1
|
Matilda C, Mannully S, Viditha R, Shanthi C. Protein profiling of metal‐resistantBacillus cereusVITSH1. J Appl Microbiol 2019; 127:121-133. [DOI: 10.1111/jam.14293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/09/2019] [Accepted: 04/23/2019] [Indexed: 02/04/2023]
Affiliation(s)
- C.S. Matilda
- School of Bio Sciences and Technology Vellore Institute of Technology Vellore India
| | - S.T. Mannully
- School of Bio Sciences and Technology Vellore Institute of Technology Vellore India
| | - R.P. Viditha
- School of Bio Sciences and Technology Vellore Institute of Technology Vellore India
| | - C. Shanthi
- School of Bio Sciences and Technology Vellore Institute of Technology Vellore India
| |
Collapse
|
2
|
Mechanism of the αβ conformational change in F1-ATPase after ATP hydrolysis: free-energy simulations. Biophys J 2015; 108:85-97. [PMID: 25564855 DOI: 10.1016/j.bpj.2014.11.1853] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/06/2014] [Accepted: 11/10/2014] [Indexed: 12/14/2022] Open
Abstract
One of the motive forces for F1-ATPase rotation is the conformational change of the catalytically active β subunit due to closing and opening motions caused by ATP binding and hydrolysis, respectively. The closing motion is accomplished in two steps: the hydrogen-bond network around ATP changes and then the entire structure changes via B-helix sliding, as shown in our previous study. Here, we investigated the opening motion induced by ATP hydrolysis using all-atom free-energy simulations, combining the nudged elastic band method and umbrella sampling molecular-dynamics simulations. Because hydrolysis requires residues in the α subunit, the simulations were performed with the αβ dimer. The results indicate that the large-scale opening motion is also achieved by the B-helix sliding (in the reverse direction). However, the sliding mechanism is different from that of ATP binding because sliding is triggered by separation of the hydrolysis products ADP and Pi. We also addressed several important issues: 1), the timing of the product Pi release; 2), the unresolved half-closed β structure; and 3), the ADP release mechanism. These issues are fundamental for motor function; thus, the rotational mechanism of the entire F1-ATPase is also elucidated through this αβ study. During the conformational change, conserved residues among the ATPase proteins play important roles, suggesting that the obtained mechanism may be shared with other ATPase proteins. When combined with our previous studies, these results provide a comprehensive view of the β-subunit conformational change that drives the ATPase.
Collapse
|
3
|
Malyan AN. Noncatalytic nucleotide binding sites: properties and mechanism of involvement in ATP synthase activity regulation. BIOCHEMISTRY (MOSCOW) 2014; 78:1512-23. [PMID: 24490737 DOI: 10.1134/s0006297913130099] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
ATP synthases (FoF1-ATPases) of chloroplasts, mitochondria, and bacteria catalyze ATP synthesis or hydrolysis coupled with the transmembrane transfer of protons or sodium ions. Their activity is regulated through their reversible inactivation resulting from a decreased transmembrane potential difference. The inactivation is believed to conserve ATP previously synthesized under conditions of sufficient energy supply against unproductive hydrolysis. This review is focused on the mechanism of nucleotide-dependent regulation of the ATP synthase activity where the so-called noncatalytic nucleotide binding sites are involved. Properties of these sites varying upon free enzyme transition to its membrane-bound form, their dependence on membrane energization, and putative mechanisms of noncatalytic site-mediated regulation of the ATP synthase activity are discussed.
Collapse
Affiliation(s)
- A N Malyan
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
4
|
Ishikawa T, Kato-Yamada Y. Severe MgADP inhibition of Bacillus subtilis F1-ATPase is not due to the absence of nucleotide binding to the noncatalytic nucleotide binding sites. PLoS One 2014; 9:e107197. [PMID: 25244289 PMCID: PMC4171097 DOI: 10.1371/journal.pone.0107197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 08/13/2014] [Indexed: 11/18/2022] Open
Abstract
F1-ATPase from Bacillus subtilis (BF1) is severely suppressed by the MgADP inhibition. Here, we have tested if this is due to the loss of nucleotide binding to the noncatalytic site that is required for the activation. Measurements with a tryptophan mutant of BF1 indicated that the noncatalytic sites could bind ATP normally. Furthermore, the mutant BF1 that cannot bind ATP to the noncatalytic sites showed much lower ATPase activity. It was concluded that the cause of strong MgADP inhibition of BF1 is not the weak nucleotide binding to the noncatalytic sites but the other steps required for the activation.
