diagnosed with auditory processing disorder (APD) show deficits in processing complex sounds that are associated with difficulties in higher-order language, learning, cognitive, and communicative functions. Amblyaudia (AMB) is a subcategory of APD characterized by abnormally large ear asymmetries in dichotic listening tasks. METHODS Here, we examined frequency-specific neural oscillations and functional connectivity via high-density electroencephalography (EEG) in children with and without AMB during passive listening of nonspeech stimuli. RESULTS Time-frequency maps of these "brain rhythms" revealed stronger phase-locked beta-gamma (~35 Hz) oscillations in AMB participants within bilateral auditory cortex for sounds presented to the right ear, suggesting a hypersynchronization and imbalance of auditory neural activity. Brain-behavior correlations revealed neural asymmetries in cortical responses predicted the larger than normal right-ear advantage seen in participants with AMB. Additionally, we found weaker functional connectivity in the AMB group from right to left auditory cortex, despite their stronger neural responses overall. CONCLUSION Our results reveal abnormally large auditory sensory encoding and an imbalance in communication between cerebral hemispheres (ipsi- to -contralateral signaling) in AMB. SIGNIFICANCE These neurophysiological changes might lead to the functionally poorer behavioral capacity to integrate information between the two ears in children with AMB.
Collapse
Affiliation(s)
- Sara Momtaz
- School of Communication Sciences & Disorders, University of Memphis, Memphis, TN, USA.
| | - Deborah Moncrieff
- School of Communication Sciences & Disorders, University of Memphis, Memphis, TN, USA
| | - Gavin M Bidelman
- School of Communication Sciences & Disorders, University of Memphis, Memphis, TN, USA; Institute for Intelligent Systems, University of Memphis, Memphis, TN, USA; University of Tennessee Health Sciences Center, Department of Anatomy and Neurobiology, Memphis, TN, USA
| |
Collapse
|
4
|
Ianiszewski A, Fuente A, Gagné JP. Auditory brainstem response asymmetries in older adults: An exploratory study using click and speech stimuli. PLoS One 2021; 16:e0251287. [PMID: 33961673 PMCID: PMC8104406 DOI: 10.1371/journal.pone.0251287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 04/25/2021] [Indexed: 11/27/2022] Open
Abstract
Background Some evidence suggests that young adults exhibit a selective laterality of auditory brainstem response (ABR) elicited with speech stimuli. Little is known about such an auditory laterality in older adults. Objective The aim of this study was to investigate possible asymmetric auditory brainstem processing between right and left ear presentation in older adults. Methods Sixty-two older adults presenting with normal hearing thresholds according to their age and who were native speakers of Quebec French participated in this study. ABR was recorded using click and a 40-ms /da/ syllable. ABR was elicited through monaural right and monaural left stimulation. Latency and amplitude for click-and speech-ABR components were compared between right and left ear presentations. In addition, for the /da/ syllable, a fast Fourier transform analysis of the sustained frequency-following response (FFR) of the vowel was performed along with stimulus-to-response and right-left ear correlation analyses. Results No significant differences between right and left ear presentation were found for amplitudes and latencies of the click-ABR components. Significantly shorter latencies for right ear presentation as compared to left ear presentation were observed for onset and offset transient components (V, A and O), sustained components (D and E), and voiced transition components (C) of the speech-ABR. In addition, the spectral amplitude of the fundamental frequency (F0) was significantly larger for the left ear presentation than the right ear presentation. Conclusions Results of this study show that older adults with normal hearing exhibit symmetric encoding for click stimuli at the brainstem level between the right and left ear presentation. However, they present with brainstem asymmetries for the encoding of selective stimulus components of the speech-ABR between the right and left ear presentation. The right ear presentation of a /da/ syllable elicited reduced neural timing for both transient and sustained components compared to the left ear. Conversely, a stronger left ear F0 encoding was observed. These findings suggest that at a preattentive, sensory stage of auditory processing, older adults lateralize speech stimuli similarly to young adults.
