1
|
Manoj KM, Bazhin N. The murburn precepts for aerobic respiration and redox homeostasis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 167:104-120. [DOI: 10.1016/j.pbiomolbio.2021.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/13/2021] [Accepted: 05/31/2021] [Indexed: 12/13/2022]
|
2
|
Abstract
All living cells interact dynamically with a constantly changing world. Eukaryotes, in particular, evolved radically new ways to sense and react to their environment. These advances enabled new and more complex forms of cellular behaviour in eukaryotes, including directional movement, active feeding, mating, and responses to predation. But what are the key events and innovations during eukaryogenesis that made all of this possible? Here we describe the ancestral repertoire of eukaryotic excitability and discuss five major cellular innovations that enabled its evolutionary origin. The innovations include a vastly expanded repertoire of ion channels, the emergence of cilia and pseudopodia, endomembranes as intracellular capacitors, a flexible plasma membrane and the relocation of chemiosmotic ATP synthesis to mitochondria, which liberated the plasma membrane for more complex electrical signalling involved in sensing and reacting. We conjecture that together with an increase in cell size, these new forms of excitability greatly amplified the degrees of freedom associated with cellular responses, allowing eukaryotes to vastly outperform prokaryotes in terms of both speed and accuracy. This comprehensive new perspective on the evolution of excitability enriches our view of eukaryogenesis and emphasizes behaviour and sensing as major contributors to the success of eukaryotes. This article is part of the theme issue 'Basal cognition: conceptual tools and the view from the single cell'.
Collapse
Affiliation(s)
- Kirsty Y. Wan
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
3
|
Wang B, Qin W, Ren Y, Zhou X, Jung MY, Han P, Eloe-Fadrosh EA, Li M, Zheng Y, Lu L, Yan X, Ji J, Liu Y, Liu L, Heiner C, Hall R, Martens-Habbena W, Herbold CW, Rhee SK, Bartlett DH, Huang L, Ingalls AE, Wagner M, Stahl DA, Jia Z. Expansion of Thaumarchaeota habitat range is correlated with horizontal transfer of ATPase operons. ISME JOURNAL 2019; 13:3067-3079. [PMID: 31462715 PMCID: PMC6863869 DOI: 10.1038/s41396-019-0493-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/01/2019] [Accepted: 07/29/2019] [Indexed: 01/04/2023]
Abstract
Thaumarchaeota are responsible for a significant fraction of ammonia oxidation in the oceans and in soils that range from alkaline to acidic. However, the adaptive mechanisms underpinning their habitat expansion remain poorly understood. Here we show that expansion into acidic soils and the high pressures of the hadopelagic zone of the oceans is tightly linked to the acquisition of a variant of the energy-yielding ATPases via horizontal transfer. Whereas the ATPase genealogy of neutrophilic Thaumarchaeota is congruent with their organismal genealogy inferred from concatenated conserved proteins, a common clade of V-type ATPases unites phylogenetically distinct clades of acidophilic/acid-tolerant and piezophilic/piezotolerant species. A presumptive function of pumping cytoplasmic protons at low pH is consistent with the experimentally observed increased expression of the V-ATPase in an acid-tolerant thaumarchaeote at low pH. Consistently, heterologous expression of the thaumarchaeotal V-ATPase significantly increased the growth rate of E. coli at low pH. Its adaptive significance to growth in ocean trenches may relate to pressure-related changes in membrane structure in which this complex molecular machine must function. Together, our findings reveal that the habitat expansion of Thaumarchaeota is tightly correlated with extensive horizontal transfer of atp operons.
Collapse
Affiliation(s)
- Baozhan Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China.,Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Wei Qin
- School of Oceanography, University of Washington, Seattle, WA, USA
| | - Yi Ren
- Shanghai Majorbio Bio-pharm Biotechnology Co., Ltd, Shanghai, China
| | - Xue Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Man-Young Jung
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Ping Han
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Emiley A Eloe-Fadrosh
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA.,Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Meng Li
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Yue Zheng
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Lu Lu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Xin Yan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Junbin Ji
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yang Liu
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Linmeng Liu
- Shanghai Majorbio Bio-pharm Biotechnology Co., Ltd, Shanghai, China
| | | | | | - Willm Martens-Habbena
- Department of Microbiology and Cell Science & Fort Lauderdale Research and Education Center, University of Florida, Gainesville, FL, USA
| | - Craig W Herbold
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Sung-Keun Rhee
- Department of Microbiology, Chungbuk National University, Cheongju, South Korea
| | - Douglas H Bartlett
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA
| | - Li Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Anitra E Ingalls
- School of Oceanography, University of Washington, Seattle, WA, USA
| | - Michael Wagner
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria.,Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - David A Stahl
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | - Zhongjun Jia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China.
| |
Collapse
|
4
|
Purification of a Crenarchaeal ATP Synthase in the Light of the Unique Bioenergetics of Ignicoccus Species. J Bacteriol 2019; 201:JB.00510-18. [PMID: 30642991 DOI: 10.1128/jb.00510-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 01/08/2019] [Indexed: 11/20/2022] Open
Abstract
In this study, the ATP synthase of Ignicoccus hospitalis was purified, characterized, and structurally compared to the respective enzymes of the other Ignicoccus species, to shed light on energy conservation in this unique group of archaea. The crenarchaeal genus Ignicoccus comprises three described species, i.e., I. hospitalis and Ignicoccus islandicus from hot marine sediments near Iceland and Ignicoccus pacificus from a hydrothermal vent system in the Pacific Ocean. This genus is unique among all archaea due to the unusual cell envelope, consisting of two membranes that enclose a large intermembrane compartment (IMC). I. hospitalis is the best studied member of this genus, mainly because it is the only known host for the potentially parasitic archaeon Nanoarchaeum equitans I. hospitalis grows chemolithoautotrophically, and its sole energy-yielding reaction is the reduction of elemental sulfur with molecular hydrogen, forming large amounts of hydrogen sulfide. This reaction generates an electrochemical gradient, which is used by the ATP synthase, located in the outer cellular membrane, to generate ATP inside the IMC. The genome of I. hospitalis encodes nine subunits of an A-type ATP synthase, which we could identify in the purified complex. Although the maximal in vitro activity of the I. hospitalis enzyme was measured around pH 6, the optimal stability of the A1AO complex seemed to be at pH 9. Interestingly, the soluble A1 subcomplexes of the different Ignicoccus species exhibited significant differences in their apparent molecular masses in native electrophoresis, although their behaviors in gel filtration and chromatography-mass spectrometry were very similar.IMPORTANCE The Crenarchaeota represent one of the major phyla within the Archaea domain. This study describes the successful purification of a crenarchaeal ATP synthase. To date, all information about A-type ATP synthases is from euryarchaeal enzymes. The fact that it has not been possible to purify this enzyme complex from a member of the Crenarchaeota until now points to significant differences in stability, possibly caused by structural alterations. Furthermore, the study subject I. hospitalis has a particular importance among crenarchaeotes, since it is the only known host of N. equitans The energy metabolism in this system is still poorly understood, and our results can help elucidate the unique relationship between these two microbes.
