1
|
Naëgel A, Ratiney H, Karkouri J, Kennouche D, Royer N, Slade JM, Morel J, Croisille P, Viallon M. Alteration of skeletal muscle energy metabolism assessed by phosphorus-31 magnetic resonance spectroscopy in clinical routine, part 1: Advanced quality control pipeline. NMR IN BIOMEDICINE 2023; 36:e5025. [PMID: 37797948 DOI: 10.1002/nbm.5025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 07/03/2023] [Accepted: 07/25/2023] [Indexed: 10/07/2023]
Abstract
Implementing a standardized phosphorus-31 magnetic resonance spectroscopy (31 P-MRS) dynamic acquisition protocol to evaluate skeletal muscle energy metabolism and monitor muscle fatigability, while being compatible with various longitudinal clinical studies on diversified patient cohorts, requires a high level of technicality and expertise. Furthermore, processing data to obtain reliable results also demands a great degree of expertise from the operator. In this two-part article, we present an advanced quality control approach for data acquired using a dynamic 31 P-MRS protocol. The aim is to provide decision support to the operator to assist in data processing and obtain reliable results based on objective criteria. We present here, in part 1, an advanced data quality control (QC) approach of a dynamic 31 P-MRS protocol. Part 2 is an impact study that will demonstrate the added value of the QC approach to explore data derived from two clinical populations that experience significant fatigue, patients with coronavirus disease 2019 and multiple sclerosis. In part 1, 31 P-MRS was performed using 3-T clinical MRI in 175 subjects from clinical and healthy control populations conducted in a University Hospital. An advanced data QC score (QCS) was developed using multiple objective criteria. The criteria were based on current recommendations from the literature enriched by new proposals based on clinical experience. The QCS was designed to indicate valid and corrupt data and guide necessary objective data editing to extract as much valid physiological data as possible. Dynamic acquisitions using an MR-compatible ergometer ran over a rest (40 s), exercise (2 min), and a recovery phase (6 min). Using QCS enabled rapid identification of subjects with data anomalies, allowing the user to correct the data series or reject them partially or entirely, as well as identify fully valid datasets. Overall, the use of the QCS resulted in the automatic classification of 45% of the subjects, including 58 participants who had data with no criterion violation and 21 participants with violations that resulted in the rejection of all dynamic data. The remaining datasets were inspected manually with guidance, allowing acceptance of full datasets from an additional 80 participants and recovery phase data from an additional 16 subjects. Overall, more anomalies occurred with patient data (35% of datasets) compared with healthy controls (15% of datasets). In conclusion, the QCS ensures a standardized data rejection procedure and rigorous objective analysis of dynamic 31 P-MRS data obtained from patients. This methodology contributes to efforts made to standardize 31 P-MRS practices that have been underway for a decade, with the goal of making it an empowered tool for clinical research.
Collapse
Affiliation(s)
- Antoine Naëgel
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France
- Siemens Healthcare SAS, Saint-Denis, France
| | - Hélène Ratiney
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France
| | - Jabrane Karkouri
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France
- Siemens Healthcare SAS, Saint-Denis, France
- Wolfson Brain Imaging Center, University of Cambridge, Cambridge, UK
| | - Djahid Kennouche
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France
- LIBM - Laboratoire Interuniversitaire de Biologie de la Motricité, Villeurbanne, France
| | - Nicolas Royer
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France
- LIBM - Laboratoire Interuniversitaire de Biologie de la Motricité, Villeurbanne, France
| | - Jill M Slade
- Department of Radiology, Michigan State University, East Lansing, Michigan, USA
| | - Jérôme Morel
- Anaesthetics and Intensive Care Department, UJM-Saint-Etienne, Centre Hospitalier Universitaire de Saint-Étienne, Saint-Etienne, France
| | - Pierre Croisille
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France
- Radiology Department, UJM-Saint-Etienne, Centre Hospitalier Universitaire de Saint-Étienne, Saint-Etienne, France
| | - Magalie Viallon
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France
- Radiology Department, UJM-Saint-Etienne, Centre Hospitalier Universitaire de Saint-Étienne, Saint-Etienne, France
| |
Collapse
|
2
|
Naëgel A, Ratiney H, Karkouri J, Kennouche D, Royer N, Slade JM, Morel J, Croisille P, Viallon M. Alteration of skeletal muscle energy metabolism assessed by 31 P MRS in clinical routine: Part 2. Clinical application. NMR IN BIOMEDICINE 2023; 36:e5031. [PMID: 37797947 DOI: 10.1002/nbm.5031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 07/03/2023] [Accepted: 07/25/2023] [Indexed: 10/07/2023]
Abstract
In this second part of a two-part paper, we intend to demonstrate the impact of the previously proposed advanced quality control pipeline. To understand its benefit and challenge the proposed methodology in a real scenario, we chose to compare the outcome when applying it to the analysis of two patient populations with significant but highly different types of fatigue: COVID-19 and multiple sclerosis (MS). 31 P-MRS was performed on a 3 T clinical MRI, in 19 COVID-19 patients, 38 MS patients, and 40 matched healthy controls. Dynamic acquisitions using an MR-compatible ergometer ran over a rest (40 s), exercise (2 min), and a recovery phase (6 min). Long and short TR acquisitions were also made at rest for T1 correction. The advanced data quality control pipeline presented in Part 1 is applied to the selected patient cohorts to investigate its impact on clinical outcomes. We first used power and sample size analysis to estimate objectively the impact of adding the quality control score (QCS). Then, comparisons between patients and healthy control groups using the validated QCS were performed using unpaired t tests or Mann-Whitney tests (p < 0.05). The application of the QCS resulted in increased statistical power, changed the values of several outcome measures, and reduced variability (standard deviation). A significant difference was found between the T1PCr and T1Pi values of MS patients and healthy controls. Furthermore, the use of a fixed correction factor led to systematically higher estimated concentrations of PCr and Pi than when using individually corrected factors. We observed significant differences between the two patient populations and healthy controls for resting [PCr]-MS only, [Pi ], [ADP], [H2 PO4 - ], and pH-COVID-19 only, and post-exercise [PCr], [Pi ], and [H2 PO4 - ]-MS only. The dynamic indicators τPCr , τPi , ViPCr , and Vmax were reduced for COVID-19 and MS patients compared with controls. Our results show that QCS in dynamic 31 P-MRS studies results in smaller data variability and therefore impacts study sample size and power. Although QCS resulted in discarded data and therefore reduced the acceptable data and subject numbers, this rigorous and unbiased approach allowed for proper assessment of muscle metabolites and metabolism in patient populations. The outcomes include an increased metabolite T1 , which directly affects the T1 correction factor applied to the amplitudes of the metabolite, and a prolonged τPCr , indicating reduced muscle oxidative capacity for patients with MS and COVID-19.