Collapse
Affiliation(s)
- Toru Ishikawa
- Department of Life Science, Rikkyo University, Toshima-ku, Tokyo, Japan
| | - Yasuyuki Kato-Yamada
- Department of Life Science, Rikkyo University, Toshima-ku, Tokyo, Japan
- Research Center for Life Science, Rikkyo University, Toshima-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
5
|
Kikuchi Y, Naka Y, Osakabe H, Okamoto T, Masaike T, Ueno H, Toyabe S, Muneyuki E. Thermodynamic analyses of nucleotide binding to an isolated monomeric β subunit and the α3β3γ subcomplex of F1-ATPase. Biophys J 2013; 105:2541-8. [PMID: 24314084 PMCID: PMC3853085 DOI: 10.1016/j.bpj.2013.10.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 10/11/2013] [Accepted: 10/15/2013] [Indexed: 10/26/2022] Open
Abstract
Rotation of the γ subunit of the F1-ATPase plays an essential role in energy transduction by F1-ATPase. Hydrolysis of an ATP molecule induces a 120° step rotation that consists of an 80° substep and 40° substep. ATP binding together with ADP release causes the first 80° step rotation. Thus, nucleotide binding is very important for rotation and energy transduction by F1-ATPase. In this study, we introduced a βY341W mutation as an optical probe for nucleotide binding to catalytic sites, and a βE190Q mutation that suppresses the hydrolysis of nucleoside triphosphate (NTP). Using a mutant monomeric βY341W subunit and a mutant α3β3γ subcomplex containing the βY341W mutation with or without an additional βE190Q mutation, we examined the binding of various NTPs (i.e., ATP, GTP, and ITP) and nucleoside diphosphates (NDPs, i.e., ADP, GDP, and IDP). The affinity (1/Kd) of the nucleotides for the isolated β subunit and third catalytic site in the subcomplex was in the order ATP/ADP > GTP/GDP > ITP/IDP. We performed van't Hoff analyses to obtain the thermodynamic parameters of nucleotide binding. For the isolated β subunit, NDPs and NTPs with the same base moiety exhibited similar ΔH(0) and ΔG(0) values at 25°C. The binding of nucleotides with different bases to the isolated β subunit resulted in different entropy changes. Interestingly, NDP binding to the α3β(Y341W)3γ subcomplex had similar Kd and ΔG(0) values as binding to the isolated β(Y341W) subunit, but the contributions of the enthalpy term and the entropy term were very different. We discuss these results in terms of the change in the tightness of the subunit packing, which reduces the excluded volume between subunits and increases water entropy.