Collapse
|
5
|
Dombrowski N, Lee JH, Williams TA, Offre P, Spang A. Genomic diversity, lifestyles and evolutionary origins of DPANN archaea. FEMS Microbiol Lett 2019; 366:5281434. [PMID: 30629179 PMCID: PMC6349945 DOI: 10.1093/femsle/fnz008] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/07/2019] [Indexed: 12/16/2022] Open
Abstract
Archaea-a primary domain of life besides Bacteria-have for a long time been regarded as peculiar organisms that play marginal roles in biogeochemical cycles. However, this picture changed with the discovery of a large diversity of archaea in non-extreme environments enabled by the use of cultivation-independent methods. These approaches have allowed the reconstruction of genomes of uncultivated microorganisms and revealed that archaea are diverse and broadly distributed in the biosphere and seemingly include a large diversity of putative symbiotic organisms, most of which belong to the tentative archaeal superphylum referred to as DPANN. This archaeal group encompasses at least 10 different lineages and includes organisms with extremely small cell and genome sizes and limited metabolic capabilities. Therefore, many members of DPANN may be obligately dependent on symbiotic interactions with other organisms and may even include novel parasites. In this contribution, we review the current knowledge of the gene repertoires and lifestyles of members of this group and discuss their placement in the tree of life, which is the basis for our understanding of the deep microbial roots and the role of symbiosis in the evolution of life on Earth.
Collapse
Affiliation(s)
- Nina Dombrowski
- NIOZ, Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, and Utrecht University, P.O. Box 59, NL-1790 AB Den Burg, The Netherlands
- Department of Marine Science, University of Texas at Austin, Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA
| | - Jun-Hoe Lee
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, P.O. Box 596, Husargatan 3, SE-75123 Uppsala, Sweden
| | - Tom A Williams
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, Bristol BS8 1TQ, UK
| | - Pierre Offre
- NIOZ, Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, and Utrecht University, P.O. Box 59, NL-1790 AB Den Burg, The Netherlands
| | - Anja Spang
- NIOZ, Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, and Utrecht University, P.O. Box 59, NL-1790 AB Den Burg, The Netherlands
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, P.O. Box 596, Husargatan 3, SE-75123 Uppsala, Sweden
| |
Collapse
|
6
|
Drescher S, Otto C, Müller S, Garamus VM, Garvey CJ, Grünert S, Lischka A, Meister A, Blume A, Dobner B. Impact of Headgroup Asymmetry and Protonation State on the Aggregation Behavior of a New Type of Glycerol Diether Bolalipid. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:4360-4373. [PMID: 29557659 DOI: 10.1021/acs.langmuir.8b00527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In the present work, we describe the synthesis and the temperature-dependent aggregation behavior of a new class of asymmetrical glycerol diether bolalipids. These bolalipids are composed of a membrane-spanning alkyl chain with 32 carbon atoms (C32) in the sn-3 position, a methyl-branched C16 alkyl chain in the sn-2 position, and a zwitterionic phosphocholine headgroup in the sn-1 position of a glycerol moiety. The long C32 alkyl chain is terminated either by a second phosphocholine (PC-Gly(2C16Me)C32-PC) or by a phosphodimethylethanolamine headgroup (PC-Gly(2C16Me)C32-Me2PE). The temperature- and pH-dependent aggregation behavior of both lipids was studied using differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, small-angle X-ray scattering (SAXS), and small-angle neutron scattering (SANS) experiments. The morphology of the formed aggregates in an aqueous suspension was visualized by transmission electron microscopy (TEM). We show that PC-Gly(2C16Me)C32-PC and PC-Gly(2C16Me)C32-Me2PE at pH 5 self-assemble into large lamellar aggregates and large lipid vesicles. Within these structures, the bolalipid molecules are probably assembled in a monolayer with fully interdigitated chains. The lipid molecules seem to be tilted with respect to the layer normal to ensure a dense packing of the alkyl chains. A temperature increase leads to a transition from a lamellar gel phase to the liquid-crystalline phase at about 28-30 °C for both bolalipids. The lamellar aggregates of PC-Gly(2C16Me)C32-Me2PE started to transform into nanofibers when the pH value of the suspension was increased to above 11. At pH 12, these nanofibers were the dominant aggregates.
Collapse
Affiliation(s)
| | | | | | - Vasil M Garamus
- Helmholtz-Zentrum Geesthacht: Centre for Materials and Coastal Research (HZG) , Max-Planck-Strasse 1 , 21502 Geesthacht , Germany
| | - Christopher J Garvey
- Australian Nuclear Science and Technology Organisation (ANSTO) , Kirrawee DC , NSW Australia
| | | | | | - Annette Meister
- Institute of Biochemistry and Biotechnology , MLU Halle-Wittenberg , Kurt-Mothes-Strasse 3 , 06120 Halle (Saale) , Germany
| | - Alfred Blume
- Institute of Chemistry , MLU Halle-Wittenberg , von-Danckelmann-Platz 4 , 06120 Halle (Saale) , Germany
| | | |
Collapse
|
7
|
Niu Y, Moghimyfiroozabad S, Safaie S, Yang Y, Jonas EA, Alavian KN. Phylogenetic Profiling of Mitochondrial Proteins and Integration Analysis of Bacterial Transcription Units Suggest Evolution of F1Fo ATP Synthase from Multiple Modules. J Mol Evol 2017; 85:219-233. [PMID: 29177973 PMCID: PMC5709465 DOI: 10.1007/s00239-017-9819-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/11/2017] [Indexed: 11/26/2022]
Abstract
ATP synthase is a complex universal enzyme responsible for ATP synthesis across all kingdoms of life. The F-type ATP synthase has been suggested to have evolved from two functionally independent, catalytic (F1) and membrane bound (Fo), ancestral modules. While the modular evolution of the synthase is supported by studies indicating independent assembly of the two subunits, the presence of intermediate assembly products suggests a more complex evolutionary process. We analyzed the phylogenetic profiles of the human mitochondrial proteins and bacterial transcription units to gain additional insight into the evolution of the F-type ATP synthase complex. In this study, we report the presence of intermediary modules based on the phylogenetic profiles of the human mitochondrial proteins. The two main intermediary modules comprise the α3β3 hexamer in the F1 and the c-subunit ring in the Fo. A comprehensive analysis of bacterial transcription units of F1Fo ATP synthase revealed that while a long and constant order of F1Fo ATP synthase genes exists in a majority of bacterial genomes, highly conserved combinations of separate transcription units are present among certain bacterial classes and phyla. Based on our findings, we propose a model that includes the involvement of multiple modules in the evolution of F1Fo ATP synthase. The central and peripheral stalk subunits provide a link for the integration of the F1/Fo modules.
