1
|
Gospodaryov DV. Alternative NADH dehydrogenase: A complex I backup, a drug target, and a tool for mitochondrial gene therapy. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149529. [PMID: 39615731 DOI: 10.1016/j.bbabio.2024.149529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024]
Abstract
Alternative NADH dehydrogenase, also known as type II NADH dehydrogenase (NDH-2), catalyzes the same redox reaction as mitochondrial respiratory chain complex I. Specifically, it oxidizes reduced nicotinamide adenine dinucleotide (NADH) while simultaneously reducing ubiquinone to ubiquinol. However, unlike complex I, this enzyme is non-proton pumping, comprises of a single subunit, and is resistant to rotenone. Initially identified in bacteria, fungi and plants, NDH-2 was subsequently discovered in protists and certain animal taxa including sea squirts. The gene coding for NDH-2 is also present in the genomes of some annelids, tardigrades, and crustaceans. For over two decades, NDH-2 has been investigated as a potential substitute for defective complex I. In model organisms, NDH-2 has been shown to ameliorate a broad spectrum of conditions associated with complex I malfunction, including symptoms of Parkinson's disease. Recently, lifespan extension has been observed in animals expressing NDH-2 in a heterologous manner. A variety of mechanisms have been put forward by which NDH-2 may extend lifespan. Such mechanisms include the activation of pro-longevity pathways through modulation of the NAD+/NADH ratio, decreasing production of reactive oxygen species (ROS) in mitochondria, or then through moderate increases in ROS production followed by activation of defense pathways (mitohormesis). This review gives an overview of the latest research on NDH-2, including the structural peculiarities of NDH-2, its inhibitors, its role in the pathogenicity of mycobacteria and apicomplexan parasites, and its function in bacteria, fungi, and animals.
Collapse
Affiliation(s)
- Dmytro V Gospodaryov
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka, 76018, Ivano-Frankivsk, Ukraine.
| |
Collapse
|
2
|
Juergens H, Mielgo-Gómez Á, Godoy-Hernández A, ter Horst J, Nijenhuis JM, McMillan DGG, Mans R. Physiological relevance, localization and substrate specificity of the alternative (type II) mitochondrial NADH dehydrogenases of Ogataea parapolymorpha. Front Microbiol 2024; 15:1473869. [PMID: 39726963 PMCID: PMC11670749 DOI: 10.3389/fmicb.2024.1473869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Mitochondria from Ogataea parapolymorpha harbor a branched electron-transport chain containing a proton-pumping Complex I NADH dehydrogenase and three Type II NADH dehydrogenases (NDH-2). To investigate the physiological role, localization and substrate specificity of these enzymes, the growth of various NADH dehydrogenase knockout mutants was quantitatively characterized in shake-flask and chemostat cultures, followed by oxygen-uptake experiments with isolated mitochondria. NAD(P)H:quinone oxidoreduction of the three NDH-2 were individually assessed. Our findings reveal that the O. parapolymorpha respiratory chain contains an internal NADH-accepting NDH-2 (Ndh2-1/OpNdi1), at least one external NAD(P)H-accepting enzyme, and likely additional mechanisms for respiration-linked oxidation of cytosolic NADH. Metabolic regulation appears to prevent competition between OpNdi1 and Complex I for mitochondrial NADH. With the exception of OpNdi1, the respiratory chain of O. parapolymorpha exhibits metabolic redundancy and tolerates deletion of multiple NADH-dehydrogenase genes without compromising fully respiratory metabolism.
Collapse
Affiliation(s)
- Hannes Juergens
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Álvaro Mielgo-Gómez
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | | | - Jolanda ter Horst
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Janine M. Nijenhuis
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Duncan G. G. McMillan
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Robert Mans
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
3
|
Liu X, Zhang Y, Tang C, Li H, Xia H, Fan S, Kong L. Bicarbonate-Dependent Detoxification by Mitigating Ammonium-Induced Hypoxic Stress in Triticum aestivum Root. BIOLOGY 2024; 13:101. [PMID: 38392319 PMCID: PMC10886950 DOI: 10.3390/biology13020101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024]
Abstract
Ammonium (NH4+) toxicity is ubiquitous in plants. To investigate the underlying mechanisms of this toxicity and bicarbonate (HCO3-)-dependent alleviation, wheat plants were hydroponically cultivated in half-strength Hoagland nutrient solution containing 7.5 mM NO3- (CK), 7.5 mM NH4+ (SA), or 7.5 mM NH4+ + 3 mM HCO3- (AC). Transcriptomic analysis revealed that compared to CK, SA treatment at 48 h significantly upregulated the expression of genes encoding fermentation enzymes (pyruvate decarboxylase (PDC), alcohol dehydrogenase (ADH), and lactate dehydrogenase (LDH)) and oxygen consumption enzymes (respiratory burst oxidase homologs, dioxygenases, and alternative oxidases), downregulated the expression of genes encoding oxygen transporters (PIP-type aquaporins, non-symbiotic hemoglobins), and those involved in energy metabolism, including tricarboxylic acid (TCA) cycle enzymes and ATP synthases, but upregulated the glycolytic enzymes in the roots and downregulated the expression of genes involved in the cell cycle and elongation. The physiological assay showed that SA treatment significantly increased PDC, ADH, and LDH activity by 36.69%, 43.66%, and 61.60%, respectively; root ethanol concentration by 62.95%; and lactate efflux by 23.20%, and significantly decreased the concentrations of pyruvate and most TCA cycle intermediates, the complex V activity, ATP content, and ATP/ADP ratio. As a consequence, SA significantly inhibited root growth. AC treatment reversed the changes caused by SA and alleviated the inhibition of root growth. In conclusion, NH4+ treatment alone may cause hypoxic stress in the roots, inhibit energy generation, suppress cell division and elongation, and ultimately inhibit root growth, and adding HCO3- remarkably alleviates the NH4+-induced inhibitory effects on root growth largely by attenuating the hypoxic stress.
