1
|
Petushkova E, Khasimov M, Mayorova E, Delegan Y, Frantsuzova E, Bogun A, Galkina E, Tsygankov A. The Complete Genome of a Novel Typical Species Thiocapsa bogorovii and Analysis of Its Central Metabolic Pathways. Microorganisms 2024; 12:391. [PMID: 38399794 PMCID: PMC10892978 DOI: 10.3390/microorganisms12020391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
The purple sulfur bacterium Thiocapsa roseopersicina BBS is interesting from both fundamental and practical points of view. It possesses a thermostable HydSL hydrogenase, which is involved in the reaction of reversible hydrogen activation and a unique reaction of sulfur reduction to hydrogen sulfide. It is a very promising enzyme for enzymatic hydrogenase electrodes. There are speculations that HydSL hydrogenase of purple bacteria is closely related to sulfur metabolism, but confirmation is required. For that, the full genome sequence is necessary. Here, we sequenced and assembled the complete genome of this bacterium. The analysis of the obtained whole genome, through an integrative approach that comprised estimating the Average Nucleotide Identity (ANI) and digital DNA-DNA hybridization (DDH) parameters, allowed for validation of the systematic position of T. roseopersicina as T. bogorovii BBS. For the first time, we have assembled the whole genome of this typical strain of a new bacterial species and carried out its functional description against another purple sulfur bacterium: Allochromatium vinosum DSM 180T. We refined the automatic annotation of the whole genome of the bacteria T. bogorovii BBS and localized the genomic positions of several studied genes, including those involved in sulfur metabolism and genes encoding the enzymes required for the TCA and glyoxylate cycles and other central metabolic pathways. Eleven additional genes coding proteins involved in pigment biosynthesis was found.
Collapse
Affiliation(s)
- Ekaterina Petushkova
- Institute of Basic Biological Problems, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (M.K.); (E.M.); (A.T.)
| | - Makhmadyusuf Khasimov
- Institute of Basic Biological Problems, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (M.K.); (E.M.); (A.T.)
| | - Ekaterina Mayorova
- Institute of Basic Biological Problems, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (M.K.); (E.M.); (A.T.)
| | - Yanina Delegan
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (Y.D.); (E.F.); (A.B.)
| | - Ekaterina Frantsuzova
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (Y.D.); (E.F.); (A.B.)
| | - Alexander Bogun
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (Y.D.); (E.F.); (A.B.)
| | - Elena Galkina
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Moscow Region, Russia;
| | - Anatoly Tsygankov
- Institute of Basic Biological Problems, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (M.K.); (E.M.); (A.T.)
| |
Collapse
|
2
|
Khasimov MK, Petushkova EP, Khusnutdinova AN, Zorin NA, Batyrova KA, Yakunin AF, Tsygankov AA. The HydS C-terminal domain of the Thiocapsa bogorovii HydSL hydrogenase is involved in membrane anchoring and electron transfer. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2021; 1862:148492. [PMID: 34487705 DOI: 10.1016/j.bbabio.2021.148492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/18/2021] [Accepted: 08/28/2021] [Indexed: 10/20/2022]
Abstract
Thiocapsa bogorovii BBS (former name Thiocapsa roseopersicina) contains HydSL hydrogenase belonging to 1e subgroup of NiFe hydrogenases (isp-type). The operon of these hydrogenases contains gene for small subunit (hydS), gene for large subunit (hupL), and genes isp1 and isp2 between them. It is predicted that last two genes code electron transport careers for electron transfer from/to HydSL hydrogenase. However, the interaction between them is unclear. The aim of this study was to determine structural and functional role of T. bogorovii HydS C-terminal end. For this purpose, we modelled all subunits of the complex HydS-HydL-Isp1-Isp2. Hydrophobicity surface analysis of the Isp1 model revealed highly hydrophobic helices suggesting potential membrane localization, as well as the hydrophilic C-terminus, which is likely localized outside of membrane. Isp1 model was docked with models of full length and C-terminal truncated HydSL hydrogenases and results illustrate the possibility of HydSL membrane anchoring via transmembrane Isp1 with essential participation of C-terminal end of HydS in the interaction. C-terminal end of HydS subunit was deleted and our studies revealed that the truncated HydSL hydrogenase detached from cellular membranes in contrast to native hydrogenase. It is known that HydSL hydrogenase in T. bogorovii performs the reaction of elemental sulfur reduction (S0 + H2 = ≥H2S). Cells with truncated HydS produced much less H2S in the presence of H2 and S0. Thus, our data support the conclusion that C-terminal end of HydS subunit participates in interaction of HydSL hydrogenase with Isp1 protein for membrane anchoring and electron transfer.