Collapse
Affiliation(s)
- Alejandro Ianiszewski
- École d'orthophonie et d'audiologie, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada.,Centre de recherche de l'Institut universitaire de gériatrie de Montréal, Montréal, Québec, Canada
| | - Adrian Fuente
- École d'orthophonie et d'audiologie, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada.,Centre de recherche de l'Institut universitaire de gériatrie de Montréal, Montréal, Québec, Canada
| | - Jean-Pierre Gagné
- École d'orthophonie et d'audiologie, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada.,Centre de recherche de l'Institut universitaire de gériatrie de Montréal, Montréal, Québec, Canada
| |
Collapse
|
5
|
Wang XD, Xu H, Yuan Z, Luo H, Wang M, Li HW, Chen L. Brain Hemispheres Swap Dominance for Processing Semantically Meaningful Pitch. Front Hum Neurosci 2021; 15:621677. [PMID: 33613214 PMCID: PMC7886982 DOI: 10.3389/fnhum.2021.621677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/12/2021] [Indexed: 11/13/2022] Open
Abstract
The question of what determines brain laterality for auditory cognitive processing is unresolved. Here, we demonstrate a swap of hemisphere dominance from right to left during semantic interpretation of Chinese lexical tones in native speakers using simultaneously recorded mismatch negativity response and behavioral reaction time during dichotic listening judgment. The mismatch negativity, which is a brain wave response and indexes auditory processing at an early stage, indicated right hemisphere dominance. In contrast, the behavioral reaction time, which reflects auditory processing at a later stage, indicated a right ear listening advantage, or left hemisphere dominance. The observed swap of hemisphere dominance would not occur when the lexical tone was substituted with a meaningless pure tone. This swap reveals dependence of hemisphere labor division initially on acoustic and then on functional cues of auditory inputs in the processing from sound to meaning.
Collapse
Affiliation(s)
- Xiao-Dong Wang
- Faculty of Psychology, Southwest University, Chongqing, China.,Auditory Research Laboratory, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Hong Xu
- Division of Psychology, School of Social Sciences, Nanyang Technological University, Singapore, Singapore
| | - Zhen Yuan
- Bioimaging Core, Faculty of Health Sciences, University of Macau, Macau, China
| | - Hao Luo
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Ming Wang
- Auditory Research Laboratory, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Hua-Wei Li
- Affiliated Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Lin Chen
- Auditory Research Laboratory, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Affiliated Eye and ENT Hospital, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Gnanateja GN, Maruthy S. Dichotic phase effects on frequency following responses reveal phase variant and invariant harmonic distortion products. Hear Res 2019; 380:84-99. [PMID: 31212114 DOI: 10.1016/j.heares.2019.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/28/2018] [Accepted: 04/15/2019] [Indexed: 01/24/2023]
Abstract
The dichotic frequency following responses (FFR) have been used in studies to infer about dichotic auditory processing. In the present study, we hypothesize that the proximity of the binaural neural generators of the FFR would result in interference of the volume-conducted electrical fields. This might lead to contamination of the scalp-recorded dichotic FFRs due to which it might be difficult to infer about true dichotic processing in the putative neural generators. We investigated this by recording FFRs to binaurally presented 200 Hz pure tone with graded dichotic phase offsets (0°, 90°, 180° and 270°) in normal hearing young adults. Spectral analysis of the FFRs was performed for the estimation of the magnitude and phase at the component frequencies. FFR spectra were compared using non-parametric paired randomizations within the subjects. We found that the brainstem responses to a 200 Hz pure tone consisted of prominent peaks at 200 Hz, and at frequencies corresponding to the harmonics of 200 Hz. The FFR spectral magnitude at 200 Hz diminished with a phase offset of 180°. Phase offsets of 90° and 270° showed reduced spectral magnitudes at 200 Hz than those in the 0° condition. Our findings, in line with the hypothesis, show that the dichotic FFRs do not reflect true dichotic processing and that they are contaminated during volume conduction. Additionally, we found harmonic distortion products (HDP) in the FFRs. We found that the response at 200 Hz and the 3rd HDP systematically varied with a change in phase of the stimulus, while the even HDPs (2nd and 4th) were phase-invariant. Based on our findings, and modeling FFRs using auditory models, we propose a rectification process as the contributors for the generation of HDPs. We also discuss the implications of this HDP generating mechanism in understanding the pitch represented in FFRs.