Collapse
Affiliation(s)
- Yohsuke Kikuchi
- Department of Physics, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Yusuke Naka
- Department of Physics, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Hidemitsu Osakabe
- Department of Physics, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Tetsuaki Okamoto
- Department of Physics, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Tomoko Masaike
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba-ken, Japan
| | - Hiroshi Ueno
- Department of Physics, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Shoichi Toyabe
- Department of Physics, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Eiro Muneyuki
- Department of Physics, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| |
Collapse
|
6
|
Isolated noncatalytic and catalytic subunits of F1-ATPase exhibit similar, albeit not identical, energetic strategies for recognizing adenosine nucleotides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:44-50. [PMID: 23994287 DOI: 10.1016/j.bbabio.2013.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/21/2013] [Accepted: 08/22/2013] [Indexed: 11/22/2022]
Abstract
The function of F1-ATPase relies critically on the intrinsic ability of its catalytic and noncatalytic subunits to interact with nucleotides. Therefore, the study of isolated subunits represents an opportunity to dissect elementary energetic contributions that drive the enzyme's rotary mechanism. In this study we have calorimetrically characterized the association of adenosine nucleotides to the isolated noncatalytic α-subunit. The resulting recognition behavior was compared with that previously reported for the isolated catalytic β-subunit (N.O. Pulido, G. Salcedo, G. Pérez-Hernández, C. José-Núñez, A. Velázquez-Campoy, E. García-Hernández, Energetic effects of magnesium in the recognition of adenosine nucleotides by the F1-ATPase β subunit, Biochemistry 49 (2010) 5258-5268). The two subunits exhibit nucleotide-binding thermodynamic signatures similar to each other, characterized by enthalpically-driven affinities in the μM range. Nevertheless, contrary to the catalytic subunit that recognizes MgATP and MgADP with comparable strength, the noncatalytic subunit much prefers the triphosphate nucleotide. Besides, the α-subunit depends more on Mg(II) for stabilizing the interaction with ATP, while both subunits are rather metal-independent for ADP recognition. These binding behaviors are discussed in terms of the properties that the two subunits exhibit in the whole enzyme.
Collapse
|
7
|
Milgrom YM. Characteristics of protection by MgADP and MgATP of α3β3γ subcomplex of thermophilic Bacillus PS3 βY341W-mutant F1-ATPase from inhibition by 7-chloro-4-nitrobenz-2-oxa-1,3-diazole support a bi-site mechanism of catalysis. BIOCHEMISTRY (MOSCOW) 2012; 76:1253-61. [PMID: 22117552 DOI: 10.1134/s0006297911110071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
MgADP and MgATP binding to catalytic sites of βY341W-α(3)β(3)γ subcomplex of F(1)-ATPase from thermophilic Bacillus PS3 has been assessed using their effect on the enzyme inhibition by 7-chloro-4-nitrobenz-2-oxa-1,3-diazole (NBD-Cl). It was assumed that NBD-Cl can inhibit only when catalytic sites are empty, and inhibition is prevented if a catalytic site is occupied with a nucleotide. In the absence of an activator, MgADP and MgATP protect βY341W-α(3)β(3)γ subcomplex from inhibition by NBD-Cl by binding to two catalytic sites with an affinity of 37 µM and 12 mM, and 46 µM and 15 mM, respectively. In the presence of an activator lauryldimethylamine-N-oxide (LDAO), MgADP protects βY341W-α(3)β(3)γ subcomplex from inhibition by NBD-Cl by binding to a catalytic site with a K(d) of 12 mM. Nucleotide binding to a catalytic site with affinity in the millimolar range has not been previously revealed in the fluorescence quenching experiments with βY341W-α(3)β(3)γ subcomplex. In the presence of activators LDAO or selenite, MgATP protects βY341W-α(3)β(3)γ subcomplex from inhibition by NBD-Cl only partially, and the enzyme remains sensitive to inhibition by NBD-Cl even at MgATP concentrations that are saturating for ATPase activity. The results support a bi-site mechanism of catalysis by F(1)-ATPases.
Collapse
Affiliation(s)
- Y M Milgrom
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Syracuse, New York 13210, USA.
| |
Collapse
|
8
|
Shimo-Kon R, Muneyuki E, Sakai H, Adachi K, Yoshida M, Kinosita K. Chemo-mechanical coupling in F(1)-ATPase revealed by catalytic site occupancy during catalysis. Biophys J 2010; 98:1227-36. [PMID: 20371322 DOI: 10.1016/j.bpj.2009.11.050] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 11/04/2009] [Accepted: 11/18/2009] [Indexed: 11/18/2022] Open
Abstract
F(1)-ATPase is a rotary molecular motor in which the central gamma subunit rotates inside a cylinder made of alpha(3)beta(3) subunits. To clarify how ATP hydrolysis in three catalytic sites cooperate to drive rotation, we measured the site occupancy, the number of catalytic sites occupied by a nucleotide, while assessing the hydrolysis activity under identical conditions. The results show hitherto unsettled timings of ADP and phosphate releases: starting with ATP binding to a catalytic site at an ATP-waiting gamma angle defined as 0 degrees , phosphate is released at approximately 200 degrees , and ADP is released during quick rotation between 240 degrees and 320 degrees that is initiated by binding of a third ATP. The site occupancy remains two except for a brief moment after the ATP binding, but the third vacant site can bind a medium nucleotide weakly.