Collapse
Affiliation(s)
- Makhmadyusuf K Khasimov
- Federal Research Center "Pushchino's center of Biological Research", Institute of Basic Biological Problems of Russian Academy of Sciences, Institutskaya st., 2, Pushchino, Moscow region 142290, Russia
| | - Ekaterina P Petushkova
- Federal Research Center "Pushchino's center of Biological Research", Institute of Basic Biological Problems of Russian Academy of Sciences, Institutskaya st., 2, Pushchino, Moscow region 142290, Russia
| | - Anna N Khusnutdinova
- Federal Research Center "Pushchino's center of Biological Research", Institute of Basic Biological Problems of Russian Academy of Sciences, Institutskaya st., 2, Pushchino, Moscow region 142290, Russia
| | - Nikolay A Zorin
- Federal Research Center "Pushchino's center of Biological Research", Institute of Basic Biological Problems of Russian Academy of Sciences, Institutskaya st., 2, Pushchino, Moscow region 142290, Russia
| | - Khorcheska A Batyrova
- Federal Research Center "Pushchino's center of Biological Research", Institute of Basic Biological Problems of Russian Academy of Sciences, Institutskaya st., 2, Pushchino, Moscow region 142290, Russia
| | - Alexander F Yakunin
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor LL57 2UW, UK
| | - Anatoly A Tsygankov
- Federal Research Center "Pushchino's center of Biological Research", Institute of Basic Biological Problems of Russian Academy of Sciences, Institutskaya st., 2, Pushchino, Moscow region 142290, Russia.
| |
Collapse
|
3
|
Luedin SM, Storelli N, Danza F, Roman S, Wittwer M, Pothier JF, Tonolla M. Mixotrophic Growth Under Micro-Oxic Conditions in the Purple Sulfur Bacterium " Thiodictyon syntrophicum". Front Microbiol 2019; 10:384. [PMID: 30891015 PMCID: PMC6413534 DOI: 10.3389/fmicb.2019.00384] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 02/13/2019] [Indexed: 12/23/2022] Open
Abstract
The microbial ecosystem of the meromictic Lake Cadagno (Ticino, Swiss Alps) has been studied intensively in order to understand structure and functioning of the anoxygenic phototrophic sulfur bacteria community living in the chemocline. It has been found that the purple sulfur bacterium "Thiodictyon syntrophicum" strain Cad16T, belonging to the Chromatiaceae, fixes around 26% of all bulk inorganic carbon in the chemocline, both during day and night. With this study, we elucidated for the first time the mode of carbon fixation of str. Cad16T under micro-oxic conditions with a combination of long-term monitoring of key physicochemical parameters with CTD, 14C-incorporation experiments and quantitative proteomics using in-situ dialysis bag incubations of str. Cad16T cultures. Regular vertical CTD profiling during the study period in summer 2017 revealed that the chemocline sank from 12 to 14 m which was accompanied by a bloom of cyanobacteria and the subsequent oxygenation of the deeper water column. Sampling was performed both day and night. CO2 assimilation rates were higher during the light period compared to those in the dark, both in the chemocline population and in the incubated cultures. The relative change in the proteome between day and night (663 quantified proteins) comprised only 1% of all proteins encoded in str. Cad16T. Oxidative respiration pathways were upregulated at light, whereas stress-related mechanisms prevailed during the night. These results indicate that low light availability and the co-occurring oxygenation of the chemocline induced mixotrophic growth in str. Cad16T. Our study thereby helps to further understand the consequences micro-oxic conditions for phototrophic sulfur oxidizing bacteria. The complete proteome data have been deposited to the ProteomeXchange database with identifier PXD010641.