Collapse
Affiliation(s)
- Xiao Liu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Yunxiu Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Chengming Tang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Huawei Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Haiyong Xia
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Shoujin Fan
- College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Lingan Kong
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- College of Life Science, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
4
|
The Pentose Phosphate Pathway in Yeasts-More Than a Poor Cousin of Glycolysis. Biomolecules 2021; 11:biom11050725. [PMID: 34065948 PMCID: PMC8151747 DOI: 10.3390/biom11050725] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 01/14/2023] Open
Abstract
The pentose phosphate pathway (PPP) is a route that can work in parallel to glycolysis in glucose degradation in most living cells. It has a unidirectional oxidative part with glucose-6-phosphate dehydrogenase as a key enzyme generating NADPH, and a non-oxidative part involving the reversible transketolase and transaldolase reactions, which interchange PPP metabolites with glycolysis. While the oxidative branch is vital to cope with oxidative stress, the non-oxidative branch provides precursors for the synthesis of nucleic, fatty and aromatic amino acids. For glucose catabolism in the baker’s yeast Saccharomyces cerevisiae, where its components were first discovered and extensively studied, the PPP plays only a minor role. In contrast, PPP and glycolysis contribute almost equally to glucose degradation in other yeasts. We here summarize the data available for the PPP enzymes focusing on S. cerevisiae and Kluyveromyces lactis, and describe the phenotypes of gene deletions and the benefits of their overproduction and modification. Reference to other yeasts and to the importance of the PPP in their biotechnological and medical applications is briefly being included. We propose future studies on the PPP in K. lactis to be of special interest for basic science and as a host for the expression of human disease genes.
Collapse
|
5
|
Zhang B, Ren L, Zhao Z, Zhang S, Xu D, Zeng X, Li F. High temperature xylitol production through simultaneous co-utilization of glucose and xylose by engineered Kluyveromyces marxianus. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2020.107820] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Functional analysis of PGI1 and ZWF1 in thermotolerant yeast Kluyveromyces marxianus. Appl Microbiol Biotechnol 2020; 104:7991-8006. [PMID: 32776206 DOI: 10.1007/s00253-020-10808-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/06/2020] [Accepted: 08/02/2020] [Indexed: 02/08/2023]
Abstract
Glycolysis and the pentose phosphate pathway (PPP) are two basic metabolic pathways that are simultaneously present in yeasts. As the main pathway in most species, the glycolysis provides ATP and NADH for cell metabolism while PPP, as a complementary pathway, supplies NADPH. In this study, the performance of Kluyveromyces marxianus using glycolysis or PPP were studied through the disruption of PGI1 or ZWF1 gene, respectively. K. marxianus using glycolysis as the only pathway showed higher ethanol production ability than that of the Kluyveromyces lactis zwf1Δ mutant; K. marxianus using only PPP showed more robustness than that of Saccharomyces cerevisiae pgi1Δ mutant. Additionally, K. marxianus pgi1Δ strain accumulated much more intracellular NADPH than the wild type strain and co-utilized glucose and xylose more effectively. These findings suggest that phosphoglucose isomerase participates in the regulation of the repression of glucose on xylose utilization in K. marxianus. The NADPH/NADP+ ratio, dependent on the activity of the PPP, regulated the expression of multiple genes related to NADPH metabolism in K. marxianus (including NDE1, NDE2, GLR1, and GDP1). Since K. marxianus is considered a promising host in industrial biotechnology to produce renewable chemicals from plant biomass feedstocks, our research showed the potential of the thermotolerant K. marxianus to produce NADP(H)-dependent chemical synthesis from multiple feedstocks. KEY POINTS: • The function of PGI1 and ZWF1 in K. marxianus has been analyzed in this study. • K. marxianus zwf1Δ strain produced ethanol but with decreased productivity. • K. marxianus pgi1Δ strain grew with glucose and accumulated NADPH. • K. marxianus pgi1Δ strain released glucose repression on xylose utilization.