Collapse
Affiliation(s)
- Antoine Naëgel
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France
- Siemens Healthcare SAS, Saint-Denis, France
| | - Hélène Ratiney
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France
| | - Jabrane Karkouri
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France
- Siemens Healthcare SAS, Saint-Denis, France
- Wolfson Brain Imaging Center, University of Cambridge, Cambridge, UK
| | - Djahid Kennouche
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France
- LIBM-Laboratoire Interuniversitaire de Biologie de la Motricité, Villeurbanne, France
| | - Nicolas Royer
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France
- LIBM-Laboratoire Interuniversitaire de Biologie de la Motricité, Villeurbanne, France
| | - Jill M Slade
- Department of Radiology, Michigan State University, East Lansing, Michigan, USA
| | - Jérôme Morel
- Anaesthetics and Intensive Care Department, UJM-Saint-Étienne, Centre Hospitalier Universitaire de Saint-Étienne, Saint-Étienne, France
| | - Pierre Croisille
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France
- Radiology Department, UJM-Saint-Étienne, Centre Hospitalier Universitaire de Saint-Étienne, Saint-Étienne, France
| | - Magalie Viallon
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France
- Radiology Department, UJM-Saint-Étienne, Centre Hospitalier Universitaire de Saint-Étienne, Saint-Étienne, France
| |
Collapse
|
3
|
Bjerkan J, Lancaster G, Meglič B, Kobal J, Crawford TJ, McClintock PVE, Stefanovska A. Aging affects the phase coherence between spontaneous oscillations in brain oxygenation and neural activity. Brain Res Bull 2023; 201:110704. [PMID: 37451471 DOI: 10.1016/j.brainresbull.2023.110704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
The risk of neurodegenerative disorders increases with age, due to reduced vascular nutrition and impaired neural function. However, the interactions between cardiovascular dynamics and neural activity, and how these interactions evolve in healthy aging, are not well understood. Here, the interactions are studied by assessment of the phase coherence between spontaneous oscillations in cerebral oxygenation measured by fNIRS, the electrical activity of the brain measured by EEG, and cardiovascular functions extracted from ECG and respiration effort, all simultaneously recorded. Signals measured at rest in 21 younger participants (31.1 ± 6.9 years) and 24 older participants (64.9 ± 6.9 years) were analysed by wavelet transform, wavelet phase coherence and ridge extraction for frequencies between 0.007 and 4 Hz. Coherence between the neural and oxygenation oscillations at ∼ 0.1 Hz is significantly reduced in the older adults in 46/176 fNIRS-EEG probe combinations. This reduction in coherence cannot be accounted for in terms of reduced power, thus indicating that neurovascular interactions change with age. The approach presented promises a noninvasive means of evaluating the efficiency of the neurovascular unit in aging and disease.
Collapse
Affiliation(s)
- Juliane Bjerkan
- Lancaster University, Department of Physics, LA1 4YB, Lancaster, United Kingdom
| | - Gemma Lancaster
- Lancaster University, Department of Physics, LA1 4YB, Lancaster, United Kingdom
| | - Bernard Meglič
- University of Ljubljana Medical Centre, Department of Neurology, 1525, Ljubljana, Slovenia
| | - Jan Kobal
- University of Ljubljana Medical Centre, Department of Neurology, 1525, Ljubljana, Slovenia
| | - Trevor J Crawford
- Lancaster University, Department of Psychology, LA1 4YF, Lancaster, United Kingdom
| | | | - Aneta Stefanovska
- Lancaster University, Department of Physics, LA1 4YB, Lancaster, United Kingdom.
| |
Collapse
|
4
|
Chu DT, Thi YVN, Chew NW. Histone modifications in fat metabolism and obesity. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 197:135-152. [PMID: 37019590 DOI: 10.1016/bs.pmbts.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The World Health Organization (WHO) has identified the obesity epidemic as one of the leading causes of overall morbidity and mortality. Obesity affects individual health, and quality of life and has negative long-term economic implications on society and the entire country. In recent years, studies on histone modifications in fat metabolism and obesity have received great attention. Processes such as methylation, histone modification, chromatin remodeling, and microRNA expression are mechanisms in epigenetic regulation. These processes play a particularly important role in cell development and differentiation through gene regulation. In this chapter, we discuss the types of histone modifications in adipose tissue under different conditions, the role of histone modifications in adipose tissue development, and the relationship between histone modifications and biosynthesis in the body. In addition, the chapter provides detailed information on histone modifications in obesity, the relationship between histone modifications and food consumption status, and the role of histone modifications in overweight and obesity.
Collapse
|
5
|
Harnessing conserved signaling and metabolic pathways to enhance the maturation of functional engineered tissues. NPJ Regen Med 2022; 7:44. [PMID: 36057642 PMCID: PMC9440900 DOI: 10.1038/s41536-022-00246-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/05/2022] [Indexed: 11/08/2022] Open
Abstract
The development of induced-pluripotent stem cell (iPSC)-derived cell types offers promise for basic science, drug testing, disease modeling, personalized medicine, and translatable cell therapies across many tissue types. However, in practice many iPSC-derived cells have presented as immature in physiological function, and despite efforts to recapitulate adult maturity, most have yet to meet the necessary benchmarks for the intended tissues. Here, we summarize the available state of knowledge surrounding the physiological mechanisms underlying cell maturation in several key tissues. Common signaling consolidators, as well as potential synergies between critical signaling pathways are explored. Finally, current practices in physiologically relevant tissue engineering and experimental design are critically examined, with the goal of integrating greater decision paradigms and frameworks towards achieving efficient maturation strategies, which in turn may produce higher-valued iPSC-derived tissues.