Collapse
Affiliation(s)
- Yulong Niu
- Division of Brain Sciences, Department of Medicine, Imperial College London, E508, Burlington Danes Hammersmith Hospital, DuCane Road, London, W12 0NN, UK
- Key Lab of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, People's Republic of China
- Department of Internal Medicine, Endocrinology, Yale University, New Haven, CT, USA
| | | | - Sepehr Safaie
- Department of Mathematics and Computer Science, The Bahá'í Institute for Higher Education (BIHE), Tehran, Iran
| | - Yi Yang
- Key Lab of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, People's Republic of China
| | - Elizabeth A Jonas
- Department of Internal Medicine, Endocrinology, Yale University, New Haven, CT, USA
| | - Kambiz N Alavian
- Division of Brain Sciences, Department of Medicine, Imperial College London, E508, Burlington Danes Hammersmith Hospital, DuCane Road, London, W12 0NN, UK.
- Department of Biology, The Bahá'í Institute for Higher Education (BIHE), Tehran, Iran.
- Department of Internal Medicine, Endocrinology, Yale University, New Haven, CT, USA.
| |
Collapse
|
8
|
Drescher S, Garamus VM, Garvey CJ, Meister A, Blume A. Aggregation behaviour of a single-chain, phenylene-modified bolalipid and its miscibility with classical phospholipids. Beilstein J Org Chem 2017; 13:995-1007. [PMID: 28684979 PMCID: PMC5480355 DOI: 10.3762/bjoc.13.99] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 04/28/2017] [Indexed: 01/04/2023] Open
Abstract
In the present work, we describe the synthesis of a single-chain, phenylene-modified bolalipid with two phosphocholine headgroups, PC-C18pPhC18-PC, using a Sonogashira cross-coupling reaction as a key step. The aggregation behaviour was studied as a function of temperature using transmission electron microscopy (TEM), differential scanning calorimetry (DSC), Fourier-transform infrared (FTIR) spectroscopy, and small angle neutron scattering (SANS). We show that our new bolalipid self-assembles into nanofibres, which transform into flexible nanofibres at 27 °C and further to small elongated micelles at 45 °C. Furthermore, the miscibility of the bolalipid with bilayer-forming phosphatidylcholines (DMPC, DPPC, and DSPC) was investigated by means of DSC, TEM, FTIR, and small angle X-ray scattering (SAXS). We could show that the PC-C18pPhC18-PC is partially miscible with saturated phosphatidylcholines; however, closed lipid vesicles with an increased thermal stability were not found. Instead, bilayer fragments and disk-like aggregates are formed.
Collapse
Affiliation(s)
- Simon Drescher
- Institute of Pharmacy, Martin Luther University (MLU) Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany
| | - Vasil M Garamus
- Helmholtz-Zentrum Geesthacht (HZG), Centre for Materials and Costal Research, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| | - Christopher J Garvey
- Australian Nuclear Science and Technology Organisation (ANSTO), Kirrawee DC, NSW, Australia
| | - Annette Meister
- Institute of Chemistry, MLU Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
- Institute of Biochemistry and Biotechnology, MLU Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
| | - Alfred Blume
- Institute of Chemistry, MLU Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| |
Collapse
|
9
|
Abstract
Chemiosmotic coupling - the harnessing of electrochemical ion gradients across membranes to drive metabolism - is as universally conserved as the genetic code. As argued previously in these pages, such deep conservation suggests that ion gradients arose early in evolution, and might have played a role in the origin of life. Alkaline hydrothermal vents harbour pH gradients of similar polarity and magnitude to those employed by modern cells, one of many properties that make them attractive models for life's origin. Their congruence with the physiology of anaerobic autotrophs that use the acetyl CoA pathway to fix CO2 gives the alkaline vent model broad appeal to biologists. Recently, however, a paper by Baz Jackson criticized the hypothesis, concluding that natural pH gradients were unlikely to have played any role in the origin of life. Unfortunately, Jackson mainly criticized his own interpretations of the theory, not what the literature says. This counterpoint is intended to set the record straight.
Collapse
Affiliation(s)
- Nick Lane
- Department of Genetics, Evolution and Environment, University College London, London, UK
| |
Collapse
|
10
|
Wurch L, Giannone RJ, Belisle BS, Swift C, Utturkar S, Hettich RL, Reysenbach AL, Podar M. Genomics-informed isolation and characterization of a symbiotic Nanoarchaeota system from a terrestrial geothermal environment. Nat Commun 2016; 7:12115. [PMID: 27378076 PMCID: PMC4935971 DOI: 10.1038/ncomms12115] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/01/2016] [Indexed: 02/06/2023] Open
Abstract
Biological features can be inferred, based on genomic data, for many microbial lineages that remain uncultured. However, cultivation is important for characterizing an organism's physiology and testing its genome-encoded potential. Here we use single-cell genomics to infer cultivation conditions for the isolation of an ectosymbiotic Nanoarchaeota (‘Nanopusillus acidilobi') and its host (Acidilobus, a crenarchaeote) from a terrestrial geothermal environment. The cells of ‘Nanopusillus' are among the smallest known cellular organisms (100–300 nm). They appear to have a complete genetic information processing machinery, but lack almost all primary biosynthetic functions as well as respiration and ATP synthesis. Genomic and proteomic comparison with its distant relative, the marine Nanoarchaeum equitans illustrate an ancient, common evolutionary history of adaptation of the Nanoarchaeota to ectosymbiosis, so far unique among the Archaea. Many microbial lineages have not yet been cultured, which hampers our understanding of their physiology. Here, Wurch et al. use single-cell genomics to infer cultivation conditions for the isolation of a tiny ectosymbiotic nanoarchaeon and its crenarchaeota host from a geothermal spring.