Collapse
|
7
|
Juergens H, Hakkaart XDV, Bras JE, Vente A, Wu L, Benjamin KR, Pronk JT, Daran-Lapujade P, Mans R. Contribution of Complex I NADH Dehydrogenase to Respiratory Energy Coupling in Glucose-Grown Cultures of Ogataea parapolymorpha. Appl Environ Microbiol 2020; 86:e00678-20. [PMID: 32471916 PMCID: PMC7376551 DOI: 10.1128/aem.00678-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/04/2020] [Indexed: 12/31/2022] Open
Abstract
The thermotolerant yeast Ogataea parapolymorpha (formerly Hansenula polymorpha) is an industrially relevant production host that exhibits a fully respiratory sugar metabolism in aerobic batch cultures. NADH-derived electrons can enter its mitochondrial respiratory chain either via a proton-translocating complex I NADH-dehydrogenase or via three putative alternative NADH dehydrogenases. This respiratory entry point affects the amount of ATP produced per NADH/O2 consumed and therefore impacts the maximum yield of biomass and/or cellular products from a given amount of substrate. To investigate the physiological importance of complex I, a wild-type O. parapolymorpha strain and a congenic complex I-deficient mutant were grown on glucose in aerobic batch, chemostat, and retentostat cultures in bioreactors. In batch cultures, the two strains exhibited a fully respiratory metabolism and showed the same growth rates and biomass yields, indicating that, under these conditions, the contribution of NADH oxidation via complex I was negligible. Both strains also exhibited a respiratory metabolism in glucose-limited chemostat cultures, but the complex I-deficient mutant showed considerably reduced biomass yields on substrate and oxygen, consistent with a lower efficiency of respiratory energy coupling. In glucose-limited retentostat cultures at specific growth rates down to ∼0.001 h-1, both O. parapolymorpha strains showed high viability. Maintenance energy requirements at these extremely low growth rates were approximately 3-fold lower than estimated from faster-growing chemostat cultures, indicating a stringent-response-like behavior. Quantitative transcriptome and proteome analyses indicated condition-dependent expression patterns of complex I subunits and of alternative NADH dehydrogenases that were consistent with physiological observations.IMPORTANCE Since popular microbial cell factories have typically not been selected for efficient respiratory energy coupling, their ATP yields from sugar catabolism are often suboptimal. In aerobic industrial processes, suboptimal energy coupling results in reduced product yields on sugar, increased process costs for oxygen transfer, and volumetric productivity limitations due to limitations in gas transfer and cooling. This study provides insights into the contribution of mechanisms of respiratory energy coupling in the yeast cell factory Ogataea parapolymorpha under different growth conditions and provides a basis for rational improvement of energy coupling in yeast cell factories. Analysis of energy metabolism of O. parapolymorpha at extremely low specific growth rates indicated that this yeast reduces its energy requirements for cellular maintenance under extreme energy limitation. Exploration of the mechanisms for this increased energetic efficiency may contribute to an optimization of the performance of industrial processes with slow-growing eukaryotic cell factories.
Collapse
Affiliation(s)
- Hannes Juergens
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Xavier D V Hakkaart
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Jildau E Bras
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - André Vente
- DSM Biotechnology Center, Delft, The Netherlands
| | - Liang Wu
- DSM Biotechnology Center, Delft, The Netherlands
| | | | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | | | - Robert Mans
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
8
|
Antos-Krzeminska N, Jarmuszkiewicz W. Alternative Type II NAD(P)H Dehydrogenases in the Mitochondria of Protists and Fungi. Protist 2018; 170:21-37. [PMID: 30553126 DOI: 10.1016/j.protis.2018.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/12/2018] [Accepted: 11/04/2018] [Indexed: 01/11/2023]
Abstract
Plants, fungi, and some protists possess a more branched electron transport chain in their mitochondria compared to canonical one. In these organisms, the electron transport chain contains several rotenone-insensitive NAD(P)H dehydrogenases. Some are located on the outer surface, and others are located on the inner surface of the inner mitochondrial membrane. The putative role of these enzymes still remains elusive, but they may prevent the overreduction of the electron transport chain components and decrease the production of reaction oxygen species as a consequence. The last two decades resulted in the discovery of alternative rotenone-insensitive NAD(P)H dehydrogenases present in representatives of fungi and protozoa. The aim of this review is to gather and focus on current information concerning molecular and functional properties, regulation, and the physiological role of fungal and protozoan alternative NAD(P)H dehydrogenases.
Collapse
Affiliation(s)
- Nina Antos-Krzeminska
- Department of Bioenergetics, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland.
| | - Wieslawa Jarmuszkiewicz
- Department of Bioenergetics, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| |
Collapse
|
9
|
Mojardín L, Vega M, Moreno F, Schmitz HP, Heinisch JJ, Rodicio R. Lack of the NAD+-dependent glycerol 3-phosphate dehydrogenase impairs the function of transcription factors Sip4 and Cat8 required for ethanol utilization in Kluyveromyces lactis. Fungal Genet Biol 2018; 111:16-29. [DOI: 10.1016/j.fgb.2017.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 11/19/2017] [Accepted: 11/21/2017] [Indexed: 11/25/2022]
|
10
|
Tomàs-Gamisans M, Ferrer P, Albiol J. Integration and Validation of the Genome-Scale Metabolic Models of Pichia pastoris: A Comprehensive Update of Protein Glycosylation Pathways, Lipid and Energy Metabolism. PLoS One 2016; 11:e0148031. [PMID: 26812499 PMCID: PMC4734642 DOI: 10.1371/journal.pone.0148031] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 01/12/2016] [Indexed: 01/21/2023] Open
Abstract
Motivation Genome-scale metabolic models (GEMs) are tools that allow predicting a phenotype from a genotype under certain environmental conditions. GEMs have been developed in the last ten years for a broad range of organisms, and are used for multiple purposes such as discovering new properties of metabolic networks, predicting new targets for metabolic engineering, as well as optimizing the cultivation conditions for biochemicals or recombinant protein production. Pichia pastoris is one of the most widely used organisms for heterologous protein expression. There are different GEMs for this methylotrophic yeast of which the most relevant and complete in the published literature are iPP668, PpaMBEL1254 and iLC915. However, these three models differ regarding certain pathways, terminology for metabolites and reactions and annotations. Moreover, GEMs for some species are typically built based on the reconstructed models of related model organisms. In these cases, some organism-specific pathways could be missing or misrepresented. Results In order to provide an updated and more comprehensive GEM for P. pastoris, we have reconstructed and validated a consensus model integrating and merging all three existing models. In this step a comprehensive review and integration of the metabolic pathways included in each one of these three versions was performed. In addition, the resulting iMT1026 model includes a new description of some metabolic processes. Particularly new information described in recently published literature is included, mainly related to fatty acid and sphingolipid metabolism, glycosylation and cell energetics. Finally the reconstructed model was tested and validated, by comparing the results of the simulations with available empirical physiological datasets results obtained from a wide range of experimental conditions, such as different carbon sources, distinct oxygen availability conditions, as well as producing of two different recombinant proteins. In these simulations, the iMT1026 model has shown a better performance than the previous existing models.