Collapse
Affiliation(s)
- Samuel M. Luedin
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
- Laboratory of Applied Microbiology, Department of Environment, Constructions and Design, University of Applied Sciences of Southern Switzerland (SUPSI), Bellinzona, Switzerland
- Spiez Laboratory, Biology Division, Federal Office for Civil Protection, Spiez, Switzerland
| | - Nicola Storelli
- Laboratory of Applied Microbiology, Department of Environment, Constructions and Design, University of Applied Sciences of Southern Switzerland (SUPSI), Bellinzona, Switzerland
| | - Francesco Danza
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
- Laboratory of Applied Microbiology, Department of Environment, Constructions and Design, University of Applied Sciences of Southern Switzerland (SUPSI), Bellinzona, Switzerland
| | - Samuele Roman
- Laboratory of Applied Microbiology, Department of Environment, Constructions and Design, University of Applied Sciences of Southern Switzerland (SUPSI), Bellinzona, Switzerland
- Alpine Biology Center Foundation, Bellinzona, Switzerland
| | - Matthias Wittwer
- Spiez Laboratory, Biology Division, Federal Office for Civil Protection, Spiez, Switzerland
| | - Joël F. Pothier
- Environmental Genomics and System Biology Research Group, Institute of Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| | - Mauro Tonolla
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
- Laboratory of Applied Microbiology, Department of Environment, Constructions and Design, University of Applied Sciences of Southern Switzerland (SUPSI), Bellinzona, Switzerland
- Alpine Biology Center Foundation, Bellinzona, Switzerland
| |
Collapse
|
4
|
Complete genome sequence of " Thiodictyon syntrophicum" sp. nov. strain Cad16 T, a photolithoautotrophic purple sulfur bacterium isolated from the alpine meromictic Lake Cadagno. Stand Genomic Sci 2018; 13:14. [PMID: 29774086 PMCID: PMC5944118 DOI: 10.1186/s40793-018-0317-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 04/24/2018] [Indexed: 11/16/2022] Open
Abstract
“Thiodictyon syntrophicum” sp. nov. strain Cad16T is a photoautotrophic purple sulfur bacterium belonging to the family of Chromatiaceae in the class of Gammaproteobacteria. The type strain Cad16T was isolated from the chemocline of the alpine meromictic Lake Cadagno in Switzerland. Strain Cad16T represents a key species within this sulfur-driven bacterial ecosystem with respect to carbon fixation. The 7.74-Mbp genome of strain Cad16T has been sequenced and annotated. It encodes 6237 predicted protein sequences and 59 RNA sequences. Phylogenetic comparison based on 16S rRNA revealed that Thiodictyon elegans strain DSM 232T the most closely related species. Genes involved in sulfur oxidation, central carbon metabolism and transmembrane transport were found. Noteworthy, clusters of genes encoding the photosynthetic machinery and pigment biosynthesis are found on the 0.48 Mb plasmid pTs485. We provide a detailed insight into the Cad16T genome and analyze it in the context of the microbial ecosystem of Lake Cadagno.
Collapse
|
5
|
Thiel V, Hügler M, Ward DM, Bryant DA. The Dark Side of the Mushroom Spring Microbial Mat: Life in the Shadow of Chlorophototrophs. II. Metabolic Functions of Abundant Community Members Predicted from Metagenomic Analyses. Front Microbiol 2017. [PMID: 28634470 PMCID: PMC5459899 DOI: 10.3389/fmicb.2017.00943] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbial mat communities in the effluent channels of Octopus and Mushroom Springs within the Lower Geyser Basin of Yellowstone National Park have been extensively characterized. Previous studies have focused on the chlorophototrophic organisms of the phyla Cyanobacteria and Chloroflexi. However, the diversity and metabolic functions of the other portion of the community in the microoxic/anoxic region of the mat are poorly understood. We recently described the diverse but extremely uneven microbial assemblage in the undermat of Mushroom Spring based on 16S rRNA amplicon sequences, which was dominated by Roseiflexus members, filamentous anoxygenic chlorophototrophs. In this study, we analyzed the orange-colored undermat portion of the community of Mushroom Spring mats in a genome-centric approach and discuss the metabolic potentials of the major members. Metagenome binning recovered partial genomes of all abundant community members, ranging in completeness from ~28 to 96%, and allowed affiliation of function with taxonomic identity even for representatives of novel and Candidate phyla. Less complete metagenomic bins correlated with high microdiversity. The undermat portion of the community was found to be a mixture of phototrophic and chemotrophic organisms, which use bicarbonate as well as organic carbon sources derived from different cell components and fermentation products. The presence of rhodopsin genes in many taxa strengthens the hypothesis that light energy is of major importance. Evidence for the usage of all four bacterial carbon fixation pathways was found in the metagenome. Nitrogen fixation appears to be limited to Synechococcus spp. in the upper mat layer and Thermodesulfovibrio sp. in the undermat, and nitrate/nitrite metabolism was limited. A closed sulfur cycle is indicated by biological sulfate reduction combined with the presence of genes for sulfide oxidation mainly in phototrophs. Finally, a variety of undermat microorganisms have genes for hydrogen production and consumption, which leads to the observed diel hydrogen concentration patterns.