Collapse
Affiliation(s)
- Louie Wurch
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.,Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | - Bernard S Belisle
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.,Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Carolyn Swift
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.,Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Sagar Utturkar
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Robert L Hettich
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.,Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | - Mircea Podar
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.,Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, USA
| |
Collapse
|
11
|
Goyal N, Zhou Z, Karimi IA. Metabolic processes of Methanococcus maripaludis and potential applications. Microb Cell Fact 2016; 15:107. [PMID: 27286964 PMCID: PMC4902934 DOI: 10.1186/s12934-016-0500-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 05/31/2016] [Indexed: 12/30/2022] Open
Abstract
Methanococcus maripaludis is a rapidly growing, fully sequenced, genetically tractable model organism among hydrogenotrophic methanogens. It has the ability to convert CO2 and H2 into a useful cleaner energy fuel (CH4). In fact, this conversion enhances in the presence of free nitrogen as the sole nitrogen source due to prolonged cell growth. Given the global importance of GHG emissions and climate change, diazotrophy can be attractive for carbon capture and utilization applications from appropriately treated flue gases, where surplus hydrogen is available from renewable electricity sources. In addition, M. maripaludis can be engineered to produce other useful products such as terpenoids, hydrogen, methanol, etc. M. maripaludis with its unique abilities has the potential to be a workhorse like Escherichia coli and S. cerevisiae for fundamental and experimental biotechnology studies. More than 100 experimental studies have explored different specific aspects of the biochemistry and genetics of CO2 and N2 fixation by M. maripaludis. Its genome-scale metabolic model (iMM518) also exists to study genetic perturbations and complex biological interactions. However, a comprehensive review describing its cell structure, metabolic processes, and methanogenesis is still lacking in the literature. This review fills this crucial gap. Specifically, it integrates distributed information from the literature to provide a complete and detailed view for metabolic processes such as acetyl-CoA synthesis, pyruvate synthesis, glycolysis/gluconeogenesis, reductive tricarboxylic acid (RTCA) cycle, non-oxidative pentose phosphate pathway (NOPPP), nitrogen metabolism, amino acid metabolism, and nucleotide biosynthesis. It discusses energy production via methanogenesis and its relation to metabolism. Furthermore, it reviews taxonomy, cell structure, culture/storage conditions, molecular biology tools, genome-scale models, and potential industrial and environmental applications. Through the discussion, it develops new insights and hypotheses from experimental and modeling observations, and identifies opportunities for further research and applications.
Collapse
Affiliation(s)
- Nishu Goyal
- />Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585 Singapore
| | - Zhi Zhou
- />School of Civil Engineering and Division of Environmental and Ecological Engineering, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907 USA
| | - Iftekhar A. Karimi
- />Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585 Singapore
| |
Collapse
|
12
|
Identifying Potential Mechanisms Enabling Acidophily in the Ammonia-Oxidizing Archaeon "Candidatus Nitrosotalea devanaterra". Appl Environ Microbiol 2016; 82:2608-2619. [PMID: 26896134 PMCID: PMC4836417 DOI: 10.1128/aem.04031-15] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/13/2016] [Indexed: 01/11/2023] Open
Abstract
Ammonia oxidation is the first and rate-limiting step in nitrification and is dominated by two distinct groups of microorganisms in soil: ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). AOA are often more abundant than AOB and dominate activity in acid soils. The mechanism of ammonia oxidation under acidic conditions has been a long-standing paradox. While high rates of ammonia oxidation are frequently measured in acid soils, cultivated ammonia oxidizers grew only at near-neutral pH when grown in standard laboratory culture. Although a number of mechanisms have been demonstrated to enable neutrophilic AOB growth at low pH in the laboratory, these have not been demonstrated in soil, and the recent cultivation of the obligately acidophilic ammonia oxidizer “Candidatus Nitrosotalea devanaterra” provides a more parsimonious explanation for the observed high rates of activity. Analysis of the sequenced genome, transcriptional activity, and lipid content of “Ca. Nitrosotalea devanaterra” reveals that previously proposed mechanisms used by AOB for growth at low pH are not essential for archaeal ammonia oxidation in acidic environments. Instead, the genome indicates that “Ca. Nitrosotalea devanaterra” contains genes encoding both a predicted high-affinity substrate acquisition system and potential pH homeostasis mechanisms absent in neutrophilic AOA. Analysis of mRNA revealed that candidate genes encoding the proposed homeostasis mechanisms were all expressed during acidophilic growth, and lipid profiling by high-performance liquid chromatography–mass spectrometry (HPLC-MS) demonstrated that the membrane lipids of “Ca. Nitrosotalea devanaterra” were not dominated by crenarchaeol, as found in neutrophilic AOA. This study for the first time describes a genome of an obligately acidophilic ammonia oxidizer and identifies potential mechanisms enabling this unique phenotype for future biochemical characterization.
Collapse
|
13
|
Markowski T, Drescher S, Förster G, Lechner BD, Meister A, Blume A, Dobner B. Highly asymmetrical glycerol diether bolalipids: synthesis and temperature-dependent aggregation behavior. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:10683-10692. [PMID: 26366715 DOI: 10.1021/acs.langmuir.5b02951] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In the present work, we describe the synthesis and temperature-dependent aggregation behavior of two examples of a new class of highly asymmetrical glycerol diether bolaphospholipids. The bolalipids contain a long alkyl chain (C32) bound to glycerol in the sn-3 position, carrying a hydroxyl group at the ω position. The C16 alkyl chain in the sn-2 position either possesses a racemic methyl branch at the 10 position of the short alkyl chain (lipid II) or does not (lipid I). The sn-1 position of the glycerol is linked to a zwitterionic phosphocholine moiety. The temperature-dependent aggregation behavior of both bolalipids was studied using differential scanning calorimetry (DSC), Fourier-transform infrared (FTIR) spectroscopy, and X-ray scattering. Aggregate structures were visualized by transmission electron microscopy (TEM). We show that both bolalipids self-assemble into large lamellar sheetlike aggregates. Closed lipid vesicles or other aggregate structures such as tubes or nanofibers, as usually found for diglycerol tetraether lipids, were not observed. Within the lamellae the bolalipid molecules are arranged in an antiparallel (interdigitated) orientation. Lipid I, without an additional methyl moiety in the short alkyl chain, shows a lamellar phase with high crystallinity up to a temperature of 34 °C, which was not observed before for other phospholipids.
Collapse
Affiliation(s)
- Thomas Markowski
- Institute of Pharmacy, Martin Luther University (MLU) Halle-Wittenberg , Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany
| | - Simon Drescher
- Institute of Pharmacy, Martin Luther University (MLU) Halle-Wittenberg , Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany
| | - Günter Förster
- Institute of Chemistry, MLU Halle-Wittenberg , von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| | - Bob-Dan Lechner
- Institute of Chemistry, MLU Halle-Wittenberg , von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| | - Annette Meister
- Center for Structure and Dynamics of Proteins (MZP), MLU Halle-Wittenberg, Biocenter , Weinbergweg 22, 06120 Halle (Saale), Germany
| | - Alfred Blume
- Institute of Chemistry, MLU Halle-Wittenberg , von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| | - Bodo Dobner
- Institute of Pharmacy, Martin Luther University (MLU) Halle-Wittenberg , Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany
| |
Collapse
|
14
|
Mohanty S, Jobichen C, Chichili VPR, Velázquez-Campoy A, Low BC, Hogue CWV, Sivaraman J. Structural Basis for a Unique ATP Synthase Core Complex from Nanoarcheaum equitans. J Biol Chem 2015; 290:27280-27296. [PMID: 26370083 DOI: 10.1074/jbc.m115.677492] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Indexed: 11/06/2022] Open
Abstract
ATP synthesis is a critical and universal life process carried out by ATP synthases. Whereas eukaryotic and prokaryotic ATP synthases are well characterized, archaeal ATP synthases are relatively poorly understood. The hyperthermophilic archaeal parasite, Nanoarcheaum equitans, lacks several subunits of the ATP synthase and is suspected to be energetically dependent on its host, Ignicoccus hospitalis. This suggests that this ATP synthase might be a rudimentary machine. Here, we report the crystal structures and biophysical studies of the regulatory subunit, NeqB, the apo-NeqAB, and NeqAB in complex with nucleotides, ADP, and adenylyl-imidodiphosphate (non-hydrolysable analog of ATP). NeqB is ∼20 amino acids shorter at its C terminus than its homologs, but this does not impede its binding with NeqA to form the complex. The heterodimeric NeqAB complex assumes a closed, rigid conformation irrespective of nucleotide binding; this differs from its homologs, which require conformational changes for catalytic activity. Thus, although N. equitans possesses an ATP synthase core A3B3 hexameric complex, it might not function as a bona fide ATP synthase.