Collapse
Affiliation(s)
- Màrius Tomàs-Gamisans
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Pau Ferrer
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Joan Albiol
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
- * E-mail:
| |
Collapse
|
11
|
Involvement of mitochondrial proteins in calcium signaling and cell death induced by staurosporine in Neurospora crassa. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1064-74. [DOI: 10.1016/j.bbabio.2015.05.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 04/23/2015] [Accepted: 05/15/2015] [Indexed: 12/20/2022]
|
12
|
González-Siso MI, Touriño A, Vizoso Á, Pereira-Rodríguez Á, Rodríguez-Belmonte E, Becerra M, Cerdán ME. Improved bioethanol production in an engineered Kluyveromyces lactis strain shifted from respiratory to fermentative metabolism by deletion of NDI1. Microb Biotechnol 2014; 8:319-30. [PMID: 25186243 PMCID: PMC4353345 DOI: 10.1111/1751-7915.12160] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/10/2014] [Accepted: 07/29/2014] [Indexed: 11/30/2022] Open
Abstract
In this paper, we report the metabolic engineering of the respiratory yeast Kluyveromyces lactis by construction and characterization of a null mutant (Δklndi1) in the single gene encoding a mitochondrial alternative internal dehydrogenase. Isolated mitochondria of the Δklndi1 mutant show unaffected rate of oxidation of exogenous NADH, but no oxidation of matrix NADH; this confirms that KlNdi1p is the only internal NADH dehydrogenase in K. lactis mitochondria. Permeabilized cells of the Δklndi1 mutant do not show oxidation of matrix NADH, which suggests that shuttle systems to transfer the NADH from mitochondrial matrix to cytosol, for being oxidized by external dehydrogenases, are not functional. The Δklndi1 mutation decreases the chronological life span in absence of nutrients. The expression of KlNDI1 is increased by glutathione reductase depletion. The Δklndi1 mutation shifts the K. lactis metabolism from respiratory to fermentative: the Δklndi1 strain shows reduced respiration rate and increased ethanol production from glucose, while it does not grow in non-fermentable carbon sources such as lactate. The biotechnological benefit of the Δklndi1 mutant for bioethanol production from waste cheese whey lactose was proved.
Collapse
Affiliation(s)
- María Isabel González-Siso
- Grupo de Investigación EXPRELA, Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña, Campus de A Coruña, 15071-, A Coruña, Spain
| | | | | | | | | | | | | |
Collapse
|
13
|
Gorietti D, Zanni E, Palleschi C, Delfini M, Uccelletti D, Saliola M, Miccheli A. Depletion of casein kinase I leads to a NAD(P)(+)/NAD(P)H balance-dependent metabolic adaptation as determined by NMR spectroscopy-metabolomic profile in Kluyveromyces lactis. Biochim Biophys Acta Gen Subj 2013; 1840:556-64. [PMID: 24144565 DOI: 10.1016/j.bbagen.2013.10.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/25/2013] [Accepted: 10/12/2013] [Indexed: 01/01/2023]
Abstract
BACKGROUND In the Crabtree-negative Kluyveromyces lactis yeast the rag8 mutant is one of nineteen complementation groups constituting the fermentative-deficient model equivalent to the Saccharomyces cerevisiae respiratory petite mutants. These mutants display pleiotropic defects in membrane fatty acids and/or cell walls, osmo-sensitivity and the inability to grow under strictly anaerobic conditions (Rag(-) phenotype). RAG8 is an essential gene coding for the casein kinase I, an evolutionary conserved activity involved in a wide range of cellular processes coordinating morphogenesis and glycolytic flux with glucose/oxygen sensing. METHODS A metabolomic approach was performed by NMR spectroscopy to investigate how the broad physiological roles of Rag8, taken as a model for all rag mutants, coordinate cellular responses. RESULTS Statistical analysis of metabolomic data showed a significant increase in the level of metabolites in reactions directly involved in the reoxidation of the NAD(P)H in rag8 mutant samples with respect to the wild type ones. We also observed an increased de novo synthesis of nicotinamide adenine dinucleotide. On the contrary, the production of metabolites in pathways leading to the reduction of the cofactors was reduced. CONCLUSIONS The changes in metabolite levels in rag8 showed a metabolic adaptation that is determined by the intracellular NAD(P)(+)/NAD(P)H redox balance state. GENERAL SIGNIFICANCE The inadequate glycolytic flux of the mutant leads to a reduced/asymmetric distribution of acetyl-CoA to the different cellular compartments with loss of the fatty acid dynamic respiratory/fermentative adaptive balance response.