Collapse
Affiliation(s)
- Vera Thiel
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University ParkPA, United States
| | - Michael Hügler
- Department Microbiology and Molecular Biology, DVGW-Technologiezentrum WasserKarlsruhe, Germany
| | - David M Ward
- Department of Land Resources and Environmental Sciences, Montana State UniversityBozeman, MT, United States
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University ParkPA, United States.,Department of Chemistry and Biochemistry, Montana State UniversityBozeman, MT, United States
| |
Collapse
|
6
|
Hansen M, Perner M. Reasons for Thiomicrospira crunogena's recalcitrance towards previous attempts to detect its hydrogen consumption ability. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:53-57. [PMID: 26511790 DOI: 10.1111/1758-2229.12350] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 10/23/2015] [Indexed: 06/05/2023]
Abstract
The first Thiomicrospira species was isolated in 1972 and was described as a sulfur-oxidizing chemolithoautotroph. Since then, several other Thiomicrospira species have been recovered from around the globe and have been classified as common sulfur oxidizers. In the past, attempts to demonstrate hydrogen consumption of a Thiomicrospira species have failed. However, recently, we showed that some Thiomicrospira strains can indeed consume hydrogen. Here, we discuss why Thiomicrospira species have likely resisted efforts to consume hydrogen under the offered conditions. It appears that their hydrogen consumption ability is closely tied to the concentration of nickel in the medium. Investigated carbonate and thiosulfate concentrations did not appear to be critical for hydrogen utilization under the tested conditions.
Collapse
Affiliation(s)
- Moritz Hansen
- Molecular Biology of Microbial Consortia, University of Hamburg, Biocenter Klein Flottbek, Ohnhorststr. 18, Hamburg, 22609, Germany
| | - Mirjam Perner
- Molecular Biology of Microbial Consortia, University of Hamburg, Biocenter Klein Flottbek, Ohnhorststr. 18, Hamburg, 22609, Germany
| |
Collapse
|
7
|
HupO, a Novel Regulator Involved in Thiosulfate-Responsive Control of HupSL [NiFe]-Hydrogenase Synthesis in Thiocapsa roseopersicina. Appl Environ Microbiol 2016; 82:2039-2049. [PMID: 26801573 DOI: 10.1128/aem.04041-15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 01/14/2016] [Indexed: 11/20/2022] Open
Abstract
[NiFe]-hydrogenases are regulated by various factors to fulfill their physiological functions in bacterial cells. The photosynthetic purple sulfur bacterium Thiocapsa roseopersicina harbors four functional [NiFe]-hydrogenases: HynSL, HupSL, Hox1, and Hox2. Most of these hydrogenases are functionally linked to sulfur metabolism, and thiosulfate has a central role in this organism. The membrane-associated Hup hydrogenases have been shown to play a role in energy conservation through hydrogen recycling. The expression of Hup-type hydrogenases is regulated by H2 in Rhodobacter capsulatus and Cupriavidus necator; however, it has been shown that the corresponding hydrogen-sensing system is nonfunctional in T. roseopersicina and that thiosulfate is a regulating factor of hup expression. Here, we describe the discovery and analysis of mutants of a putative regulator (HupO) of the Hup hydrogenase in T. roseopersicina. HupO appears to mediate the transcriptional repression of Hup enzyme synthesis under low-thiosulfate conditions. We also demonstrate that the presence of the Hox1 hydrogenase strongly influences Hup enzyme synthesis in that hup expression was decreased significantly in the hox1 mutant. This reduction in Hup synthesis could be reversed by mutation of hupO, which resulted in strongly elevated hup expression, as well as Hup protein levels, and concomitant in vivo hydrogen uptake activity in the hox1 mutant. However, this regulatory control was observed only at low thiosulfate concentrations. Additionally, weak hydrogen-dependent hup expression was shown in the hupO mutant strain lacking the Hox1 hydrogenase. HupO-mediated Hup regulation therefore appears to link thiosulfate metabolism and the hydrogenase network in T. roseopersicina.