Collapse
Affiliation(s)
- Rieko Shimo-Kon
- Department of Physics, Faculty of Science and Engineering, Waseda University, Okubo, Shinjuku-ku, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
9
|
Phosphate release in F1-ATPase catalytic cycle follows ADP release. Nat Chem Biol 2010; 6:814-20. [PMID: 20871600 DOI: 10.1038/nchembio.443] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 08/20/2010] [Indexed: 11/08/2022]
Abstract
F(1)-ATPase is an ATP-driven rotary motor protein in which the γ-subunit rotates against the catalytic stator ring. Although the reaction scheme of F(1) has mostly been revealed, the timing of inorganic phosphate (P(i)) release remains controversial. Here we addressed this issue by verifying the reversibility of ATP hydrolysis on arrested F(1) with magnetic tweezers. ATP hydrolysis was found to be essentially reversible, implying that P(i) is released after the γ rotation and ADP release, although extremely slow P(i) release was found at the ATP hydrolysis angle as an uncoupling side reaction. On the basis of this finding, we deduced the chemomechanical coupling scheme of F(1). We found that the affinity for P(i) was strongly angle dependent, implying a large contribution by P(i) release to torque generation. These findings imply that under ATP synthesis conditions, P(i) binds to an empty catalytic site, preventing solution ATP (though not ADP) from binding. Thus, this supports the concept of selective ADP binding for efficient ATP synthesis.
Collapse
|
10
|
Bulygin VV, Milgrom YM. Probes of inhibition of Escherichia coli F(1)-ATPase by 7-chloro-4-nitrobenz-2-oxa-1,3-diazole in the presence of MgADP and MgATP support a bi-site mechanism of ATP hydrolysis by the enzyme. BIOCHEMISTRY (MOSCOW) 2010; 75:327-35. [PMID: 20370611 DOI: 10.1134/s0006297910030090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Binding of MgADP and MgATP to Escherichia coli F(1)-ATPase (EcF(1)) has been assessed by their effects on extent of the enzyme inhibition by 7-chloro-4-nitrobenz-2-oxa-1,3-diazole (NBD-Cl). MgADP at low concentrations (K(d) 1.3 microM) promotes the inhibition, whereas at higher concentrations (K(d) 0.7 mM) EcF(1) is protected from inhibition. The mutant betaY331W-EcF(1) requires much higher MgADP, K(d) of about 10 mM, for protection. Such MgADP binding was not revealed by fluorescence quenching measurements. MgATP partially protects EcF(1) from inactivation by NBD-Cl, but the enzyme remains sensitive to NBD-Cl in the presence of MgATP at concentrations as high as 10 mM. The activating anion selenite in the absence of MgATP partially protects EcF(1) from inhibition by NBD-Cl. A complete protection of EcF(1) from inhibition by NBD-Cl has been observed in the presence of both MgATP and selenite. The results support a bi-site catalytic mechanism for MgATP hydrolysis by F(1)-ATPases and suggest that stimulation of the enzyme activity by activating anions is due to the anion binding to a catalytic site that remains unoccupied at saturating substrate concentration.