Collapse
Affiliation(s)
- D Gorietti
- Department of Chemistry, Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
14
|
Rodicio R, Heinisch JJ. Yeast on the milky way: genetics, physiology and biotechnology of Kluyveromyces lactis. Yeast 2013; 30:165-77. [PMID: 23576126 DOI: 10.1002/yea.2954] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 03/08/2013] [Accepted: 03/12/2013] [Indexed: 11/08/2022] Open
Abstract
The milk yeast Kluyveromyces lactis has a life cycle similar to that of Saccharomyces cerevisiae and can be employed as a model eukaryote using classical genetics, such as the combination of desired traits, by crossing and tetrad analysis. Likewise, a growing set of vectors, marker cassettes and tags for fluorescence microscopy are available for manipulation by genetic engineering and investigating its basic cell biology. We here summarize these applications, as well as the current knowledge regarding its central metabolism, glucose and extracellular stress signalling pathways. A short overview on the biotechnological potential of K. lactis concludes this review.
Collapse
Affiliation(s)
- Rosaura Rodicio
- Departamento de Bioquímica y Biología Molecular and Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, Spain
| | | |
Collapse
|
15
|
Intracellular NADPH levels affect the oligomeric state of the glucose 6-phosphate dehydrogenase. EUKARYOTIC CELL 2012; 11:1503-11. [PMID: 23064253 DOI: 10.1128/ec.00211-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the yeast Kluyveromyces lactis, glucose 6-phosphate dehydrogenase (G6PDH) is detected as two differently migrating forms on native polyacrylamide gels. The pivotal metabolic role of G6PDH in K. lactis led us to investigate the mechanism controlling the two activities in respiratory and fermentative mutant strains. An extensive analysis of these mutants showed that the NAD(+)(H)/NADP(+)(H)-dependent cytosolic alcohol (ADH) and aldehyde (ALD) dehydrogenase balance affects the expression of the G6PDH activity pattern. Under fermentative/ethanol growth conditions, the concomitant activation of ADH and ALD activities led to cytosolic accumulation of NADPH, triggering an alteration in the oligomeric state of the G6PDH caused by displacement/release of the structural NADP(+) bound to each subunit of the enzyme. The new oligomeric G6PDH form with faster-migrating properties increases as a consequence of intracellular redox unbalance/NADPH accumulation, which inhibits G6PDH activity in vivo. The appearance of a new G6PDH-specific activity band, following incubation of Saccharomyces cerevisiae and human cellular extracts with NADP(+), also suggests that a regulatory mechanism of this activity through NADPH accumulation is highly conserved among eukaryotes.
Collapse
|
16
|
Dias O, Gombert AK, Ferreira EC, Rocha I. Genome-wide metabolic (re-) annotation of Kluyveromyces lactis. BMC Genomics 2012; 13:517. [PMID: 23025710 PMCID: PMC3508617 DOI: 10.1186/1471-2164-13-517] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 08/06/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Even before having its genome sequence published in 2004, Kluyveromyces lactis had long been considered a model organism for studies in genetics and physiology. Research on Kluyveromyces lactis is quite advanced and this yeast species is one of the few with which it is possible to perform formal genetic analysis. Nevertheless, until now, no complete metabolic functional annotation has been performed to the proteins encoded in the Kluyveromyces lactis genome. RESULTS In this work, a new metabolic genome-wide functional re-annotation of the proteins encoded in the Kluyveromyces lactis genome was performed, resulting in the annotation of 1759 genes with metabolic functions, and the development of a methodology supported by merlin (software developed in-house). The new annotation includes novelties, such as the assignment of transporter superfamily numbers to genes identified as transporter proteins. Thus, the genes annotated with metabolic functions could be exclusively enzymatic (1410 genes), transporter proteins encoding genes (301 genes) or have both metabolic activities (48 genes). The new annotation produced by this work largely surpassed the Kluyveromyces lactis currently available annotations. A comparison with KEGG's annotation revealed a match with 844 (~90%) of the genes annotated by KEGG, while adding 850 new gene annotations. Moreover, there are 32 genes with annotations different from KEGG. CONCLUSIONS The methodology developed throughout this work can be used to re-annotate any yeast or, with a little tweak of the reference organism, the proteins encoded in any sequenced genome. The new annotation provided by this study offers basic knowledge which might be useful for the scientific community working on this model yeast, because new functions have been identified for the so-called metabolic genes. Furthermore, it served as the basis for the reconstruction of a compartmentalized, genome-scale metabolic model of Kluyveromyces lactis, which is currently being finished.
Collapse
Affiliation(s)
- Oscar Dias
- IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | | | | | | |
Collapse
|
17
|
dos Santos VC, Bragança CRS, Passos FJV, Passos FML. Kinetics of growth and ethanol formation from a mix of glucose/xylose substrate by Kluyveromyces marxianus UFV-3. Antonie van Leeuwenhoek 2012; 103:153-61. [PMID: 22965752 DOI: 10.1007/s10482-012-9794-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Accepted: 08/09/2012] [Indexed: 11/27/2022]
Abstract
The fermentation of both glucose and xylose is important to maximize ethanol yield from renewable biomass feedstocks. In this article, we analyze growth, sugar consumption, and ethanol formation by the yeast Kluyveromyces marxianus UFV-3 using various glucose and xylose concentrations and also under conditions of reduced respiratory activity. In almost all the conditions analyzed, glucose repressed xylose assimilation and xylose consumption began after glucose had been exhausted. A remarkable difference was observed when mixtures of 5 g L(-1) glucose/20 g L(-1) xylose and 20 g L(-1) glucose/20 g L(-1) xylose were used. In the former, the xylose consumption began immediately after the glucose depletion. Indeed, there was no striking diauxic phase, as observed in the latter condition, in which there was an interval of 30 h between glucose depletion and the beginning of xylose consumption. Ethanol production was always higher in a mixture of glucose and xylose than in glucose alone. The highest ethanol concentration (8.65 g L(-1)) and cell mass concentration (4.42 g L(-1)) were achieved after 8 and 74 h, respectively, in a mixture of 20 g L(-1) glucose/20 g L(-1) xylose. When inhibitors of respiration were added to the medium, glucose repression of xylose consumption was alleviated completely and K. marxianus was able to consume xylose and glucose simultaneously.