Collapse
|
8
|
Tsygankov AA, Khusnutdinova AN. Hydrogen in metabolism of purple bacteria and prospects of practical application. Microbiology (Reading) 2015. [DOI: 10.1134/s0026261715010154] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
9
|
Tengölics R, Mészáros L, Győri E, Doffkay Z, Kovács KL, Rákhely G. Connection between the membrane electron transport system and Hyn hydrogenase in the purple sulfur bacterium, Thiocapsa roseopersicina BBS. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1691-8. [DOI: 10.1016/j.bbabio.2014.07.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 07/26/2014] [Accepted: 07/29/2014] [Indexed: 10/24/2022]
|
10
|
Hansen M, Perner M. A novel hydrogen oxidizer amidst the sulfur-oxidizing Thiomicrospira lineage. ISME JOURNAL 2014; 9:696-707. [PMID: 25226028 DOI: 10.1038/ismej.2014.173] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 08/12/2014] [Accepted: 08/15/2014] [Indexed: 02/04/2023]
Abstract
Thiomicrospira species are ubiquitously found in various marine environments and appear particularly common in hydrothermal vent systems. Members of this lineage are commonly classified as sulfur-oxidizing chemolithoautotrophs. Although sequencing of Thiomicrospira crunogena's genome has revealed genes that encode enzymes for hydrogen uptake activity and for hydrogenase maturation and assembly, hydrogen uptake ability has so far not been reported for any Thiomicrospira species. We isolated a Thiomicrospira species (SP-41) from a deep sea hydrothermal vent and demonstrated that it can oxidize hydrogen. We show in vivo hydrogen consumption, hydrogen uptake activity in partially purified protein extracts and transcript abundance of hydrogenases during different growth stages. The ability of this strain to oxidize hydrogen opens up new perspectives with respect to the physiology of Thiomicrospira species that have been detected in hydrothermal vents and that have so far been exclusively associated with sulfur oxidation.
Collapse
Affiliation(s)
- Moritz Hansen
- Molecular Biology of Microbial Consortia, University of Hamburg, Biocenter Klein Flottbek, Hamburg, Germany
| | - Mirjam Perner
- Molecular Biology of Microbial Consortia, University of Hamburg, Biocenter Klein Flottbek, Hamburg, Germany
| |
Collapse
|
11
|
[NiFe] hydrogenases: a common active site for hydrogen metabolism under diverse conditions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:986-1002. [PMID: 23399489 DOI: 10.1016/j.bbabio.2013.01.015] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 12/06/2012] [Accepted: 01/26/2013] [Indexed: 01/05/2023]
Abstract
Hydrogenase proteins catalyze the reversible conversion of molecular hydrogen to protons and electrons. The most abundant hydrogenases contain a [NiFe] active site; these proteins are generally biased towards hydrogen oxidation activity and are reversibly inhibited by oxygen. However, there are [NiFe] hydrogenase that exhibit unique properties, including aerobic hydrogen oxidation and preferential hydrogen production activity; these proteins are highly relevant in the context of biotechnological devices. This review describes four classes of these "nonstandard" [NiFe] hydrogenases and discusses the electrochemical, spectroscopic, and structural studies that have been used to understand the mechanisms behind this exceptional behavior. A revised classification protocol is suggested in the conclusions, particularly with respect to the term "oxygen-tolerance". This article is part of a special issue entitled: metals in bioenergetics and biomimetics systems.
Collapse
|
12
|
Eckert C, Boehm M, Carrieri D, Yu J, Dubini A, Nixon PJ, Maness PC. Genetic analysis of the Hox hydrogenase in the cyanobacterium Synechocystis sp. PCC 6803 reveals subunit roles in association, assembly, maturation, and function. J Biol Chem 2012; 287:43502-15. [PMID: 23139416 DOI: 10.1074/jbc.m112.392407] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Hydrogenases are metalloenzymes that catalyze 2H(+) + 2e(-) ↔ H(2). A multisubunit, bidirectional [NiFe]-hydrogenase has been identified and characterized in a number of bacteria, including cyanobacteria, where it is hypothesized to function as an electron valve, balancing reductant in the cell. In cyanobacteria, this Hox hydrogenase consists of five proteins in two functional moieties: a hydrogenase moiety (HoxYH) with homology to heterodimeric [NiFe]-hydrogenases and a diaphorase moiety (HoxEFU) with homology to NuoEFG of respiratory Complex I, linking NAD(P)H ↔ NAD(P)(+) as a source/sink for electrons. Here, we present an extensive study of Hox hydrogenase in the cyanobacterium Synechocystis sp. PCC 6803. We identify the presence of HoxEFUYH, HoxFUYH, HoxEFU, HoxFU, and HoxYH subcomplexes as well as association of the immature, unprocessed large subunit (HoxH) with other Hox subunits and unidentified factors, providing a basis for understanding Hox maturation and assembly. The analysis of mutants containing individual and combined hox gene deletions in a common parental strain reveals apparent alterations in subunit abundance and highlights an essential role for HoxF and HoxU in complex/subcomplex association. In addition, analysis of individual and combined hox mutant phenotypes in a single strain background provides a clear view of the function of each subunit in hydrogenase activity and presents evidence that its physiological function is more complicated than previously reported, with no outward defects apparent in growth or photosynthesis under various growth conditions.