Collapse
Affiliation(s)
- V V Bulygin
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
| | | |
Collapse
|
11
|
Adachi K, Furuike S, Hossain MD, Itoh H, Kinosita K, Onoue Y, Shimo-Kon R. Chemo-Mechanical Coupling in the Rotary Molecular Motor F1-ATPase. SINGLE MOLECULE SPECTROSCOPY IN CHEMISTRY, PHYSICS AND BIOLOGY 2010. [DOI: 10.1007/978-3-642-02597-6_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
12
|
Modulation of nucleotide binding to the catalytic sites of thermophilic F(1)-ATPase by the epsilon subunit: implication for the role of the epsilon subunit in ATP synthesis. Biochem Biophys Res Commun 2009; 390:230-4. [PMID: 19785990 DOI: 10.1016/j.bbrc.2009.09.092] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 09/23/2009] [Indexed: 11/22/2022]
Abstract
Effect of epsilon subunit on the nucleotide binding to the catalytic sites of F(1)-ATPase from the thermophilic Bacillus PS3 (TF(1)) has been tested by using alpha(3)beta(3)gamma and alpha(3)beta(3)gammaepsilon complexes of TF(1) containing betaTyr341 to Trp substitution. The nucleotide binding was assessed with fluorescence quenching of the introduced Trp. The presence of the epsilon subunit weakened ADP binding to each catalytic site, especially to the highest affinity site. This effect was also observed when GDP or IDP was used. The ratio of the affinity of the lowest to the highest nucleotide binding sites had changed two orders of magnitude by the epsilon subunit. The differences may relate to the energy required for the binding change in the ATP synthesis reaction and contribute to the efficient ATP synthesis.
Collapse
|
13
|
Bulygin VV, Milgrom YM. A bi-site mechanism for Escherichia coli F1-ATPase accounts for the observed positive catalytic cooperativity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:1016-23. [PMID: 19269272 DOI: 10.1016/j.bbabio.2009.02.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 02/23/2009] [Accepted: 02/26/2009] [Indexed: 11/20/2022]
Abstract
Nucleotide binding to nucleotide-depleted F(1)-ATPase from Escherichia coli (EcF(1)) during MgATP hydrolysis in the presence of excess epsilon subunit has been studied using a combination of centrifugal filtration and column-centrifugation methods. The results show that nucleotide-binding properties of catalytic sites on EcF(1) are affected by the state of occupancy of noncatalytic sites. The ATP-concentration dependence of catalytic-site occupancy during MgATP hydrolysis demonstrates that a bi-site mechanism is responsible for the positive catalytic cooperativity observed during multi-site catalysis by EcF(1). The results suggest that a bi-site mechanism is a general feature of F(1) catalysis.
Collapse
Affiliation(s)
- Vladimir V Bulygin
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
| | | |
Collapse
|
14
|
Mnatsakanyan N, Krishnakumar AM, Suzuki T, Weber J. The role of the betaDELSEED-loop of ATP synthase. J Biol Chem 2009; 284:11336-45. [PMID: 19246448 DOI: 10.1074/jbc.m900374200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATP synthase uses a unique rotational mechanism to convert chemical energy into mechanical energy and back into chemical energy. The helix-turn-helix motif, termed "DELSEED-loop," in the C-terminal domain of the beta subunit was suggested to be involved in coupling between catalysis and rotation. Here, the role of the DELSEED-loop was investigated by functional analysis of mutants of Bacillus PS3 ATP synthase that had 3-7 amino acids within the loop deleted. All mutants were able to catalyze ATP hydrolysis, some at rates several times higher than the wild-type enzyme. In most cases ATP hydrolysis in membrane vesicles generated a transmembrane proton gradient, indicating that hydrolysis occurred via the normal rotational mechanism. Except for two mutants that showed low activity and low abundance in the membrane preparations, the deletion mutants were able to catalyze ATP synthesis. In general, the mutants seemed less well coupled than the wild-type enzyme, to a varying degree. Arrhenius analysis demonstrated that in the mutants fewer bonds had to be rearranged during the rate-limiting catalytic step; the extent of this effect was dependent on the size of the deletion. The results support the idea of a significant involvement of the DELSEED-loop in mechanochemical coupling in ATP synthase. In addition, for two deletion mutants it was possible to prepare an alpha(3)beta(3)gamma subcomplex and measure nucleotide binding to the catalytic sites. Interestingly, both mutants showed a severely reduced affinity for MgATP at the high affinity site.