Collapse
Affiliation(s)
- Soumya Mohanty
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Chacko Jobichen
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | | | - Adrián Velázquez-Campoy
- the Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint-Unit Institute of Physical Chemistry "Rocasolano (IQFR)-Spanish National Research Council (CSIC)-BIFI, and Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza and Fundacion ARAID, Government of Aragon, 50018 Zaragoza, Spain
| | - Boon Chuan Low
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore,; Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore.
| | - Christopher W V Hogue
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore,; Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - J Sivaraman
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore,.
| |
Collapse
|
15
|
Koumandou VL, Kossida S. Evolution of the F0F1 ATP synthase complex in light of the patchy distribution of different bioenergetic pathways across prokaryotes. PLoS Comput Biol 2014; 10:e1003821. [PMID: 25188293 PMCID: PMC4154653 DOI: 10.1371/journal.pcbi.1003821] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 07/18/2014] [Indexed: 11/22/2022] Open
Abstract
Bacteria and archaea are characterized by an amazing metabolic diversity, which allows them to persist in diverse and often extreme habitats. Apart from oxygenic photosynthesis and oxidative phosphorylation, well-studied processes from chloroplasts and mitochondria of plants and animals, prokaryotes utilize various chemo- or lithotrophic modes, such as anoxygenic photosynthesis, iron oxidation and reduction, sulfate reduction, and methanogenesis. Most bioenergetic pathways have a similar general structure, with an electron transport chain composed of protein complexes acting as electron donors and acceptors, as well as a central cytochrome complex, mobile electron carriers, and an ATP synthase. While each pathway has been studied in considerable detail in isolation, not much is known about their relative evolutionary relationships. Wanting to address how this metabolic diversity evolved, we mapped the distribution of nine bioenergetic modes on a phylogenetic tree based on 16S rRNA sequences from 272 species representing the full diversity of prokaryotic lineages. This highlights the patchy distribution of many pathways across different lineages, and suggests either up to 26 independent origins or 17 horizontal gene transfer events. Next, we used comparative genomics and phylogenetic analysis of all subunits of the F0F1 ATP synthase, common to most bacterial lineages regardless of their bioenergetic mode. Our results indicate an ancient origin of this protein complex, and no clustering based on bioenergetic mode, which suggests that no special modifications are needed for the ATP synthase to work with different electron transport chains. Moreover, examination of the ATP synthase genetic locus indicates various gene rearrangements in the different bacterial lineages, ancient duplications of atpI and of the beta subunit of the F0 subcomplex, as well as more recent stochastic lineage-specific and species-specific duplications of all subunits. We discuss the implications of the overall pattern of conservation and flexibility of the F0F1 ATP synthase genetic locus.
Collapse
Affiliation(s)
- Vassiliki Lila Koumandou
- Bioinformatics & Medical Informatics Team, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Sophia Kossida
- Bioinformatics & Medical Informatics Team, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| |
Collapse
|
16
|
Mayer F, Müller V. Adaptations of anaerobic archaea to life under extreme energy limitation. FEMS Microbiol Rev 2014; 38:449-72. [DOI: 10.1111/1574-6976.12043] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 08/30/2013] [Accepted: 09/03/2013] [Indexed: 11/28/2022] Open
|
17
|
Grüber G, Manimekalai MSS, Mayer F, Müller V. ATP synthases from archaea: the beauty of a molecular motor. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:940-52. [PMID: 24650628 DOI: 10.1016/j.bbabio.2014.03.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 03/07/2014] [Accepted: 03/11/2014] [Indexed: 11/18/2022]
Abstract
Archaea live under different environmental conditions, such as high salinity, extreme pHs and cold or hot temperatures. How energy is conserved under such harsh environmental conditions is a major question in cellular bioenergetics of archaea. The key enzymes in energy conservation are the archaeal A1AO ATP synthases, a class of ATP synthases distinct from the F1FO ATP synthase ATP synthase found in bacteria, mitochondria and chloroplasts and the V1VO ATPases of eukaryotes. A1AO ATP synthases have distinct structural features such as a collar-like structure, an extended central stalk, and two peripheral stalks possibly stabilizing the A1AO ATP synthase during rotation in ATP synthesis/hydrolysis at high temperatures as well as to provide the storage of transient elastic energy during ion-pumping and ATP synthesis/-hydrolysis. High resolution structures of individual subunits and subcomplexes have been obtained in recent years that shed new light on the function and mechanism of this unique class of ATP synthases. An outstanding feature of archaeal A1AO ATP synthases is their diversity in size of rotor subunits and the coupling ion used for ATP synthesis with H(+), Na(+) or even H(+) and Na(+) using enzymes. The evolution of the H(+) binding site to a Na(+) binding site and its implications for the energy metabolism and physiology of the cell are discussed.
Collapse
Affiliation(s)
- Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore.
| | | | - Florian Mayer
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Volker Müller
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany.