Collapse
Affiliation(s)
- Valdilene Canazart dos Santos
- Department of Microbiology, Institute for Biotechnology Applied to Agriculture and Animal Science, Federal University of Viçosa, Viçosa, MG, Brazil
| | | | | | | |
Collapse
|
18
|
Kluyveromyces lactis: a suitable yeast model to study cellular defense mechanisms against hypoxia-induced oxidative stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:634674. [PMID: 22928082 PMCID: PMC3425888 DOI: 10.1155/2012/634674] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 06/22/2012] [Indexed: 11/17/2022]
Abstract
Studies about hypoxia-induced oxidative stress in human health disorders take advantage from the use of unicellular eukaryote models. A widely extended model is the fermentative yeast Saccharomyces cerevisiae. In this paper, we describe an overview of the molecular mechanisms induced by a decrease in oxygen availability and their interrelationship with the oxidative stress response in yeast. We focus on the differential characteristics between S. cerevisiae and the respiratory yeast Kluyveromyces lactis, a complementary emerging model, in reference to multicellular eukaryotes.
Collapse
|
19
|
García-Leiro A, Cerdán ME, González-Siso MI. A functional analysis of Kluyveromyces lactis glutathione reductase. Yeast 2010; 27:431-41. [DOI: 10.1002/yea.1760] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
20
|
González-Siso MI, García-Leiro A, Tarrío N, Cerdán ME. Sugar metabolism, redox balance and oxidative stress response in the respiratory yeast Kluyveromyces lactis. Microb Cell Fact 2009; 8:46. [PMID: 19715615 PMCID: PMC2754438 DOI: 10.1186/1475-2859-8-46] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 08/30/2009] [Indexed: 12/04/2022] Open
Abstract
A lot of studies have been carried out on Saccharomyces cerevisiae, an yeast with a predominant fermentative metabolism under aerobic conditions, which allows exploring the complex response induced by oxidative stress. S. cerevisiae is considered a eukaryote model for these studies. We propose Kluyveromyces lactis as a good alternative model to analyse variants in the oxidative stress response, since the respiratory metabolism in this yeast is predominant under aerobic conditions and it shows other important differences with S. cerevisiae in catabolic repression and carbohydrate utilization. The knowledge of oxidative stress response in K. lactis is still a developing field. In this article, we summarize the state of the art derived from experimental approaches and we provide a global vision on the characteristics of the putative K. lactis components of the oxidative stress response pathway, inferred from their sequence homology with the S. cerevisiae counterparts. Since K. lactis is also a well-established alternative host for industrial production of native enzymes and heterologous proteins, relevant differences in the oxidative stress response pathway and their potential in biotechnological uses of this yeast are also reviewed.
Collapse
Affiliation(s)
- M Isabel González-Siso
- Department of Molecular and Cell Biology, University of A Coruña, Campus da Zapateira s/n, 15071- A Coruña, Spain.
| | | | | | | |
Collapse
|
21
|
Merico A, Galafassi S, Piskur J, Compagno C. The oxygen level determines the fermentation pattern in Kluyveromyces lactis. FEMS Yeast Res 2009; 9:749-56. [PMID: 19500150 DOI: 10.1111/j.1567-1364.2009.00528.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Yeasts belonging to the lineage that underwent whole-genome duplication (WGD) possess a good fermentative potential and can proliferate in the absence of oxygen. In this study, we analyzed the pre-WGD yeast Kluyveromyces lactis and its ability to grow under oxygen-limited conditions. Under these conditions, K. lactis starts to increase the glucose metabolism and accumulates ethanol and glycerol. However, under more limited conditions, the fermentative metabolism decreases, causing a slow growth rate. In contrast, Saccharomyces cerevisiae and Saccharomyces kluyveri in anaerobiosis exhibit almost the same growth rate as in aerobiosis. In this work, we showed that in K. lactis, under oxygen-limited conditions, a decreased expression of RAG1 occurred. The activity of glucose-6-phosphate dehydrogenase also decreased, likely causing a reduced flux in the pentose phosphate pathway. Comparison of related and characterized yeasts suggests that the behavior observed in K. lactis could reflect the lack of an efficient mechanism to maintain a high glycolytic flux and to balance the redox homeostasis under hypoxic conditions. This could be a consequence of a recent specialization of K. lactis toward living in a niche where the ethanol accumulation at high oxygen concentrations and the ability to survive at a low oxygen concentration do not represent an advantage.
Collapse
Affiliation(s)
- Annamaria Merico
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, via Celoria 26, Milan, Italy
| | | | | | | |
Collapse
|
22
|
Saliola M, Sponziello M, D'Amici S, Lodi T, Falcone C. Characterization of KlGUT2, a gene of the glycerol-3-phosphate shuttle, in Kluyveromyces lactis. FEMS Yeast Res 2008; 8:697-705. [PMID: 18503541 DOI: 10.1111/j.1567-1364.2008.00386.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
KlGUT2 encodes the mitochondrial component of the glycerol-3-phosphate shuttle in Kluyveromyces lactis, a dehydrogenase involved in the maintenance of the NADH redox balance and in glycerol utilization. Deletion of KlGUT2 led to glycerol accumulation during growth in glucose and growth retardation in ethanol. In addition, KlGUT2 deletion altered the expression of other mitochondrial dehydrogenases that contribute to the maintenance of the intracellular redox balance, suggesting a rerouting of ethanol oxidation from the cytoplasm to the mitochondria. Finally, Northern analysis showed that KlGUT2 has two transcripts: one constitutively expressed and dependent on HGT1, the high-affinity hexose transporter gene, and the other induced under respiratory conditions.