Collapse
Affiliation(s)
- Nelli Mnatsakanyan
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, USA
| | | | | | | |
Collapse
|
15
|
Masaike T, Koyama-Horibe F, Oiwa K, Yoshida M, Nishizaka T. Cooperative three-step motions in catalytic subunits of F1-ATPase correlate with 80° and 40° substep rotations. Nat Struct Mol Biol 2008; 15:1326-33. [PMID: 19011636 DOI: 10.1038/nsmb.1510] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 10/08/2008] [Indexed: 11/09/2022]
|
16
|
Kato S, Yoshida M, Kato-Yamada Y. Role of the epsilon subunit of thermophilic F1-ATPase as a sensor for ATP. J Biol Chem 2007; 282:37618-23. [PMID: 17933866 DOI: 10.1074/jbc.m707509200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The epsilon subunit of F(1)-ATPase from the thermophilic Bacillus PS3 (TF(1)) has been shown to bind ATP. The precise nature of the regulatory role of ATP binding to the epsilon subunit remains to be determined. To address this question, 11 mutants of the epsilon subunit were prepared, in which one of the basic or acidic residues was substituted with alanine. ATP binding to these mutants was tested by gel-filtration chromatography. Among them, four mutants that showed no ATP binding were selected and reconstituted with the alpha(3)beta(3)gamma complex of TF(1). The ATPase activity of the resulting alpha(3)beta(3)gammaepsilon complexes was measured, and the extent of inhibition by the mutant epsilon subunits was compared in each case. With one exception, weaker binding of ATP correlated with greater inhibition of ATPase activity. These results clearly indicate that ATP binding to the epsilon subunit plays a regulatory role and that ATP binding may stabilize the ATPase-active form of TF(1) by fixing the epsilon subunit into the folded conformation.
Collapse
Affiliation(s)
- Shigeyuki Kato
- Department of Life Science, College of Science, Rikkyo (St Paul's) University, Tokyo, Japan
| | | | | |
Collapse
|
17
|
Bulygin VV, Milgrom YM. Studies of nucleotide binding to the catalytic sites of Escherichia coli betaY331W-F1-ATPase using fluorescence quenching. Proc Natl Acad Sci U S A 2007; 104:4327-31. [PMID: 17360523 PMCID: PMC1838601 DOI: 10.1073/pnas.0700078104] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Indexed: 11/18/2022] Open
Abstract
Most studies of nucleotide binding to catalytic sites of Escherichia coli betaY331W-F(1)-ATPase by the quenching of the betaY331W fluorescence have been conducted in the presence of approximately 20 mM sulfate. We find that, in the absence of sulfate, the nucleotide concentration dependence of fluorescence quenching induced by ADP, ATP, and MgADP is biphasic, revealing two classes of binding sites, each contributing about equally to the overall extent of quenching. For the high-affinity catalytic site, the K(d) values for MgADP, ADP, and ATP equal 10, 43, and 185 nM, respectively. For the second class of sites, the K(d) values for these ligands are approximately 1,000x larger at 8.1, 37, and 200 microM, respectively. The presence of sulfate or phosphate during assay results in a marked increase in the apparent K(d) values for the high-affinity catalytic site. The results show, contrary to earlier reports, that Mg(2+) is not required for expression of different affinities for a nucleotide by the three catalytic sites. In addition, they demonstrate that the fluorescence of the introduced tryptophans is nearly completely quenched when only two sites bind nucleotide. Binding of ADP to the third site with a K(d) near mM gives little fluorescence change. Many previous results of fluorescence quenching of introduced tryptophans appear to require reinterpretation. Our findings support a bi-site catalytic mechanism for F(1)-ATPase.