| |
Collapse
|
18
|
Podar M, Makarova KS, Graham DE, Wolf YI, Koonin EV, Reysenbach AL. Insights into archaeal evolution and symbiosis from the genomes of a nanoarchaeon and its inferred crenarchaeal host from Obsidian Pool, Yellowstone National Park. Biol Direct 2013; 8:9. [PMID: 23607440 PMCID: PMC3655853 DOI: 10.1186/1745-6150-8-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 04/17/2013] [Indexed: 02/02/2023] Open
Abstract
Background A single cultured marine organism, Nanoarchaeum equitans, represents the Nanoarchaeota branch of symbiotic Archaea, with a highly reduced genome and unusual features such as multiple split genes. Results The first terrestrial hyperthermophilic member of the Nanoarchaeota was collected from Obsidian Pool, a thermal feature in Yellowstone National Park, separated by single cell isolation, and sequenced together with its putative host, a Sulfolobales archaeon. Both the new Nanoarchaeota (Nst1) and N. equitans lack most biosynthetic capabilities, and phylogenetic analysis of ribosomal RNA and protein sequences indicates that the two form a deep-branching archaeal lineage. However, the Nst1 genome is more than 20% larger, and encodes a complete gluconeogenesis pathway as well as the full complement of archaeal flagellum proteins. With a larger genome, a smaller repertoire of split protein encoding genes and no split non-contiguous tRNAs, Nst1 appears to have experienced less severe genome reduction than N. equitans. These findings imply that, rather than representing ancestral characters, the extremely compact genomes and multiple split genes of Nanoarchaeota are derived characters associated with their symbiotic or parasitic lifestyle. The inferred host of Nst1 is potentially autotrophic, with a streamlined genome and simplified central and energetic metabolism as compared to other Sulfolobales. Conclusions Comparison of the N. equitans and Nst1 genomes suggests that the marine and terrestrial lineages of Nanoarchaeota share a common ancestor that was already a symbiont of another archaeon. The two distinct Nanoarchaeota-host genomic data sets offer novel insights into the evolution of archaeal symbiosis and parasitism, enabling further studies of the cellular and molecular mechanisms of these relationships. Reviewers This article was reviewed by Patrick Forterre, Bettina Siebers (nominated by Michael Galperin) and Purification Lopez-Garcia
Collapse
Affiliation(s)
- Mircea Podar
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Mayer F, Leone V, Langer JD, Faraldo-Gómez JD, Müller V. A c subunit with four transmembrane helices and one ion (Na+)-binding site in an archaeal ATP synthase: implications for c ring function and structure. J Biol Chem 2012; 287:39327-37. [PMID: 23007388 DOI: 10.1074/jbc.m112.411223] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ion-driven membrane rotors of ATP synthases consist of multiple copies of subunit c, forming a closed ring. Subunit c typically comprises two transmembrane helices, and the c ring features an ion-binding site in between each pair of adjacent subunits. Here, we use experimental and computational methods to study the structure and specificity of an archaeal c subunit more akin to those of V-type ATPases, namely that from Pyrococcus furiosus. The c subunit was purified by chloroform/methanol extraction and determined to be 15.8 kDa with four predicted transmembrane helices. However, labeling with DCCD as well as Na(+)-DCCD competition experiments revealed only one binding site for DCCD and Na(+), indicating that the mature c subunit of this A(1)A(O) ATP synthase is indeed of the V-type. A structural model generated computationally revealed one Na(+)-binding site within each of the c subunits, mediated by a conserved glutamate side chain alongside other coordinating groups. An intriguing second glutamate located in-between adjacent c subunits was ruled out as a functional Na(+)-binding site. Molecular dynamics simulations indicate that the c ring of P. furiosus is highly Na(+)-specific under in vivo conditions, comparable with the Na(+)-dependent V(1)V(O) ATPase from Enterococcus hirae. Interestingly, the same holds true for the c ring from the methanogenic archaeon Methanobrevibacter ruminantium, whose c subunits also feature a V-type architecture but carry two Na(+)-binding sites instead. These findings are discussed in light of their physiological relevance and with respect to the mode of ion coupling in A(1)A(O) ATP synthases.
Collapse
Affiliation(s)
- Florian Mayer
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, 60438 Frankfurt, Germany
| | | | | | | | | |
Collapse
|
20
|
Siebers B, Zaparty M, Raddatz G, Tjaden B, Albers SV, Bell SD, Blombach F, Kletzin A, Kyrpides N, Lanz C, Plagens A, Rampp M, Rosinus A, von Jan M, Makarova KS, Klenk HP, Schuster SC, Hensel R. The complete genome sequence of Thermoproteus tenax: a physiologically versatile member of the Crenarchaeota. PLoS One 2011; 6:e24222. [PMID: 22003381 PMCID: PMC3189178 DOI: 10.1371/journal.pone.0024222] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 08/08/2011] [Indexed: 11/18/2022] Open
Abstract
Here, we report on the complete genome sequence of the hyperthermophilic Crenarchaeum Thermoproteus tenax (strain Kra1, DSM 2078T) a type strain of the crenarchaeotal order Thermoproteales. Its circular 1.84-megabase genome harbors no extrachromosomal elements and 2,051 open reading frames are identified, covering 90.6% of the complete sequence, which represents a high coding density. Derived from the gene content, T. tenax is a representative member of the Crenarchaeota. The organism is strictly anaerobic and sulfur-dependent with optimal growth at 86°C and pH 5.6. One particular feature is the great metabolic versatility, which is not accompanied by a distinct increase of genome size or information density as compared to other Crenarchaeota. T. tenax is able to grow chemolithoautotrophically (CO2/H2) as well as chemoorganoheterotrophically in presence of various organic substrates. All pathways for synthesizing the 20 proteinogenic amino acids are present. In addition, two presumably complete gene sets for NADH:quinone oxidoreductase (complex I) were identified in the genome and there is evidence that either NADH or reduced ferredoxin might serve as electron donor. Beside the typical archaeal A0A1-ATP synthase, a membrane-bound pyrophosphatase is found, which might contribute to energy conservation. Surprisingly, all genes required for dissimilatory sulfate reduction are present, which is confirmed by growth experiments. Mentionable is furthermore, the presence of two proteins (ParA family ATPase, actin-like protein) that might be involved in cell division in Thermoproteales, where the ESCRT system is absent, and of genes involved in genetic competence (DprA, ComF) that is so far unique within Archaea.
Collapse
Affiliation(s)
- Bettina Siebers
- Faculty of Chemistry, Biofilm Centre, Molecular Enzyme Technology and Biochemistry, University of Duisburg-Essen, Essen, Germany
- * E-mail: (BS); (MZ)
| | - Melanie Zaparty
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
- * E-mail: (BS); (MZ)
| | - Guenter Raddatz
- Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany
| | - Britta Tjaden
- Prokaryotic RNA Biology, Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| | - Steve D. Bell
- Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom
| | - Fabian Blombach
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Arnulf Kletzin
- Institute of Microbiology and Genetics, Technical University Darmstadt, Darmstadt, Germany
| | - Nikos Kyrpides
- DOE Joint Genome Institute, Walnut Creek, California, United States of America
| | - Christa Lanz
- Genome Centre, Max-Planck-Institute for Developmental Biology, Tuebingen, Germany
| | - André Plagens
- Prokaryotic RNA Biology, Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| | - Markus Rampp
- Computer Centre Garching of the Max-Planck-Society (RZG), Max-Planck-Institute for Plasma Physics, München, Germany
| | - Andrea Rosinus
- Genome Centre, Max-Planck-Institute for Developmental Biology, Tuebingen, Germany
| | - Mathias von Jan
- DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Kira S. Makarova
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hans-Peter Klenk
- DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Stephan C. Schuster
- Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Reinhard Hensel
- Prokaryotic RNA Biology, Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
21
|
Proteomic characterization of cellular and molecular processes that enable the Nanoarchaeum equitans--Ignicoccus hospitalis relationship. PLoS One 2011; 6:e22942. [PMID: 21826220 PMCID: PMC3149612 DOI: 10.1371/journal.pone.0022942] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 07/01/2011] [Indexed: 12/05/2022] Open
Abstract
Nanoarchaeum equitans, the only cultured representative of the Nanoarchaeota, is dependent on direct physical contact with its host, the hyperthermophile Ignicoccus hospitalis. The molecular mechanisms that enable this relationship are unknown. Using whole-cell proteomics, differences in the relative abundance of >75% of predicted protein-coding genes from both Archaea were measured to identify the specific response of I. hospitalis to the presence of N. equitans on its surface. A purified N. equitans sample was also analyzed for evidence of interspecies protein transfer. The depth of cellular proteome coverage achieved here is amongst the highest reported for any organism. Based on changes in the proteome under the specific conditions of this study, I. hospitalis reacts to N. equitans by curtailing genetic information processing (replication, transcription) in lieu of intensifying its energetic, protein processing and cellular membrane functions. We found no evidence of significant Ignicoccus biosynthetic enzymes being transported to N. equitans. These results suggest that, under laboratory conditions, N. equitans diverts some of its host's metabolism and cell cycle control to compensate for its own metabolic shortcomings, thus appearing to be entirely dependent on small, transferable metabolites and energetic precursors from I. hospitalis.