Collapse
Affiliation(s)
- Michele Saliola
- Department of Cell and Developmental Biology, University of Rome La Sapienza, Piazzale Aldo Moro, Rome, Italy.
| | | | | | | | | |
Collapse
|
23
|
Tarrío N, García-Leiro A, Cerdán ME, González-Siso MI. The role of glutathione reductase in the interplay between oxidative stress response and turnover of cytosolic NADPH in Kluyveromyces lactis. FEMS Yeast Res 2008; 8:597-606. [PMID: 18318708 DOI: 10.1111/j.1567-1364.2008.00366.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The phosphoglucose isomerase mutant of the respiratory yeast Kluyveromyces lactis (rag2) is forced to metabolize glucose through the oxidative pentose phosphate pathway and shows an increased respiratory chain activity and reactive oxygen species production. We have proved that the K. lactis rag2 mutant is more resistant to oxidative stress (OS) than the wild type, and higher activities of glutathione reductase (GLR) and catalase contribute to this phenotype. Resistance to OS of the rag2 mutant is reduced when the gene encoding GLR is deleted. The reduction is higher when, in addition, catalase activity is inhibited. In K. lactis, catalase activity is induced by peroxide-mediated OS but GLR is not. We have found that the increase of GLR activity is correlated with that of glucose-6-phosphate dehydrogenase (G6PDH) activity that produces NADPH. G6PDH is positively regulated by an active respiratory chain and GLR plays a role in the reoxidation of the NADPH from the pentose phosphate pathway in these conditions. Cytosolic NADPH is also used by mitochondrial external alternative dehydrogenases. Neither GLR overexpression nor induction of the OS response restores growth on glucose of the rag2 mutant when the mitochondrial reoxidation of cytosolic NADPH is blocked.
Collapse
Affiliation(s)
- Nuria Tarrío
- Department of Molecular and Cell Biology, University of A Coruña, A Coruña, Spain
| | | | | | | |
Collapse
|
24
|
Blanco M, Núñez L, Tarrío N, Canto E, Becerra M, González-Siso MI, Cerdán ME. An approach to the hypoxic and oxidative stress responses inKluyveromyces lactisby analysis of mRNA levels. FEMS Yeast Res 2007; 7:702-14. [PMID: 17425672 DOI: 10.1111/j.1567-1364.2007.00233.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Genome duplication, after the divergence of Saccharomyces cerevisiae from Kluyveromyces lactis along evolution, has been proposed as a mechanism of yeast evolution from strict aerobics, such as Candida albicans, to facultatives/fermentatives, such as S. cerevisiae. This feature, together with the preponderance of respiration and the use of the pentose phosphate pathway in glucose utilization, makes K. lactis a model yeast for studies related to carbon and oxygen metabolism. In this work, and based on the knowledge of the sequence of the genome of K. lactis, obtained by the Génolevures project, we have constructed DNA arrays from K. lactis including a limited amount of selected probes. They are related to the aerobiosis-hypoxia adaptation and to the oxidative stress response, and have been used to test changes in mRNA levels in response to hypoxia and oxidative stress generated by H(2)O(2). The study was carried out in both wild-type and rag2 mutant K. lactis strains in which glycolysis is blocked at the phosphoglucose isomerase step. This approach is the first analysis carried out in K. lactis for the majority of the genes selected.
Collapse
Affiliation(s)
- Moisés Blanco
- Department of Molecular and Cell Biology, University of A Coruña, A Coruña, Spain
| | | | | | | | | | | | | |
Collapse
|
25
|
Saliola M, Getuli C, Mazzoni C, Fantozzi I, Falcone C. A new regulatory element mediates ethanol repression of KlADH3, a Kluyveromyces lactis gene coding for a mitochondrial alcohol dehydrogenase. FEMS Yeast Res 2007; 7:693-701. [PMID: 17506832 DOI: 10.1111/j.1567-1364.2007.00250.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
KlADH3 is a Kluyveromyces lactis alcohol dehydrogenase gene induced in the presence of all respiratory carbon sources except ethanol, which specifically represses this gene. Deletion analysis of the KlADH3 promoter revealed the presence of both positive and negative elements. However, by site-directed mutagenesis and gel retardation experiments, we identified a 15-bp element responsible for the transcriptional repression of this gene by ethanol. In particular, this element showed putative sites required for the sequential binding of ethanol-induced factors responsible for the repressed conditions, and the binding of additional factors relieved repression. In addition, we showed that the ethanol element was required for in vivo repression of KlAdh3 activity.