Collapse
Affiliation(s)
- Carrie Eckert
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Tekucheva DN, Tsygankov AA. Combined biological hydrogen-producing systems: A review. APPL BIOCHEM MICRO+ 2012. [DOI: 10.1134/s0003683812040114] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Weissgerber T, Zigann R, Bruce D, Chang YJ, Detter JC, Han C, Hauser L, Jeffries CD, Land M, Munk AC, Tapia R, Dahl C. Complete genome sequence of Allochromatium vinosum DSM 180(T). Stand Genomic Sci 2011; 5:311-30. [PMID: 22675582 PMCID: PMC3368242 DOI: 10.4056/sigs.2335270] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Allochromatium vinosum formerly Chromatium vinosum is a mesophilic purple sulfur bacterium belonging to the family Chromatiaceae in the bacterial class Gammaproteobacteria. The genus Allochromatium contains currently five species. All members were isolated from freshwater, brackish water or marine habitats and are predominately obligate phototrophs. Here we describe the features of the organism, together with the complete genome sequence and annotation. This is the first completed genome sequence of a member of the Chromatiaceae within the purple sulfur bacteria thriving in globally occurring habitats. The 3,669,074 bp genome with its 3,302 protein-coding and 64 RNA genes was sequenced within the Joint Genome Institute Community Sequencing Program.
Collapse
Affiliation(s)
- Thomas Weissgerber
- Institute for Microbiology & Biotechnology, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Renate Zigann
- Institute for Microbiology & Biotechnology, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - David Bruce
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Yun-juan Chang
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - John C. Detter
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Cliff Han
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Loren Hauser
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | | | - Miriam Land
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | | | - Roxanne Tapia
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Christiane Dahl
- Institute for Microbiology & Biotechnology, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
15
|
Aubert-Jousset E, Cano M, Guedeney G, Richaud P, Cournac L. Role of HoxE subunit in Synechocystis PCC6803 hydrogenase. FEBS J 2011; 278:4035-43. [PMID: 21848671 DOI: 10.1111/j.1742-4658.2011.08308.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cyanobacterial NAD(P)(+)-reducing reversible hydrogenases comprise five subunits. Four of them (HoxF, HoxU, HoxY, and HoxH) are also found in the well-described related enzyme from Ralstonia eutropha. The fifth one (HoxE) is not encoded in the R. eutropha genome, but shares homology with the N-terminal part of R. eutropha HoxF. However, in cyanobacteria, HoxE contains a 2Fe-2S cluster-binding motif that is not found in the related R. eutropha sequence. In order to obtain some insights into the role of HoxE in cyanobacteria, we deleted this subunit in Synechocystis PCC6803. Three types of interaction of the cyanobacterial hydrogenase with pyridine nucleotides were tested: (a) reductive activation of the NiFe site, for which NADPH was found to be more efficient than NADH; (b) H(2) production, for which NADH appeared to be a more efficient electron donor than NADPH; and (c) H(2) oxidation, for which NAD(+) was a much better electron acceptor than NADP(+). Upon hoxE deletion, the Synechocystis hydrogenase active site remained functional with artificial electron donors or acceptors, but the enzyme became unable to catalyze H(2) production or uptake with NADH/NAD(+). However, activation of the electron transfer-independent H/D exchange reaction by NADPH was still observed in the absence of HoxE, whereas activation of this reaction by NADH was lost. These data suggest different mechanisms for diaphorase-mediated electron donation and catalytic site activation in cyanobacterial hydrogenase.
Collapse
Affiliation(s)
- Emeline Aubert-Jousset
- CEA, DSV, IBEB, Laboratoire de Bioénergétique et Biotechnologie des Bactéries & Microalgues, Saint Paul Lez Durance, France
| | | | | | | | | |
Collapse
|
16
|
A second soluble Hox-type NiFe enzyme completes the hydrogenase set in Thiocapsa roseopersicina BBS. Appl Environ Microbiol 2010; 76:5113-23. [PMID: 20543059 DOI: 10.1128/aem.00351-10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Three functional NiFe hydrogenases were previously characterized in Thiocapsa roseopersicina BBS: two of them are attached to the periplasmic membrane (HynSL and HupSL), and one is localized in the cytoplasm (HoxEFUYH). The ongoing genome sequencing project revealed the presence of genes coding for another soluble Hox-type hydrogenase enzyme (hox2FUYH). Hox2 is a heterotetrameric enzyme; no indication for an additional subunit was found. Detailed comparative in vivo and in vitro activity and expression analyses of HoxEFUYH (Hox1) and the newly discovered Hox2 enzyme were performed. Functional differences between the two soluble NiFe hydrogenases were disclosed. Hox1 seems to be connected to both sulfur metabolism and dark/photofermentative processes. The bidirectional Hox2 hydrogenase was shown to be metabolically active under specific conditions: it can evolve hydrogen in the presence of glucose at low sodium thiosulfate concentration. However, under nitrogen-fixing conditions, it can oxidize H(2) but less than the other hydrogenases in the cell.