Collapse
Affiliation(s)
- G Nike Gnanateja
- Department of Communication Sciences and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, Forbes Tower, Pittsburgh, PA, 15260, USA.
| | - Sandeep Maruthy
- Department of Audiology, All India Institute of Speech and Hearing, Mysuru, Karnataka, 570006, India.
| |
Collapse
|
7
|
Bidelman G, Powers L. Response properties of the human frequency-following response (FFR) to speech and non-speech sounds: level dependence, adaptation and phase-locking limits. Int J Audiol 2018; 57:665-672. [DOI: 10.1080/14992027.2018.1470338] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Gavin Bidelman
- Institute for Intelligent Systems, University of Memphis, Memphis, TN, USA
- School of Communication Sciences & Disorders, University of Memphis, Memphis, TN, USA
- Department of Anatomy and Neurobiology, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Louise Powers
- School of Communication Sciences & Disorders, University of Memphis, Memphis, TN, USA
| |
Collapse
|
8
|
Bidelman GM, Lee CC. Effects of language experience and stimulus context on the neural organization and categorical perception of speech. Neuroimage 2015; 120:191-200. [DOI: 10.1016/j.neuroimage.2015.06.087] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 06/05/2015] [Accepted: 06/06/2015] [Indexed: 10/23/2022] Open
|
9
|
Shuai L, Gong T. Temporal relation between top-down and bottom-up processing in lexical tone perception. Front Behav Neurosci 2014; 8:97. [PMID: 24723863 PMCID: PMC3971173 DOI: 10.3389/fnbeh.2014.00097] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 03/09/2014] [Indexed: 12/03/2022] Open
Abstract
Speech perception entails both top-down processing that relies primarily on language experience and bottom-up processing that depends mainly on instant auditory input. Previous models of speech perception often claim that bottom-up processing occurs in an early time window, whereas top-down processing takes place in a late time window after stimulus onset. In this paper, we evaluated the temporal relation of both types of processing in lexical tone perception. We conducted a series of event-related potential (ERP) experiments that recruited Mandarin participants and adopted three experimental paradigms, namely dichotic listening, lexical decision with phonological priming, and semantic violation. By systematically analyzing the lateralization patterns of the early and late ERP components that are observed in these experiments, we discovered that: auditory processing of pitch variations in tones, as a bottom-up effect, elicited greater right hemisphere activation; in contrast, linguistic processing of lexical tones, as a top-down effect, elicited greater left hemisphere activation. We also found that both types of processing co-occurred in both the early (around 200 ms) and late (around 300–500 ms) time windows, which supported a parallel model of lexical tone perception. Unlike the previous view that language processing is special and performed by dedicated neural circuitry, our study have elucidated that language processing can be decomposed into general cognitive functions (e.g., sensory and memory) and share neural resources with these functions.
Collapse
Affiliation(s)
- Lan Shuai
- Department of Electrical and Computer Engineering, Johns Hopkins University Baltimore, MD, USA
| | - Tao Gong
- Department of Linguistics, University of Hong Kong Hong Kong, China
| |
Collapse
|
10
|
Ahadi M, Pourbakht A, Jafari AH, Jalaie S. Effects of stimulus presentation mode and subcortical laterality in speech-evoked auditory brainstem responses. Int J Audiol 2014; 53:243-9. [DOI: 10.3109/14992027.2013.866281] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
11
|
Abstract
Linguistic and musical pitch provide an analytic window to evaluate how neural representations of important pitch attributes of a sound undergo transformation from early sensory to later cognitive stages of processing in the human brain, and how pitch-relevant experience shapes these representations. These pitch attributes are shaped differentially depending on their functional relevance to a listener. Neural encoding of pitch-relevant information is shaped by the perceptual salience of domain-specific features at subcortical (auditory brainstem) and cortical stages of processing. The emergence of a functional ear asymmetry in the neural encoding of pitch-relevant information at a lower sensory processing level supports the view that local and feedforward and feedback mechanisms are involved in pitch-relevant processing. A theoretical framework for a neural network is proposed involving coordination between local, feedforward, and feedback components that can account for experience-induced enhancement of pitch representations at multiple levels of the auditory pathway.
Collapse
|
12
|
Abstract
The aim of this experiment is to assess the effects of the linguistic status of timbre on pitch processing in the brainstem. Brainstem frequency following responses were evoked by the Mandarin high-rising lexical tone superimposed on a native vowel quality ([i]), nonnative vowel quality ([œ]), and iterated rippled noise (nonspeech). Results revealed that voice fundamental frequency magnitudes were larger when concomitant with a native vowel quality compared with either nonnative vowel quality or nonspeech timbre. Such experience-dependent effects suggest that subcortical sensory encoding of pitch interacts with timbre in the human brainstem. As a consequence, responses of the perceptual system can be differentially shaped to pitch patterns in relation to the linguistic status of their concomitant timbre.
Collapse
|