Collapse
Affiliation(s)
- Michele Saliola
- Department of Cell and Developmental Biology, University of Rome 'La Sapienza', Piazzale Aldo Moro, Rome, Italy.
| | | | | | | | | |
Collapse
|
26
|
Saliola M, De Maria I, Lodi T, Fiori A, Falcone C. KlADH3, a gene encoding a mitochondrial alcohol dehydrogenase, affects respiratory metabolism and cytochrome content in Kluyveromyces lactis. FEMS Yeast Res 2007; 6:1184-92. [PMID: 17156015 DOI: 10.1111/j.1567-1364.2006.00103.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
A Kluyveromyces lactis strain, harbouring KlADH3 as the unique alcohol dehydrogenase (ADH) gene, was used in a genetic screen on allyl alcohol to isolate mutants deregulated in the expression of this gene. Here we report the characterization of some mutants that lacked or had highly reduced amounts of KlAdh3p activity; in addition, these mutants showed alterations in glucose metabolism, reduced respiration and reduced cytochrome content. Our results confirm that the KlAdh3p activity contributes to the reoxidation of cytosolic NAD(P)H feeding the respiratory chain through KlNdi1p, the mitochondrial internal transdehydrogenase. The low levels of KlAdh3p in two of the mutants were associated with mutations in KlSDH1, one of the genes of complex II, suggesting signalling between the respiratory chain and expression of the KlADH3 gene.
Collapse
Affiliation(s)
- Michele Saliola
- Dipartimento di Biologia Cellulare e dello Sviluppo, Università di Roma, La Sapienza, Rome, Italy.
| | | | | | | | | |
Collapse
|
27
|
Saliola M, Scappucci G, De Maria I, Lodi T, Mancini P, Falcone C. Deletion of the glucose-6-phosphate dehydrogenase gene KlZWF1 affects both fermentative and respiratory metabolism in Kluyveromyces lactis. EUKARYOTIC CELL 2006; 6:19-27. [PMID: 17085636 PMCID: PMC1800367 DOI: 10.1128/ec.00189-06] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Kluyveromyces lactis, the pentose phosphate pathway is an alternative route for the dissimilation of glucose. The first enzyme of the pathway is the glucose-6-phosphate dehydrogenase (G6PDH), encoded by KlZWF1. We isolated this gene and examined its role. Like ZWF1 of Saccharomyces cerevisiae, KlZWF1 was constitutively expressed, and its deletion led to increased sensitivity to hydrogen peroxide on glucose, but unlike the case for S. cerevisiae, the Klzwf1Delta strain had a reduced biomass yield on fermentative carbon sources as well as on lactate and glycerol. In addition, the reduced yield on glucose was associated with low ethanol production and decreased oxygen consumption, indicating that this gene is required for both fermentation and respiration. On ethanol, however, the mutant showed an increased biomass yield. Moreover, on this substrate, wild-type cells showed an additional band of activity that might correspond to a dimeric form of G6PDH. The partial dimerization of the G6PDH tetramer on ethanol suggested the production of an NADPH excess that was negative for biomass yield.
Collapse
Affiliation(s)
- Michele Saliola
- Department of Cell and Developmental Biology, University of Rome La Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | | | | | | | | | | |
Collapse
|
28
|
Tarrío N, Becerra M, Cerdán ME, González Siso MI. Reoxidation of cytosolic NADPH in Kluyveromyces lactis. FEMS Yeast Res 2006; 6:371-80. [PMID: 16630277 DOI: 10.1111/j.1567-1364.2005.00021.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Saccharomyces cerevisiae and Kluyveromyces lactis are considered to be the prototypes of two distinct metabolic models of facultatively-aerobic yeasts: Crabtree-positive/fermentative and Crabtree-negative/respiratory, respectively. Our group had previously proposed that one of the molecular keys supporting this difference lies in the mechanisms involved in the reoxidation of the NADPH produced as a consequence of the activity of the pentose phosphate pathway. It has been demonstrated that a significant part of this reoxidation is carried out in K. lactis by mitochondrial external alternative dehydrogenases which use NADPH, the enzymes of S. cerevisiae being NADH-specific. Moreover, the NADPH-dependent pathways of response to oxidative stress appear as a feasible alternative that might co-exist with direct mitochondrial reoxidation.
Collapse
Affiliation(s)
- Nuria Tarrío
- Department of Molecular and Cell Biology, University of A Coruña, Campus da Zapateira, A Coruña, Spain
| | | | | | | |
Collapse
|
29
|
Tarrío N, Cerdán ME, González Siso MI. Characterization of the second external alternative dehydrogenase from mitochondria of the respiratory yeast Kluyveromyces lactis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:1476-84. [PMID: 17052684 DOI: 10.1016/j.bbabio.2006.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 09/04/2006] [Accepted: 09/07/2006] [Indexed: 11/28/2022]
Abstract
The mitochondria of the respiratory yeast Kluyveromyces lactis are able to reoxidize cytosolic NADPH. Previously, we characterized an external alternative dehydrogenase, KlNde1p, having this activity. We now characterize the second external alternative dehydrogenase of K. lactis mitochondria, KlNde2p. We examined its role in cytosolic NADPH reoxidation by studying heterologous expression of KlNDE2 in Saccharomyces cerevisiae mutants and by constructing Deltaklnde1 and Deltaklnde2 mutants. KlNde2p uses NADH or NADPH as substrates, its activity in isolated mitochondria is not regulated by exogenously added calcium and it is not down-regulated when the cells grow in glucose versus lactate. KlNde2p shows lower affinity for NADPH than KlNde1p. Both enzymes show similar pH optimum.
Collapse
Affiliation(s)
- Nuria Tarrío
- Department of Molecular and Cell Biology, University of A Coruña, Campus da Zapateira s/n, 15071-A Coruña, Spain
| | | | | |
Collapse
|
30
|
Current awareness on yeast. Yeast 2005; 22:1249-56. [PMID: 16320446 DOI: 10.1002/yea.1170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|