Collapse
|
6
|
Grishin VG, Grishin OV, Nikultsev VS, Gultyaeva VV, Zinchenko MI, Uryumtsev DY. Time–Frequency Analysis of Variability in External Respiration and Heart Rate in Humans during Exercise. Biophysics (Nagoya-shi) 2022. [DOI: 10.1134/s0006350922040091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
7
|
Morrison AJ. Cancer cell metabolism connects epigenetic modifications to transcriptional regulation. FEBS J 2022; 289:1302-1314. [PMID: 34036737 PMCID: PMC8613311 DOI: 10.1111/febs.16032] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 04/12/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022]
Abstract
Adaptation of cellular function with the nutrient environment is essential for survival. Failure to adapt can lead to cell death and/or disease. Indeed, energy metabolism alterations are a major contributing factor for many pathologies, including cancer, cardiovascular disease, and diabetes. In particular, a primary characteristic of cancer cells is altered metabolism that promotes survival and proliferation even in the presence of limited nutrients. Interestingly, recent studies demonstrate that metabolic pathways produce intermediary metabolites that directly influence epigenetic modifications in the genome. Emerging evidence demonstrates that metabolic processes in cancer cells fuel malignant growth, in part, through epigenetic regulation of gene expression programs important for proliferation and adaptive survival. In this review, recent progress toward understanding the relationship of cancer cell metabolism, epigenetic modification, and transcriptional regulation will be discussed. Specifically, the need for adaptive cell metabolism and its modulation in cancer cells will be introduced. Current knowledge on the emerging field of metabolite production and epigenetic modification will also be reviewed. Alterations of DNA (de)methylation, histone modifications, such as (de)methylation and (de)acylation, as well as chromatin remodeling, will be discussed in the context of cancer cell metabolism. Finally, how these epigenetic alterations contribute to cancer cell phenotypes will be summarized. Collectively, these studies reveal that both metabolic and epigenetic pathways in cancer cells are closely linked, representing multiple opportunities to therapeutically target the unique features of malignant growth.
Collapse
|
8
|
Seydel C, Biener J, Brodsky V, Eberlein S, Nägele T. Predicting plant growth response under fluctuating temperature by carbon balance modelling. Commun Biol 2022; 5:164. [PMID: 35210545 PMCID: PMC8873469 DOI: 10.1038/s42003-022-03100-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 02/02/2022] [Indexed: 11/09/2022] Open
Abstract
Quantification of system dynamics is a central aim of mathematical modelling in biology. Defining experimentally supported functional relationships between molecular entities by mathematical terms enables the application of computational routines to simulate and analyse the underlying molecular system. In many fields of natural sciences and engineering, trigonometric functions are applied to describe oscillatory processes. As biochemical oscillations occur in many aspects of biochemistry and biophysics, Fourier analysis of metabolic functions promises to quantify, describe and analyse metabolism and its reaction towards environmental fluctuations. Here, Fourier polynomials were developed from experimental time-series data and combined with block diagram simulation of plant metabolism to study heat shock response of photosynthetic CO2 assimilation and carbohydrate metabolism in Arabidopsis thaliana. Simulations predicted a stabilising effect of reduced sucrose biosynthesis capacity and increased capacity of starch biosynthesis on carbon assimilation under transient heat stress. Model predictions were experimentally validated by quantifying plant growth under such stress conditions. In conclusion, this suggests that Fourier polynomials represent a predictive mathematical approach to study dynamic plant-environment interactions.
Collapse
Affiliation(s)
- Charlotte Seydel
- Ludwig-Maximilians-Universität München, Faculty of Biology, Plant Development, 82152, Planegg-Martinsried, Germany.,Ludwig-Maximilians-Universität München, Faculty of Biology, Plant Evolutionary Cell Biology, 82152, Planegg-Martinsried, Germany
| | - Julia Biener
- Ludwig-Maximilians-Universität München, Faculty of Biology, Plant Evolutionary Cell Biology, 82152, Planegg-Martinsried, Germany
| | - Vladimir Brodsky
- Ludwig-Maximilians-Universität München, Faculty of Biology, Plant Evolutionary Cell Biology, 82152, Planegg-Martinsried, Germany
| | - Svenja Eberlein
- Ludwig-Maximilians-Universität München, Faculty of Biology, Plant Evolutionary Cell Biology, 82152, Planegg-Martinsried, Germany
| | - Thomas Nägele
- Ludwig-Maximilians-Universität München, Faculty of Biology, Plant Evolutionary Cell Biology, 82152, Planegg-Martinsried, Germany.
| |
Collapse
|
9
|
Usuda N, Shirakawa K, Hatano K, Abe MO, Yunoki T, Yano T. Coherence between oscillations in the cardiorespiratory system and tissue oxygen index in muscle recovering from intensive exercise in humans. Physiol Int 2019; 106:261-271. [PMID: 31602997 DOI: 10.1556/2060.106.2019.25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It has been shown that the tissue oxygen index (TOI) measured by near-infrared spectroscopy oscillates at very low frequencies during recovery after exercise and that this oscillation is derived from interactions among biochemical substances involved in oxidative metabolism in skeletal muscle. As a further step, we examined whether TOI in muscle interacts through oscillation with factors related to oxygen in the cardiorespiratory system. For this examination, coherence and phase difference between the TOI in the vastus lateralis and heart rate (HR) and between TOI and arterial oxygen saturation (SpO2) were sequentially determined during recovery (2-60 min) after severe cycle exercise with a workload of 7.5% of body weight for 20 s. Significant coherence between TOI and HR was obtained in the very low-frequency band (approximate range: 0.002-0.03 Hz) and in the low-frequency band (approximate range: 0.06-0.12 Hz). The phase difference was negative in the low-frequency band and positive in the very low-frequency band. The coherence between TOI and SpO2 was significant in the very low-frequency band. The phase difference was negative. There were no sequential changes in these coherences and phase differences. The results suggest that TOI in skeletal muscle interrelates with factors related to the heart and lungs.