Collapse
|
17
|
Zadvornyy OA, Allen M, Brumfield SK, Varpness Z, Boyd ES, Zorin NA, Serebriakova L, Douglas T, Peters JW. Hydrogen enhances nickel tolerance in the purple sulfur bacterium Thiocapsa roseopersicina. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:834-840. [PMID: 19928895 DOI: 10.1021/es901580n] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A common microbial strategy for detoxifying metals involves redox transformation which often results in metal precipitation and/or immobilization. In the present study, the influence of ionic nickel [Ni(II)] on growth of the purple sulfur bacterium Thiocapsa roseopersicina was investigated. The results suggest that Ni(II) in the bulk medium at micromolar concentrations results in growth inhibition, specifically an increase in the lag phase of growth, a decrease in the specific growth rate, and a decrease in total protein concentration when compared to growth controls containing no added Ni(II). The inhibitory effects of Ni(II) on the growth of T. roseopersicina could be partially overcome by the addition of hydrogen (H(2)) gas. However, the inhibitory effects of Ni(II) on the growth of T. roseopersicina were not alleviated by H(2) in a strain containing deletions in all hydrogenase-encoding genes. Transmission electron micrographs of wild-type T. roseopersicina grown in the presence of Ni(II) and H(2) revealed a significantly greater number of dense nanoparticulates associated with the cells when compared to wild-type cells grown in the absence of H(2) and hydrogenase mutant strains grown in the presence of H(2). X-ray diffraction and vibrating sample magnetometry of the dense nanoparticles indicated the presence of zerovalent Ni, suggesting Ni(II) reduction. Purified T. roseopersicina hyn-encoded hydrogenase catalyzed the formation of zerovalent Ni particles in vitro, suggesting a role for this hydrogenase in Ni(II) reduction in vivo. Collectively, these results suggest a link among H(2) metabolism, Ni(II) tolerance, and Ni(II) reduction in T. roseopersicina .
Collapse
Affiliation(s)
- Oleg A Zadvornyy
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Schwarz C, Poss Z, Hoffmann D, Appel J. Hydrogenases and Hydrogen Metabolism in Photosynthetic Prokaryotes. RECENT ADVANCES IN PHOTOTROPHIC PROKARYOTES 2010; 675:305-48. [DOI: 10.1007/978-1-4419-1528-3_18] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
19
|
Increased biological hydrogen production by deletion of hydrogen-uptake system in photosynthetic bacteria. Microbiol Res 2009; 164:674-9. [DOI: 10.1016/j.micres.2009.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2008] [Revised: 11/01/2008] [Accepted: 03/01/2009] [Indexed: 11/21/2022]
|
20
|
Ferreira D, Pinto F, Moradas-Ferreira P, Mendes MV, Tamagnini P. Transcription profiles of hydrogenases related genes in the cyanobacterium Lyngbya majuscula CCAP 1446/4. BMC Microbiol 2009; 9:67. [PMID: 19351394 PMCID: PMC2674450 DOI: 10.1186/1471-2180-9-67] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Accepted: 04/07/2009] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Lyngbya majuscula CCAP 1446/4 is a N2-fixing filamentous nonheterocystous strain that contains two NiFe-hydrogenases: an uptake (encoded by hupSL) and a bidirectional enzyme (encoded by hoxEFUYH). The biosynthesis/maturation of NiFe-hydrogenases is a complex process requiring several accessory proteins for e.g. for the incorporation of metals and ligands in the active center (large subunit), and the insertion of the FeS clusters (small subunit). The last step in the maturation of the large subunit is the cleavage of a C-terminal peptide from its precursor by a specific endopeptidase. Subsequently, the mature large and small subunits can assemble forming a functional enzyme. RESULTS In this work we demonstrated that, in L. majuscula, the structural genes encoding the bidirectional hydrogenase are cotranscribed, and that hoxW (the gene encoding its putative specific endopeptidase) is in the same chromosomal region but transcribed from a different promoter. The gene encoding the putative specific uptake hydrogenase endopeptidase, hupW, can be cotranscribed with the structural genes but it has its own promoter. hoxH, hupL, hoxW and hupW transcription was