Collapse
|
22
|
Abstract
The obligate aceticlastic methanogen Methanosaeta thermophila uses a membrane-bound ferredoxin:heterodisulfide oxidoreductase system for energy conservation. We propose that the system is composed of a truncated form of the F(420)H(2) dehydrogenase, methanophenazine, and the heterodisulfide reductase. Hence, the electron transport chain is distinct from those of well-studied Methanosarcina species.
Collapse
|
23
|
Vantourout P, Radojkovic C, Lichtenstein L, Pons V, Champagne E, Martinez LO. Ecto-F 1-ATPase: A moonlighting protein complex and an unexpected apoA-I receptor. World J Gastroenterol 2010; 16:5925-35. [PMID: 21157968 PMCID: PMC3007107 DOI: 10.3748/wjg.v16.i47.5925] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial ATP synthase has been recently detected at the surface of different cell types, where it is a high affinity receptor for apoA-I, the major protein component in high density lipoproteins (HDL). Cell surface ATP synthase (namely ecto-F1-ATPase) expression is related to different biological effects, such as regulation of HDL uptake by hepatocytes, endothelial cell proliferation or antitumor activity of Vγ9/Vδ2 T lymphocytes. This paper reviews the recently discovered functions and regulations of ecto-F1-ATPase. Particularly, the role of the F1-ATPase pathway(s) in HDL-cholesterol uptake and apoA-I-mediated endothelial protection suggests its potential importance in reverse cholesterol transport and its regulation might represent a potential therapeutic target for HDL-related therapy for cardiovascular diseases. Therefore, it is timely for us to better understand how this ecto-enzyme and downstream pathways are regulated and to develop pharmacologic interventions.
Collapse
|
24
|
Crystal and solution structure of the C-terminal part of the Methanocaldococcus jannaschii A1AO ATP synthase subunit E revealed by X-ray diffraction and small-angle X-ray scattering. J Bioenerg Biomembr 2010; 42:311-20. [DOI: 10.1007/s10863-010-9298-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 05/23/2010] [Indexed: 10/19/2022]
|
25
|
Energized outer membrane and spatial separation of metabolic processes in the hyperthermophilic Archaeon Ignicoccus hospitalis. Proc Natl Acad Sci U S A 2010; 107:3152-6. [PMID: 20133662 DOI: 10.1073/pnas.0911711107] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
ATP synthase catalyzes ATP synthesis at the expense of an electrochemical ion gradient across a membrane that can be generated by different exergonic reactions. Sulfur reduction is the main energy-yielding reaction in the hyperthermophilic strictly anaerobic Crenarchaeon Ignicoccus hospitalis. This organism is unusual in having an inner and an outer membrane that are separated by a huge intermembrane compartment. Here we show, on the basis of immuno-EM analyses of ultrathin sections and immunofluorescence experiments with whole I. hospitalis cells, that the ATP synthase and H(2):sulfur oxidoreductase complexes of this organism are located in the outer membrane. These two enzyme complexes are mandatory for the generation of an electrochemical gradient and for ATP synthesis. Thus, among all prokaryotes possessing two membranes in their cell envelope (including Planctomycetes, gram-negative bacteria), I. hospitalis is a unique organism, with an energized outer membrane and ATP synthesis within the periplasmic space. In addition, DAPI staining and EM analyses showed that DNA and ribosomes are localized in the cytoplasm, leading to the conclusion that in I. hospitalis energy conservation is separated from information processing and protein biosynthesis. This raises questions regarding the function of the two membranes, the interaction between these compartments, and the general definition of a cytoplasmic membrane.
Collapse
|
26
|
Egel R. Peptide-dominated membranes preceding the genetic takeover by RNA: latest thinking on a classic controversy. Bioessays 2009; 31:1100-9. [PMID: 19708018 DOI: 10.1002/bies.200800226] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It is commonly presumed that abiotic membranes were colonized by proteins later on. Yet, hydrophobic peptides could have formed primordial protein-dominated membranes on their own. In a metabolism-first context, "autocatalytically closed" sets of statistical peptides could organize a self-maintaining protometabolism, assisted by an unfolding set of ribotide-related cofactors. Pairwise complementary ribotide cofactors may have formed docking guides for stochastic peptide formation, before replicating RNA emerged from this subset. Tidally recurring wet-drying cycles and an early onset of photosynthetic activities are considered most likely to meet the thermodynamic requirements. Conceivably, the earliest peptide-dominated vesicles were engaged in light harvesting, together with isoprenoid-tethered pigments, rather than providing an external boundary. Early on, the bulk of prebiotic organic matter can have formed a contiguous layer covering the mineral sediment, held in place by colloidal coherence of a hydrogel matrix. This unconventional scenario assumes a late onset of cellular individualization - perhaps from within, resembling endosporogenesis.