Collapse
Affiliation(s)
- N Usuda
- Graduate school of Education, Hokkaido University, Sapporo, Japan
| | - K Shirakawa
- Graduate school of Education, Hokkaido University, Sapporo, Japan
| | - K Hatano
- Graduate school of Education, Hokkaido University, Sapporo, Japan
| | - M O Abe
- Department of Human Developmental Sciences, Faculty of Education, Hokkaido University, Sapporo, Japan
| | - T Yunoki
- Department of Human Developmental Sciences, Faculty of Education, Hokkaido University, Sapporo, Japan
| | - T Yano
- Department of Human Developmental Sciences, Faculty of Education, Hokkaido University, Sapporo, Japan
| |
Collapse
|
10
|
Zerfaß C, Asally M, Soyer OS. Interrogating metabolism as an electron flow system. CURRENT OPINION IN SYSTEMS BIOLOGY 2019; 13:59-67. [PMID: 31008413 PMCID: PMC6472609 DOI: 10.1016/j.coisb.2018.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metabolism is generally considered as a neatly organised system of modular pathways, shaped by evolution under selection for optimal cellular growth. This view falls short of explaining and predicting a number of key observations about the structure and dynamics of metabolism. We highlight these limitations of a pathway-centric view on metabolism and summarise studies suggesting how these could be overcome by viewing metabolism as a thermodynamically and kinetically constrained, dynamical flow system. Such a systems-level, first-principles based view of metabolism can open up new avenues of metabolic engineering and cures for metabolic diseases and allow better insights to a myriad of physiological processes that are ultimately linked to metabolism. Towards further developing this view, we call for a closer interaction among physical and biological disciplines and an increased use of electrochemical and biophysical approaches to interrogate cellular metabolism together with the microenvironment in which it exists.
Collapse
Affiliation(s)
- Christian Zerfaß
- Bio-Electrical Engineering (BEE) Innovation Hub, University of Warwick, Coventry, CV4 7AL, UK
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Munehiro Asally
- Bio-Electrical Engineering (BEE) Innovation Hub, University of Warwick, Coventry, CV4 7AL, UK
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- Warwick Integrative Synthetic Biology Centre (WISB), University of Warwick, Coventry, CV4 7AL, UK
| | - Orkun S. Soyer
- Bio-Electrical Engineering (BEE) Innovation Hub, University of Warwick, Coventry, CV4 7AL, UK
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- Warwick Integrative Synthetic Biology Centre (WISB), University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
11
|
Lu S, Dugan CE, Kennedy RT. Microfluidic Chip with Integrated Electrophoretic Immunoassay for Investigating Cell-Cell Interactions. Anal Chem 2018; 90:5171-5178. [PMID: 29578696 PMCID: PMC6943824 DOI: 10.1021/acs.analchem.7b05304] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Microfluidics have been used to create "body-on-chip" systems to mimic in vivo cellular interactions with a high level of control. Most such systems rely on optical observation of cells as a readout. In this work we integrated a cell-cell interaction chip with online microchip electrophoresis immunoassay to monitor the effects of the interaction on protein secretion dynamics. The system was used to investigate the effects of adipocytes on insulin secretion. Chips were loaded with 190 000 3T3-L1 adipocytes and a single islet of Langerhans in separate chambers. The chambers were perfused at 300-600 nL/min so that adipocyte secretions flowed over the islets for 3 h. Adipocytes produced 80 μM of nonesterified fatty acids (NEFAs), a factor known to impact insulin secretion, at the islets. After perfusion, islets were challenged with a step change in glucose from 3 to 11 mM while monitoring insulin secretion at 8 s intervals by online immunoassay. Adipocyte treatment augmented insulin secretion by 6-fold compared to controls. The effect was far greater than comparable concentrations of NEFA applied to the islets demonstrating that adipocytes release multiple factors that can strongly potentiate insulin secretion. The experiments reveal that integration of chemical analysis with cell-cell interaction can provide valuable insights into cellular functions.
Collapse
Affiliation(s)
- Shusheng Lu
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , United States
| | - Colleen E Dugan
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , United States
| | - Robert T Kennedy
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , United States
| |
Collapse
|
12
|
Heinemann J, Noon B, Willems D, Budeski K, Bothner B. Analysis of Raw Biofluids by Mass Spectrometry Using Microfluidic Diffusion-Based Separation. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2017; 9:385-392. [PMID: 28713441 PMCID: PMC5509350 DOI: 10.1039/c6ay02827f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Elucidation and monitoring of biomarkers continues to expand because of their medical value and potential to reduce healthcare costs. For example, biomarkers are used extensively to track physiology associated with drug addiction, disease progression, aging, and industrial processes. While longitudinal analyses are of great value from a biological or healthcare perspective, the cost associated with replicate analyses is preventing the expansion of frequent routine testing. Frequent testing could deepen our understanding of disease emergence and aid adoption of personalized healthcare. To address this need, we have developed a system for measuring metabolite abundance from raw biofluids. Using a metabolite extraction chip (MEC), based upon diffusive extraction of small molecules and metabolites from biofluids using microfluidics, we show that biologically relevant markers can be measured in blood and urine. Previously it was shown that the MEC could be used to track metabolic changes in real-time. We now demonstrate that the device can be adapted to high-throughput screening using standard liquid chromatography mass spectrometry instrumentation (LCMS). The results provide insight into the sensitivity of the system and its application for the analysis of human biofluids. Quantitative analysis of clinical predictors including nicotine, caffeine, and glutathione are described.