Collapse
Affiliation(s)
- Vladimir V. Bulygin
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Syracuse, NY 13210
| | - Yakov M. Milgrom
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Syracuse, NY 13210
| |
Collapse
|
18
|
Liu MS, Todd BD, Sadus RJ. Cooperativity in the motor activities of the ATP-fueled molecular motors. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1752:111-23. [PMID: 16140597 DOI: 10.1016/j.bbapap.2005.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Revised: 05/17/2005] [Accepted: 06/28/2005] [Indexed: 11/28/2022]
Abstract
Kinesin, myosin and F1-ATPase are multi-domain molecular motors with multiple catalytic subunits. The motor mechanochemics are achieved via the conversion of ATP hydrolysis energy into forces and motions. We find that the catalysis of these molecular motors do not follow the simple Michaelis-Menten mechanism. The motor activities, such as the hydrolysis or processive rates, of kinesin, myosin and F1-ATPase have a complex ATP-dependent cooperativity. To understand this complexity in kinetics and mechanochemics, we develop a conformation correlation theory of cooperativity for the ATP-fueled motor proteins. The quantitative analysis and simulations indicate that cooperativity is induced by the conformational coupling of binding states of different subunits and prevails in the motor activities.
Collapse
Affiliation(s)
- Ming S Liu
- Centre for Molecular Simulation, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia.
| | | | | |
Collapse
|
19
|
Sakaki N, Shimo-Kon R, Adachi K, Itoh H, Furuike S, Muneyuki E, Yoshida M, Kinosita K. One rotary mechanism for F1-ATPase over ATP concentrations from millimolar down to nanomolar. Biophys J 2004; 88:2047-56. [PMID: 15626703 PMCID: PMC1305257 DOI: 10.1529/biophysj.104.054668] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
F(1)-ATPase is a rotary molecular motor in which the central gamma-subunit rotates inside a cylinder made of alpha(3)beta(3)-subunits. The rotation is driven by ATP hydrolysis in three catalytic sites on the beta-subunits. How many of the three catalytic sites are filled with a nucleotide during the course of rotation is an important yet unsettled question. Here we inquire whether F(1) rotates at extremely low ATP concentrations where the site occupancy is expected to be low. We observed under an optical microscope rotation of individual F(1) molecules that carried a bead duplex on the gamma-subunit. Time-averaged rotation rate was proportional to the ATP concentration down to 200 pM, giving an apparent rate constant for ATP binding of 2 x 10(7) M(-1)s(-1). A similar rate constant characterized bulk ATP hydrolysis in solution, which obeyed a simple Michaelis-Menten scheme between 6 mM and 60 nM ATP. F(1) produced the same torque of approximately 40 pN.nm at 2 mM, 60 nM, and 2 nM ATP. These results point to one rotary mechanism governing the entire range of nanomolar to millimolar ATP, although a switchover between two mechanisms cannot be dismissed. Below 1 nM ATP, we observed less regular rotations, indicative of the appearance of another reaction scheme.
Collapse
Affiliation(s)
- Naoyoshi Sakaki
- Department of Functional Molecular Science, The Graduate University for Advanced Studies, Nishigonaka 38, Myodaiji, Okazaki 444-8585, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
F1-ATPase is a rotary motor made of a single protein molecule. Its rotation is driven by free energy obtained by ATP hydrolysis. In vivo, another motor, Fo, presumably rotates the F1 motor in the reverse direction, reversing also the chemical reaction in F1 to let it synthesize ATP. Here we attempt to answer two related questions, How is free energy obtained by ATP hydrolysis converted to the mechanical work of rotation, and how is mechanical work done on F1 converted to free energy to produce ATP? After summarizing single-molecule observations of F1 rotation, we introduce a toy model and discuss its free-energy diagrams to possibly answer the above questions. We also discuss the efficiency of molecular motors in general.
Collapse
Affiliation(s)
- Kazuhiko Kinosita
- Center for Integrative Bioscience, Okazaki National Research Institutes, Higashiyama 5-1, Myodaiji, Okazaki 444-8585, Japan.