followed in L. majuscula cells grown under N2-fixing and non-N2-fixing conditions over a 12 h light/12 h dark cycle. The transcription of hoxH, hoxW and hupW did not vary remarkably in the conditions tested, while the hupL transcript levels are significantly higher under N2-fixing conditions with a peak occurring in the transition between the light and the dark phase. Furthermore, the putative endopeptidases transcript levels, in particular hoxW, are lower than those of the respective hydrogenase structural genes. CONCLUSION The data presented here indicate that in L. majuscula the genes encoding the putative hydrogenases specific endopeptidases, hoxW and hupW, are transcribed from their own promoters. Their transcript levels do not vary notably in the conditions tested, suggesting that HoxW and HupW are probably constantly present and available in the cells. These results, together with the fact that the putative endopeptidases transcript levels, in particular for hoxW, are lower than those of the structural genes, imply that the activity of the hydrogenases is mainly correlated to the transcription levels of the structural genes. The analysis of the promoter regions indicates that hupL and hupW might be under the control of different transcription factor(s), while both hoxH and xisH (hoxW) promoters could be under the control of LexA.
Collapse
Affiliation(s)
- Daniela Ferreira
- IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
- Faculdade de Ciências, Universidade do Porto, Departamento de Botânica, Edifício FC4, Rua do Campo Alegre, s/n°, 4169-007 Porto, Portugal
| | - Filipe Pinto
- IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
- Faculdade de Ciências, Universidade do Porto, Departamento de Botânica, Edifício FC4, Rua do Campo Alegre, s/n°, 4169-007 Porto, Portugal
| | - Pedro Moradas-Ferreira
- IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Largo Abel Salazar 2, 4099-003 Porto, Portugal
| | - Marta V Mendes
- IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Paula Tamagnini
- IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
- Faculdade de Ciências, Universidade do Porto, Departamento de Botânica, Edifício FC4, Rua do Campo Alegre, s/n°, 4169-007 Porto, Portugal
| |
Collapse
|
21
|
Palágyi-Mészáros LS, Maróti J, Latinovics D, Balogh T, Klement É, Medzihradszky KF, Rákhely G, Kovács KL. Electron-transfer subunits of the NiFe hydrogenases in Thiocapsa roseopersicina BBS. FEBS J 2008; 276:164-74. [DOI: 10.1111/j.1742-4658.2008.06770.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Laurinavichene TV, Rákhely G, Kovács KL, Tsygankov AA. The effect of sulfur compounds on H2 evolution/consumption reactions, mediated by various hydrogenases, in the purple sulfur bacterium, Thiocapsa roseopersicina. Arch Microbiol 2007; 188:403-10. [PMID: 17546443 DOI: 10.1007/s00203-007-0260-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 04/18/2007] [Accepted: 04/30/2007] [Indexed: 10/23/2022]
Abstract
The influence of reduced sulfur compounds (including stored S(0)) on H(2) evolution/consumption reactions in the purple sulfur bacterium, Thiocapsa roseopersicina BBS, was studied using mutants containing only one of the three known [NiFe] hydrogenase enzymes: Hox, Hup or Hyn. The observed effects depended on the kind of hydrogenase involved. The mutant harbouring Hox hydrogenase was able to use S(2)O (3) (2-) , SO (3) (2-) , S(2-) and S(0) as electron donors for light-dependent H(2) production. Dark H(2) evolution from organic substrates via Hox hydrogenase was inhibited by S(0). Under light conditions, endogenous H(2) uptake by Hox or Hup hydrogenases was suppressed by S compounds. CO(2)-dependent H(2) uptake by Hox hydrogenase in the light required the additional presence of S compounds, unlike the Hup-mediated process. Dark H(2) consumption via Hyn hydrogenase was connected to utilization of S(0) as an electron acceptor and resulted in the accumulation of H(2)S. In wild type BBS, with high levels of stored S(0), dark H(2) production from organic substrates was significantly lower, but H(2)S accumulation significantly higher, than in the mutant GB1121(Hox(+)). There is a possibility that H(2) produced via Hox hydrogenase is consumed by Hyn hydrogenase to reduce S(0).
Collapse
|