Collapse
Affiliation(s)
- Joshua Heinemann
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Joint Bioenergy Institute, Emeryville, CA 94608
| | - Brigit Noon
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717
| | - Daniel Willems
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717
| | - Katherine Budeski
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717
| |
Collapse
|
13
|
Yano T, Afroundeh R, Shirakawa K, Lian CS, Shibata K, Xiao Z, Yunoki T. Oscillation in tissue oxygen index during recovery from exercise. Physiol Res 2016; 65:259-69. [PMID: 26447517 DOI: 10.33549/physiolres.933044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
It was hypothesized that an oscillation of tissue oxygen index (TOI) determined by near-infrared spectroscopy during recovery from exercise occurs due to feedback control of adenosine triphosphate and that frequency of the oscillation is affected by blood pH. In order to examine these hypotheses, we aimed 1) to determine whether there is an oscillation of TOI during recovery from exercise and 2) to determine the effect of blood pH on frequency of the oscillation of TOI. Three exercises were performed with exercise intensities of 30 % and 70 % peak oxygen uptake (V(.)o(2)peak) for 12 min and with exercise intensity of 70 % V(.)o(2)peak for 30 s. TOI during recovery from the exercise was analyzed by fast Fourier transform in order to obtain power spectra density (PSD). There was a significant difference in the frequency at which maximal PSD of TOI appeared (Fmax) between the exercises with 70 % V(.)o(2)peak for 12 min (0.0039+/-0 Hz) and for 30 s (0.0061+/-0.0028 Hz). However, there was no significant difference in Fmax between the exercises with 30 % (0.0043+/-0.0013 Hz) and with 70 % V(.)o(2)peak for 12 min despite differences in blood pH and blood lactate from the warmed fingertips. It is concluded that there was an oscillation in TOI during recovery from the three exercises. It was not clearly shown that there was an effect of blood pH on Fmax.
Collapse
Affiliation(s)
- T Yano
- Department of Human Developmental Sciences, Faculty of Education, Hokkaido University, Kita-ku, Japan.
| | | | | | | | | | | | | |
Collapse
|
14
|
Mitochondrial redox and pH signaling occurs in axonal and synaptic organelle clusters. Sci Rep 2016; 6:23251. [PMID: 27000952 PMCID: PMC4802380 DOI: 10.1038/srep23251] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/02/2016] [Indexed: 01/09/2023] Open
Abstract
Redox switches are important mediators in neoplastic, cardiovascular and neurological disorders. We recently identified spontaneous redox signals in neurons at the single mitochondrion level where transients of glutathione oxidation go along with shortening and re-elongation of the organelle. We now have developed advanced image and signal-processing methods to re-assess and extend previously obtained data. Here we analyze redox and pH signals of entire mitochondrial populations. In total, we quantified the effects of 628 redox and pH events in 1797 mitochondria from intercostal axons and neuromuscular synapses using optical sensors (mito-Grx1-roGFP2; mito-SypHer). We show that neuronal mitochondria can undergo multiple redox cycles exhibiting markedly different signal characteristics compared to single redox events. Redox and pH events occur more often in mitochondrial clusters (medium cluster size: 34.1 ± 4.8 μm(2)). Local clusters possess higher mitochondrial densities than the rest of the axon, suggesting morphological and functional inter-mitochondrial coupling. We find that cluster formation is redox sensitive and can be blocked by the antioxidant MitoQ. In a nerve crush paradigm, mitochondrial clusters form sequentially adjacent to the lesion site and oxidation spreads between mitochondria. Our methodology combines optical bioenergetics and advanced signal processing and allows quantitative assessment of entire mitochondrial populations.
Collapse
|
15
|
Sage C. The implications of non-linear biological oscillations on human electrophysiology for electrohypersensitivity (EHS) and multiple chemical sensitivity (MCS). REVIEWS ON ENVIRONMENTAL HEALTH 2015; 30:293-303. [PMID: 26368042 DOI: 10.1515/reveh-2015-0007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/30/2015] [Indexed: 06/05/2023]
Abstract
The 'informational content' of Earth's electromagnetic signaling is like a set of operating instructions for human life. These environmental cues are dynamic and involve exquisitely low inputs (intensities) of critical frequencies with which all life on Earth evolved. Circadian and other temporal biological rhythms depend on these fluctuating electromagnetic inputs to direct gene expression, cell communication and metabolism, neural development, brainwave activity, neural synchrony, a diversity of immune functions, sleep and wake cycles, behavior and cognition. Oscillation is also a universal phenomenon, and biological systems of the heart, brain and gut are dependent on the cooperative actions of cells that function according to principles of non-linear, coupled biological oscillations for their synchrony. They are dependent on exquisitely timed cues from the environment at vanishingly small levels. Altered 'informational content' of environmental cues can swamp natural electromagnetic cues and result in dysregulation of normal biological rhythms that direct growth, development, metabolism and repair mechanisms. Pulsed electromagnetic fields (PEMF) and radiofrequency radiation (RFR) can have the devastating biological effects of disrupting homeostasis and desynchronizing normal biological rhythms that maintain health. Non-linear, weak field biological oscillations govern body electrophysiology, organize cell and tissue functions and maintain organ systems. Artificial bioelectrical interference can give false information (disruptive signaling) sufficient to affect critical pacemaker cells (of the heart, gut and brain) and desynchronize functions of these important cells that orchestrate function and maintain health. Chronic physiological stress undermines homeostasis whether it is chemically induced or electromagnetically induced (or both exposures are simultaneous contributors). This can eventually break down adaptive biological responses critical to health maintenance; and resilience can be compromised. Electrohypersensitivity can be caused by successive assaults on human bioelectrochemical dynamics from exogenous electromagnetic fields (EMF) and RFR or a single acute exposure. Once sensitized, further exposures are widely reported to cause reactivity to lower and lower intensities of EMF/RFR, at which point thousand-fold lower levels can cause adverse health impacts to the electrosensitive person. Electrohypersensitivity (EHS) can be a precursor to, or linked with, multiple chemical sensitivity (MCS) based on reports of individuals who first develop one condition, then rapidly develop the other. Similarity of chemical biomarkers is seen in both conditions [histamines, markers of oxidative stress, auto-antibodies, heat shock protein (HSP), melatonin markers and leakage of the blood-brain barrier]. Low intensity pulsed microwave activation of voltage-gated calcium channels (VGCCs) is postulated as a mechanism of action for non-thermal health effects.