Collapse
Affiliation(s)
- Richard Egel
- Department of Biology, University of Copenhagen Biocenter, Copenhagen, Denmark.
| |
Collapse
|
27
|
Manimekalai MSS, Kumar A, Balakrishna AM, Grüber G. A second transient position of ATP on its trail to the nucleotide-binding site of subunit B of the motor protein A(1)A(0) ATP synthase. J Struct Biol 2008; 166:38-45. [PMID: 19138746 DOI: 10.1016/j.jsb.2008.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 12/01/2008] [Accepted: 12/10/2008] [Indexed: 11/30/2022]
Abstract
The adenosine triphosphate (ATP) entrance into the nucleotide-binding subunits of ATP synthases is a puzzle. In the previously determined structure of subunit B mutant R416W of the Methanosarcina mazei Gö1 A-ATP synthase one ATP could be trapped at a transition position, close to the phosphate-binding loop. Using defined parameters for co-crystallization of an ATP-bound B-subunit, a unique transition position of ATP could be found in the crystallographic structure of this complex, solved at 3.4 A resolution. The nucleotide is found near the helix-turn-helix motif in the C-terminal domain of the protein; the location occupied by the gamma-subunit to interact with the empty beta-subunit in the thermoalkaliphilic Bacillus sp. TA2.A1 of the related F-ATP synthase. When compared with the determined structure of the ATP-transition position, close to the P-loop, and the nucleotide-free form of subunit B, the C-terminal domain of the B mutant is rotated by around 6 degrees, implicating an ATP moving pathway. We propose that, in the nucleotide empty state the central stalk subunit D is in close contact with subunit B and when the ATP molecule enters, D moves slightly, paving way for it to interact with the subunit B, which makes the C-terminal domain rotate by 6 degrees.
Collapse
Affiliation(s)
- Malathy Sony Subramanian Manimekalai
- Nanyang Technological University, Division of Structural & Computational Biology, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | | | | | | |
Collapse
|
28
|
Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R. Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 2008; 6:579-91. [PMID: 18587410 DOI: 10.1038/nrmicro1931] [Citation(s) in RCA: 1184] [Impact Index Per Article: 69.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Most methanogenic archaea can reduce CO(2) with H(2) to methane, and it is generally assumed that the reactions and mechanisms of energy conservation that are involved are largely the same in all methanogens. However, this does not take into account the fact that methanogens with cytochromes have considerably higher growth yields and threshold concentrations for H(2) than methanogens without cytochromes. These and other differences can be explained by the proposal outlined in this Review that in methanogens with cytochromes, the first and last steps in methanogenesis from CO(2) are coupled chemiosmotically, whereas in methanogens without cytochromes, these steps are energetically coupled by a cytoplasmic enzyme complex that mediates flavin-based electron bifurcation.
Collapse
Affiliation(s)
- Rudolf K Thauer
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse, D-35043 Marburg, Germany.
| | | | | | | | | |
Collapse
|
29
|
Insight into the proteome of the hyperthermophilic Crenarchaeon Ignicoccus hospitalis: the major cytosolic and membrane proteins. Arch Microbiol 2008; 190:379-94. [PMID: 18584152 PMCID: PMC2755778 DOI: 10.1007/s00203-008-0399-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2008] [Revised: 05/21/2008] [Accepted: 06/09/2008] [Indexed: 12/25/2022]
Abstract
Ignicoccus hospitalis, a hyperthermophilic, chemolithoautotrophic Crenarchaeon, is the host of Nanoarchaeum equitans. Together, they form an intimate association, the first among Archaea. Membranes are of fundamental importance for the interaction of I. hospitalis and N. equitans, as they harbour the proteins necessary for the transport of macromolecules like lipids, amino acids, and cofactors between these organisms. Here, we investigated the protein inventory of I. hospitalis cells, and were able to identify 20 proteins in total. Experimental evidence and predictions let us conclude that 11 are soluble cytosolic proteins, eight membrane or membrane-associated proteins, and a single one extracellular. The quantitatively dominating proteins in the cytoplasm (peroxiredoxin; thermosome) antagonize oxidative and temperature stress which I. hospitalis cells are exposed to at optimal growth conditions. Three abundant membrane protein complexes are found: the major protein of the outer membrane, which might protect the cell against the hostile environment, forms oligomeric complexes with pores of unknown selectivity; two other complexes of the cytoplasmic membrane, the hydrogenase and the ATP synthase, play a key role in energy production and conversion.
Collapse
|
30
|
Pisa KY, Huber H, Thomm M, Müller V. A sodium ion-dependent A1AO ATP synthase from the hyperthermophilic archaeon Pyrococcus furiosus. FEBS J 2007; 274:3928-38. [PMID: 17614964 DOI: 10.1111/j.1742-4658.2007.05925.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The rotor subunit c of the A(1)A(O) ATP synthase of the hyperthermophilic archaeon Pyrococcus furiosus contains a conserved Na(+)-binding motif, indicating that Na(+) is a coupling ion. To experimentally address the nature of the coupling ion, we isolated the enzyme by detergent solubilization from native membranes followed by chromatographic separation techniques. The entire membrane-embedded motor domain was present in the preparation. The rotor subunit c was found to form an SDS-resistant oligomer. Under the conditions tested, the enzyme had maximal activity at 100 degrees C, had a rather broad pH optimum between pH 5.5 and 8.0, and was inhibited by diethystilbestrol and derivatives thereof. ATP hydrolysis was strictly dependent on Na(+), with a K(m) of 0.6 mM. Li(+), but not K(+), could substitute for Na(+). The Na(+) dependence was less pronounced at higher proton concentrations, indicating competition between Na(+) and H(+) for a common binding site. Moreover, inhibition of the ATPase by N',N'-dicyclohexylcarbodiimide could be relieved by Na(+). Taken together, these data demonstrate the use of Na(+) as coupling ion for the A(1)A(O) ATP synthase of Pyrococcus furiosus, the first Na(+) A(1)A(O) ATP synthase described.
Collapse
Affiliation(s)
- Kim Y Pisa
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe Universität Frankfurt, Frankfurt, Germany
| | | | | | | |
Collapse
|
31
|
Deppenmeier U, Müller V. Life close to the thermodynamic limit: how methanogenic archaea conserve energy. Results Probl Cell Differ 2007; 45:123-52. [PMID: 17713742 DOI: 10.1007/400_2006_026] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Methane-forming archaea are strictly anaerobic, ancient microbes that are widespread in nature. These organisms are commonly found in anaerobic environments such as rumen, anaerobic sediments of rivers and lakes, hyperthermal deep sea vents and even hypersaline environments. From an evolutionary standpoint they are close to the origin of life. Common to all methanogens is the biological production of methane by a unique pathway currently only found in archaea. Methanogens can grow on only a limited number of substrates such as H(2) + CO(2), formate, methanol and other methyl group-containing substrates and some on acetate. The free energy change associated with methanogenesis from these compounds allows for the synthesis of 1 (acetate) to a maximum of only 2 mol of ATP under standard conditions while under environmental conditions less than one ATP can be synthesized. Therefore, methanogens live close to the thermodynamic limit. To cope with this problem, they have evolved elaborate mechanisms of energy conservation using both protons and sodium ions as the coupling ion in one pathway. These energy conserving mechanisms are comprised of unique enzymes, cofactors and electron carriers present only in methanogens. This review will summarize the current knowledge of energy conservation of methanogens and focus on recent insights into structure and function of ion translocating enzymes found in these organisms.
Collapse
Affiliation(s)
- Uwe Deppenmeier
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | | |
Collapse
|