| | | | | |
Collapse
|
21
|
Falson P, Goffeau A, Boutry M, Jault JM. Structural insight into the cooperativity between catalytic and noncatalytic sites of F1-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1658:133-40. [PMID: 15282184 DOI: 10.1016/j.bbabio.2004.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2004] [Revised: 05/10/2004] [Accepted: 05/10/2004] [Indexed: 11/19/2022]
Abstract
F1-ATPase, the catalytic sector of Fo-F1 ATPases-ATPsynthases, displays an apparent negative cooperativity for ATP hydrolysis at high ATP concentrations which involves noncatalytic and catalytic nucleotide binding sites. The molecular mechanism of such cooperativity is currently unknown. To get further insights, we have investigated the structural consequences of the single mutation of two residues: Q173L in the alpha-subunit and Q170Y in the beta-subunit of the F1-ATPase of the yeast Schizosaccharomyces pombe. These residues are localized in or near the Walker-A motifs of each subunit and their mutation produces an opposite effect on the negative cooperativity. The betaQ170 residue (M167 in beef heart) is located close to the binding site for the phosphate-Mg moiety of the nucleotide. Its replacement by tyrosine converts this site into a close state with increased affinity for the bound nucleotide and leads to an increase of negative cooperativity. In contrast, the alphaQ173L mutation (Q172 in beef heart) abolishes negative cooperativity due to the loss of two H-bonds: one stabilizing the nucleotide bound to the noncatalytic site and the other linking alphaQ173 to the adjacent betaT354, localized at the alpha(DP)-beta(TP) interface. The properties of these mutants suggest that negative cooperativity occurs through interactions between neighbor alpha- and beta-subunits. Indeed, in the beef heart enzyme, (i) the alpha(DP)-beta(TP) interface is stabilized by a vicinal alphaR171-betaD352 salt bridge (ii) betaD352 and betaT354 belong to a short peptidic stretch close to betaY345, the aromatic group of which interacts with the adenine moiety of the nucleotide bound to the catalytic site. We therefore propose that the betaY345-betaT354 stretch (beef heart numbering) constitutes a short link that drives structural modifications from a noncatalytic site to the neighbor catalytic site in which, as a result, the affinity for ADP is modulated.
Collapse
Affiliation(s)
- Pierre Falson
- CEA URA CNRS 2096, CEA/DSV/DBJC/SBFM, Centre de Saclay, Bât 528, 91191 Gif-sur-Yvette Cedex, France.
| | | | | | | |
Collapse
|
22
|
Shimabukuro K, Yasuda R, Muneyuki E, Hara KY, Kinosita K, Yoshida M. Catalysis and rotation of F1 motor: cleavage of ATP at the catalytic site occurs in 1 ms before 40 degree substep rotation. Proc Natl Acad Sci U S A 2003; 100:14731-6. [PMID: 14657340 PMCID: PMC299784 DOI: 10.1073/pnas.2434983100] [Citation(s) in RCA: 200] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
F1, a water-soluble portion of FoF1-ATP synthase, is an ATP hydrolysis-driven rotary motor. The central gamma-subunit rotates in the alpha 3 beta 3 cylinder by repeating the following four stages of rotation: ATP-binding dwell, rapid 80 degrees substep rotation, interim dwell, and rapid 40 degrees substep rotation. At least two 1-ms catalytic events occur in the interim dwell, but it is still unclear which steps in the ATPase cycle, except for ATP binding, correspond to these events. To discover which steps, we analyzed rotations of F1 subcomplex (alpha 3 beta 3 gamma) from thermophilic Bacillus PS3 under conditions where cleavage of ATP at the catalytic site is decelerated: hydrolysis of ATP by the catalytic-site mutant F1 and hydrolysis of a slowly hydrolyzable substrate ATP gamma S (adenosine 5'-[gamma-thio]triphosphate) by wild-type F1. In both cases, interim dwells were extended as expected from bulk phase kinetics, confirming that cleavage of ATP takes place during the interim dwell. Furthermore, the results of ATP gamma S hydrolysis by the mutant F1 ensure that cleavage of ATP most likely corresponds to one of the two 1-ms events and not some other faster undetected event. Thus, cleavage of ATP on F1 occurs in 1 ms during the interim dwell, and we call this interim dwell catalytic dwell.
Collapse
Affiliation(s)
- Katsuya Shimabukuro
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | | | | | | | | | | |
Collapse
|