Collapse
|
16
|
In vivo tissue-wide synchronization of mitochondrial metabolic oscillations. Cell Rep 2014; 9:514-21. [PMID: 25373899 DOI: 10.1016/j.celrep.2014.09.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 06/09/2014] [Accepted: 09/11/2014] [Indexed: 11/20/2022] Open
Abstract
Little is known about the spatiotemporal coordination of mitochondrial metabolism in multicellular organisms in situ. Using intravital microscopy in live animals, we report that mitochondrial metabolism undergoes rapid and periodic oscillations under basal conditions. Notably, mitochondria in vivo behave as a network of functionally coupled oscillators, which maintain a high level of coordination throughout the tissue via the activity of gap junctions. These findings reveal a unique aspect of the relationship between tissue architecture and self-organization of mitochondrial metabolism in vivo.
Collapse
|
17
|
Heinemann J, Noon B, Mohigmi MJ, Mazurie A, Dickensheets DL, Bothner B. Real-time digitization of metabolomics patterns from a living system using mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:1755-62. [PMID: 25001378 PMCID: PMC4163111 DOI: 10.1007/s13361-014-0922-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 04/27/2014] [Accepted: 04/28/2014] [Indexed: 05/05/2023]
Abstract
The real-time quantification of changes in intracellular metabolic activities has the potential to vastly improve upon traditional transcriptomics and metabolomics assays for the prediction of current and future cellular phenotypes. This is in part because intracellular processes reveal themselves as specific temporal patterns of variation in metabolite abundance that can be detected with existing signal processing algorithms. Although metabolite abundance levels can be quantified by mass spectrometry (MS), large-scale real-time monitoring of metabolite abundance has yet to be realized because of technological limitations for fast extraction of metabolites from cells and biological fluids. To address this issue, we have designed a microfluidic-based inline small molecule extraction system, which allows for continuous metabolomic analysis of living systems using MS. The system requires minimal supervision, and has been successful at real-time monitoring of bacteria and blood. Feature-based pattern analysis of Escherichia coli growth and stress revealed cyclic patterns and forecastable metabolic trajectories. Using these trajectories, future phenotypes could be inferred as they exhibit predictable transitions in both growth and stress related changes. Herein, we describe an interface for tracking metabolic changes directly from blood or cell suspension in real-time.
Collapse
Affiliation(s)
- Joshua Heinemann
- Department of chemistry and biochemistry, Montana State University, Bozeman, MT 59717
| | - Brigit Noon
- Department of chemistry and biochemistry, Montana State University, Bozeman, MT 59717
| | - Mohammad J. Mohigmi
- Electrical & computer engineering department, Montana State University, Bozeman, MT 59717
| | - Aurélien Mazurie
- Bioinformatics core facility, Montana State University, Bozeman, MT 59717
| | - David L. Dickensheets
- Electrical & computer engineering department, Montana State University, Bozeman, MT 59717
| | - Brian Bothner
- Department of chemistry and biochemistry, Montana State University, Bozeman, MT 59717
- Montana Microfabrication facility, Montana State University, Bozeman, MT 59717
| |
Collapse
|
18
|
Yano T, Afroundeh R, Yamanaka R, Arimitsu T, Lian CS, Shirakawa K, Yunoki T. Oscillation in O2 uptake in impulse exercise. ACTA PHYSIOLOGICA HUNGARICA 2014; 101:143-149. [PMID: 24901075 DOI: 10.1556/aphysiol.101.2014.2.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The purpose of the present study was to examine 1) whether O(2) uptake (VO(2)) oscillates during light exercise and 2) whether the oscillation is enhanced after impulse exercise. After resting for 1 min on a bicycle seat, subjects performed 5-min pre-exercise with 25 watts work load, 10-s impulse exercise with 200 watts work load and 15-min post exercise with 25 watts work load at 80 rpm. VO(2) during pre-exercise significantly increased during impulse exercise and suddenly decreased and re-increased until 23 s after impulse exercise. In the cross correlation between heart rate (HR) and VO(2) after impulse exercise, VO(2) strongly correlated to HR with a time delay of -4 s. Peak of power spectral density (PSD) in HR appeared at 0.0039 Hz and peak of PSD in VO(2) appeared at 0.019 Hz. The peak of the cross power spectrum between VO(2) and HR appeared at 0.0078 Hz. The results suggested that there is an oscillation in O(2) uptake during light exercise that is associated with the oscillation in O(2) consumption in active muscle. The oscillation is enhanced not only by change in O(2) consumption but also by O(2) content transported from active muscle to the lungs.
Collapse
Affiliation(s)
- T Yano
- Hokkaido University Laboratory of Exercise Physiology, Faculty of Education Kita-ku, Sapporo Japan
| | - R Afroundeh
- Hokkaido University Laboratory of Exercise Physiology, Faculty of Education Kita-ku, Sapporo Japan
| | - R Yamanaka
- Hokkaido University Laboratory of Exercise Physiology, Faculty of Education Kita-ku, Sapporo Japan
| | - T Arimitsu
- Hokkaido University Laboratory of Exercise Physiology, Faculty of Education Kita-ku, Sapporo Japan
| | - C S Lian
- Hokkaido University Laboratory of Exercise Physiology, Faculty of Education Kita-ku, Sapporo Japan
| | - K Shirakawa
- Hokkaido University Laboratory of Exercise Physiology, Faculty of Education Kita-ku, Sapporo Japan
| | - T Yunoki
- Hokkaido University Laboratory of Exercise Physiology, Faculty of Education Kita-ku, Sapporo Japan
| |
Collapse
|
19
|
Yano T, Lian CS, Afroundeh R, Shirakawa K, Yunoki T. Comparison of oscillations of skin blood flow and deoxygenation in vastus lateralis in light exercise. Biol Sport 2014; 31:15-20. [PMID: 25187674 PMCID: PMC3994580 DOI: 10.5604/20831862.1083274] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2013] [Indexed: 11/23/2022] Open
Abstract
The purpose of the present study was to compare oscillation of skin blood flow with that of deoxygenation in muscle during light exercise in order to determine the physiological significance of oscillations in deoxygenation. Prolonged exercise with 50% of peak oxygen uptake was performed for 60 min. Skin blood flow (SBF) was measured using a laser blood flow meter on the right vastus lateralis muscle. Deoxygenated haemoglobin/myoglobin (DHb/Mb) concentration in the left vastus lateralis were measured using a near-infrared spectroscopy system. SBF and DHb/Mb during exercise were analysed by fast Fourier transform. We classified frequency bands according to previous studies (Kvernmo et al. 1999, Kvandal et al. 2006) into phase I (0.005-0.0095 and 0.0095-0.02 Hz), phase II (0.02-0.06 Hz: phase II) and phase III (0.06-0.16 Hz). The first peak of power spectra density (PSD) in SBF appeared at 0.0078 Hz in phase I. The second peak of PSD in SBF appeared at 0.035 Hz. The third peak of PSD in SBF appeared at 0.078 Hz. The first peak of PSD in DHb/Mb appeared at 0.0039 Hz, which was out of phase I. The second peak of PSD in DHb/Mb appeared at 0.016 Hz. The third peak of PSD in DHb/Mb appeared at 0.035 Hz. The coefficient of cross correlation was very low. Cross power spectra density showed peaks of 0.0039, 0.016 and 0.035 Hz. It is concluded that a peak of 0.016 Hz in oscillations of DHb/Mb observed in muscle during exercise is associated with endothelium-dependent vasodilation (phase I) and that a peak of 0.035 Hz in DHb/Mb is associated with sympathetic nerve activity (phase II). It is also confirmed that each peak of SBF oscillations is observed in each phase.
Collapse
Affiliation(s)
- T Yano
- Laboratory of Exercise Physiology, Faculty of Education, Hokkaido University, Kita-ku, Sapporo, Japan
| | - C-S Lian
- Laboratory of Exercise Physiology, Faculty of Education, Hokkaido University, Kita-ku, Sapporo, Japan
| | - R Afroundeh
- Laboratory of Exercise Physiology, Faculty of Education, Hokkaido University, Kita-ku, Sapporo, Japan
| | - K Shirakawa
- Laboratory of Exercise Physiology, Faculty of Education, Hokkaido University, Kita-ku, Sapporo, Japan
| | - T Yunoki
- Laboratory of Exercise Physiology, Faculty of Education, Hokkaido University, Kita-ku, Sapporo, Japan
| |
Collapse
|
20
|
Layec G, Malucelli E, Le Fur Y, Manners D, Yashiro K, Testa C, Cozzone PJ, Iotti S, Bendahan D. Effects of exercise-induced intracellular acidosis on the phosphocreatine recovery kinetics: a 31P MRS study in three muscle groups in humans. NMR IN BIOMEDICINE 2013; 26:1403-1411. [PMID: 23703831 DOI: 10.1002/nbm.2966] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 03/22/2013] [Accepted: 03/25/2013] [Indexed: 06/02/2023]
Abstract
Little is known about the metabolic differences that exist among different muscle groups within the same subjects. Therefore, we used (31)P-magnetic resonance spectroscopy ((31)P-MRS) to investigate muscle oxidative capacity and the potential effects of pH on PCr recovery kinetics between muscles of different phenotypes (quadriceps (Q), finger (FF) and plantar flexors (PF)) in the same cohort of 16 untrained adults. The estimated muscle oxidative capacity was lower in Q (29 ± 12 mM min(-1), CV(inter-subject) = 42%) as compared with PF (46 ± 20 mM min(-1), CV(inter-subject) = 44%) and tended to be higher in FF (43 ± 35 mM min(-1), CV(inter-subject) = 80%). The coefficient of variation (CV) of oxidative capacity between muscles within the group was 59 ± 24%. PCr recovery time constant was correlated with end-exercise pH in Q (p < 0.01), FF (p < 0.05) and PF (p < 0.05) as well as proton efflux rate in FF (p < 0.01), PF (p < 0.01) and Q (p = 0.12). We also observed a steeper slope of the relationship between end-exercise acidosis and PCr recovery kinetics in FF compared with either PF or Q muscles. Overall, this study supports the concept of skeletal muscle heterogeneity by revealing a comparable inter- and intra-individual variability in oxidative capacity across three skeletal muscles in untrained individuals. These findings also indicate that the sensitivity of mitochondrial respiration to the inhibition associated with cytosolic acidosis is greater in the finger flexor muscles compared with locomotor muscles, which might be related to differences in permeability in the mitochondrial membrane and, to some extent, to proton efflux rates.
Collapse
Affiliation(s)
- Gwenael Layec
- Centre de Resonance Magnetique Biologique et Medicale, UMR CNRS 6612, Faculté de Médecine de Marseille, Marseille, France; Department of Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT, USA; Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Autism spectrum conditions (ASCs) are defined behaviorally, but they also involve multileveled disturbances of underlying biology that find striking parallels in the physiological impacts of electromagnetic frequency and radiofrequency radiation exposures (EMF/RFR). Part I (Vol 776) of this paper reviewed the critical contributions pathophysiology may make to the etiology, pathogenesis and ongoing generation of behaviors currently defined as being core features of ASCs. We reviewed pathophysiological damage to core cellular processes that are associated both with ASCs and with biological effects of EMF/RFR exposures that contribute to chronically disrupted homeostasis. Many studies of people with ASCs have identified oxidative stress and evidence of free radical damage, cellular stress proteins, and deficiencies of antioxidants such as glutathione. Elevated intracellular calcium in ASCs may be due to genetics or may be downstream of inflammation or environmental exposures. Cell membrane lipids may be peroxidized, mitochondria may be dysfunctional, and various kinds of immune system disturbances are common. Brain oxidative stress and inflammation as well as measures consistent with blood-brain barrier and brain perfusion compromise have been documented. Part II of this paper documents how behaviors in ASCs may emerge from alterations of electrophysiological oscillatory synchronization, how EMF/RFR could contribute to these by de-tuning the organism, and policy implications of these vulnerabilities. It details evidence for mitochondrial dysfunction, immune system dysregulation, neuroinflammation and brain blood flow alterations, altered electrophysiology, disruption of electromagnetic signaling, synchrony, and sensory processing, de-tuning of the brain and organism, with autistic behaviors as emergent properties emanating from this pathophysiology. Changes in brain and autonomic nervous system electrophysiological function and sensory processing predominate, seizures are common, and sleep disruption is close to universal. All of these phenomena also occur with EMF/RFR exposure that can add to system overload ('allostatic load') in ASCs by increasing risk, and can worsen challenging biological problems and symptoms; conversely, reducing exposure might ameliorate symptoms of ASCs by reducing obstruction of physiological repair. Various vital but vulnerable mechanisms such as calcium channels may be disrupted by environmental agents, various genes associated with autism or the interaction of both. With dramatic increases in reported ASCs that are coincident in time with the deployment of wireless technologies, we need aggressive investigation of potential ASC-EMF/RFR links. The evidence is sufficient to warrant new public exposure standards benchmarked to low-intensity (non-thermal) exposure levels now known to be biologically disruptive, and strong, interim precautionary practices are advocated.
Collapse
|
22
|
Yano T, Lian CS, Arimitsu T, Yamanaka R, Afroundeh R, Shirakawa K, Yunoki T. Oscillation of oxygenation in skeletal muscle at rest and in light exercise. ACTA PHYSIOLOGICA HUNGARICA 2013; 100:312-20. [PMID: 23681050 DOI: 10.1556/aphysiol.100.2013.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aim of the present study was to compare the frequency of oxygenation determined in the vastus lateralis by near-infrared spectroscopy (NIRS) in light exercise with that at rest. A subject rested in a recumbent position for 5 min and changed body position to a sitting position on a cycle ergometer for 9 min. Then exercise with low intensity (work rate of 60% of maximal oxygen uptake) was carried out for 30 min. Total hemoglobin and myoglobin (THb/Mb) suddenly decreased after the start of exercise and gradually increased for 6 min. Oxygenated hemoglobin and myoglobin (Hb/MbO2) suddenly decreased and returned to a steady-state after the start of exercise. The difference between Hb/MbO2 and THb/Mb showed a sudden decrease and then a steady-state. This difference was analyzed by fast Fourier transform. The peak frequencies of the power spectrum density (PSD) were 0.0169 ± 0.0076 Hz at rest and 0.0117 ± 0.0042 Hz in exercise. The peak frequency of PSD was significantly decreased in exercise. In exercise, the range of frequencies was expanded. It is concluded that there are oscillations at rest as well as in exercise and that the frequency of peak PSD becomes lower in exercise than at rest.
Collapse
Affiliation(s)
- T Yano
- Hokkaido University Laboratory of Exercise Physiology, Faculty of Education Kita-ku, Sapporo Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Yano T, Lian CS, Arimitsu T, Yamanaka R, Afroundeh R, Shirakawa K, Yunoki T. Comparison of oscillation of oxygenation in skeletal muscle between early and late phases in prolonged exercise. Physiol Res 2013; 62:297-304. [PMID: 23489190 DOI: 10.33549/physiolres.932474] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The aim of the present study was to compare the oscillations of oxygenation in skeletal muscle between early and late phases in prolonged exercise. During prolonged exercise at 60 % of peak oxygen uptake (V(.)o(2)) for 60 min and at rest, oxygenated hemoglobin/myoglobin (Hb/MbO(2)) and total Hb/Mb (THb/Mb) were determined by near-infrared spectroscopy in the vastus lateralis. Power spectra density (PSD) for the difference between Hb/MbO(2) and THb/Mb (-HHb/MbO(2): deoxygenation) was obtained by fast Fourier transform at rest, in the early phase (1-6 min) and in the late phase (55-60 min) in exercise. Peak PSD in the early phase was significantly higher than that at rest. There were at least three peaks of PSD in exercise. The highest peak was a band around 0.01 Hz, the next peak was a band around 0.04 Hz, and the lowest peak was a band around 0.06 Hz. PSD in the early phase was not significantly different from that in the late phase in exercise. Heart rate (HR) showed a continuous significant increase from 3 min in exercise until the end of exercise. Skin blood flow (SBF) around the early phase was significantly lower than that around the late phase. It was concluded that oscillation of oxygenation in the muscle oxygen system in the early phase is not different from that in the late phase in prolonged exercise despite cardiovascular drift.
Collapse
Affiliation(s)
- T Yano
- Laboratory of Exercise Physiology, Faculty of Education, Hokkaido University, Kita-ku, Sapporo, Japan.
| | | | | | | | | | | | | |
Collapse
|
24
|
Malucelli E, Iotti S, Manners D, Testa C, Martinuzzi A, Barbiroli B, Lodi R. The role of pH on the thermodynamics and kinetics of muscle biochemistry: An in vivo study by 31P-MRS in patients with myo-phosphorylase deficiency. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1244-9. [DOI: 10.1016/j.bbabio.2011.06.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 04/14/2011] [Accepted: 06/16/2011] [Indexed: 10/18/2022]
|
25
|
Expanding importance of mRNA expression in understanding stress and stress responses. J Theor Biol 2010; 266:479-82. [DOI: 10.1016/j.jtbi.2010.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 07/10/2010] [Accepted: 07/13/2010] [Indexed: 01/07/2023]
|